CAPÍTULO IV VALOR FUTURO y VALOR PRESENTE - DESCUENTO COMPUESTO- Inflación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPÍTULO IV VALOR FUTURO y VALOR PRESENTE - DESCUENTO COMPUESTO- Inflación"

Transcripción

1 CAPÍTULO IV VALOR FUTURO y VALOR PRESENTE - DESCUENTO COMPUESTO- Inflación 74

2 4..- VALOR FUTURO y VALOR PRESENTE -DESCUENTO COMPUESTO- Inflación En el capítulo de Interés Simple se comentó sobre el tema en cuestión, solo que ahora se estudiará el valor futuro compuesto, el valor presente compuesto, su descuento e inflación. Recordando: en el capítulo I, se analizaron problemas de valor presente en supuestos casos de corto plazo y que están basados en el interés simple. Éstas son las fórmulas P S in y P S it 360 Ahora bien, cuando la fecha de pago del adeudo es mayor, se utiliza la fórmula de valor presente utilizando interés compuesto. Así, en resumen podemos decir que el valor presente de una inversión que se pagará en el futuro, es el capital necesario que tenemos que invertir a una tasa x y a una fecha determinada, para cubrir un capital futuro. Veamos un ejemplo: Un empresario obtuvo un préstamo de Nacional Financiera a una tasa de interés muy baja. Ocho meses antes de la fecha en que debe pagar dicha cantidad, consigue un contrato que le da utilidades suficientes para pagar esa cantidad, es decir, los $248, que le prestaron inicialmente. Considerando que el préstamo se acordó a tasas muy bajas, el empresario decide invertir el dinero necesario y que además le permita pagar la deuda contraída. Para ello se da a la tarea de buscar la Institución Financiera que mayor tasa de interés le pueda otorgar. El Banco que le ofrece el mayor rendimiento es el 4% anual capitalizable mensualmente. 75

3 La pregunta es... Cuánto debe invertir hoy (ocho meses antes) a la tasa del 4%, de tal manera que pueda obtener para pagar los $248, en la fecha de vencimiento de su deuda? Si P es la inversión inicial, después de ocho meses el capital crece a: S P i m n S 0.4 P 2 8 Si se desea que el monto sea $248,000.00, entonces tenemos que satisfacer la siguiente ecuación: S 0.4 P ,000 P 2 8 S P P S S P Se despeja P P 248, $226, Con esta cantidad invertida, a los ocho meses habrá acumulado los $248, que le prestó Nacional Financiera Comprobación: S =$226, S =$226, S=$226, S=$248, Los.5 centavos son por el manejo de los dígitos. 76

4 En resumen.. Podemos decir que, a la diferencia entre el valor del monto que se requiere para saldar una deuda y su valor actual neto o presente, le denominaremos descuento compuesto. S es el monto de la deuda, i a la tasa de interés por el período de capitalización, n al número de períodos de capitalización que se anticipan y P es el valor presente de la deuda: S ) S ( i) n P( i Despejamos P y tenemos: P n P S i ( m ) n Valor presente compuesto Cuando la tasa de interés se expresa nominalmente y el número de capitalizaciones por año es m Que también puede ser representada como: Valor Futuro Valor Presente VF i m VP VF ( i ) nm m / VP( ) nm / Dónde: VF= valor futuro VP= valor presente i= tasa nominal m= tipo de capitalización n= tiempo 77

5 4... Ejercicios validados con simuladores: Interés Compuesto Un empleado pidió un préstamo en la empresa en la cual trabaja, por la cantidad de $7, para pagar la remodelación de su casa. La tasa pactada es del 7% nominal ordinario, capitalizable cada 50 días. Cuál es el valor que este empleado va a pagar al final del periodo que es de un año? P = $7,000 i = 7% Anual. m = 50 días n = Años S =? S P*( i / m) n S $7,000*( ((0.07 / 360)*50)) S $7, 000*( ( )) S $7, 000*( ) S $7, 000* S $8,226, (360)/50 (360)/50 Ejercicio Resuelto con Simulador 78

6 Otro caso: El gerente de una compañía desea incrementar sus ventas apoyado con los resultados de un estudio de mercado realizado por la empresa, para ello requiere ampliar la capacidad instalada en la planta de producción. Para dicha ampliación requiere de $75,000.00, por lo cual decide solicitar el dinero al banco de la Región, mismo que cobra una tasa de interés de 7.44% Nominal capitalizable cada 45 días. Si el préstamo es por 48 meses, cual es el importe que deberá cubrir?. P = $75, i = 7.44% Anual. m = 45 días n = 48 Meses S =? S P*( i / m) n S $75,000.00*( ((0.744 / 360)*45)) S $75, *( ((0.028)) S $75, *(.028) S $75, * S $348, (48*30)/45 (48*30)/45 Ejercicio Resuelto con Simulador 79

7 Un siguiente ejercicio: El gerente de una tienda de mascotas adquirió un crédito con un banco local a una tasa de interés del 8.7% anual capitalizable semestralmente, para la compra de una vivienda en la que pretenden poner un hotel de mascotas para sus asiduos clientes, el importe del crédito es por la cantidad de $850, pagaderos en un plazo de 0 años. Cuál es el valor que pagarán al final del tiempo pactado, considerando que la tasa se mantendrá igual en toda la vigencia del crédito?. P = $850, i = 8.7% ó m = 6 meses (Semestral) n = 0 años S =? S P*( i / m) n S $850,000*( (( / 2)*6)) S $850, 000*( ) S $850, 000*(.0435) 20 S $850, 000* S $,99,902.2 (0*2)/6 (0*2)/6 Ejercicio Resuelto con Simulador 80

8 Ejercicio de Valor Futuro y Valor Presente Se presentan dos escenarios: primeramente cuando se realiza un depósito inicial y con el tiempo se recibirá determinada cantidad y otro en donde se requiere obtener determinada cantidad y para ello, se deberá calcular la cantidad inicial que deberá depositarse, dependiendo del tiempo y la tasa de interés que ofrezca en ese momento algún banco. Primer caso: Del presente al futuro sería el siguiente escenario: Samuel es padre de dos adolescentes las cuales tienen planeado ir a una Universidad privada: A la menor le faltan 5 años para iniciar su carrera y a la mayor solo le faltan 3 años. Pensando en el costo de las inscripciones y demás gastos en que puedan incurrir al momento de su ingreso a la universidad, lo cual por cierto desconoce cuánto deberá pagar, entonces Samuel decide abrir dos cuentas de ahorro, una para cada una de sus hijas en el Banco de la Región, el que le ofrece una tasa de interés del 4% Nominal capitalizable bimestralmente. Las cuentas son aperturadas con el mismo monto inicial para cada una de ellas, el cual es por la cantidad de $20, Cuánto recibirá cada una de las cuentas al retirar el monto total ahorrado al iniciar los estudios cada una de las hijas? HIJA MAYOR VP = $20, i = 4% o 0.4 m = 2 meses n = 3 años VF =? VF VP*( i / m) n HIJA MAYOR VF $20,000.00*( ((0.4 /2)*2)) VF $20, *( ) VF $20, *( ) VF $20, * VF $30, (3*2)/2 (3*2)/2 8

9 Ejercicio Resuelto con simulador Hija Mayor Hija Menor HIJA MENOR VP = $20, i = 4% ó 0.4 m = 2 meses n = 5 años VF =? HIJA MENOR VF $20, *( ((0.4 /2)* 2)) VF $20, *( ) VF $20, *( ) VF $20, * VF $39, (5*2)/2 (5*2)/2 82

10 Segundo caso Del futuro al presente sería el siguiente escenario: Samuel es padre de dos adolescentes las cuales tienen planeado ir a una Universidad privada: A la menor le faltan 5 años para iniciar su carrera y a la mayor solo le faltan 3 años. Pensando en el costo de las inscripciones y demás gastos en que incurrirá al momento de su ingreso a la universidad, Para la Hija mayor necesitará $35, y para la hija menor requerirá $45, para cubrir los gastos de inscripción. Entonces Samuel decide abrir dos cuentas de ahorro, una para cada una de sus hijas en el Banco de la Región, el que le ofrece una tasa de interés del 4% Nominal capitalizable bimestralmente. Las cuentas son aperturadas con el mismo monto inicial para cada una de ellas, el cual es por la cantidad de $20, Cuánto recibirá cada una de las cuentas al retirar el monto total ahorrado al iniciar los estudios cada una de las hijas? HIJA MAYOR VP =? i = 4% o 0.4 m = 2 meses n = 3 años VF VP VF = $35, ( i/ m) n HIJA MAYOR $35, VP ( ((.4 /2)*2)) $35, VF ( ) $35, VF ( ) VF VF (3*2)/2 8 $35, $23,07.88 (3*2)/2 83

11 Comprobación con un simulador financiero HIJA MENOR VP =? i = 4% ó 0.4 m = 2 meses n = 5 años VF = $45, VF VP ( i/ m) n $23,07.86 HIJA MENOR $45, VP ( ((.4 /2)*2)) $45, VF ( ) $45, VF ( ) VF VF (5*2)/2 30 $45, $22, (5*2)/2 84

12 Comprobación con un simulador financiero $22, Otro ejercicio Luisa Reyes es una contadora muy diligente en sus labores cotidianas, actualmente tiene un cliente cuya empresa no considero el desgaste de una maquinaria, la cual muy pronto dejará de funcionar (estiman que en dos años pasará esto). El costo de reposición de una nueva maquinaria es de aproximadamente $53 (miles de dls.), por lo cual y teniendo en cuenta lo importante de esta maquinaria para el funcionamiento de la empresa, le propone a su cliente que considere dejar un porcentaje de las utilidades para las inversiones futuras. Si un Banco le ofrece una tasa de interés del 32% Nominal capitalizable trimestralmente. El gerente de la empresa desea saber cuánto debe dejar de sus utilidades para aperturar una cuenta de inversión que le pueda dar en los dos años, la cantidad requerida? VP =? i = 32% ó 0.32 Nominal m = 3 meses n = 2 años VF = $53 (miles de dls.) VP $53 / ( ((0.32 /2)*3)) VP $53 / ( 0.08) VP $53 / (.08) $53 VP VP $ _ dls. 8 VF VP ( i / m ) n (2*2)/3 (2*2)/3 85

13 $ dls. ($82,664 dls.) INFLACIÓN Esta variable explica el cambio del valor del dinero en el tiempo, es decir, en períodos de inflación alta, nos afecta en nuestro poder adquisitivo, caso contrario cuando la inflación es baja no se resiente tanto, aunque también afecta pero en otros porcentajes. En la práctica, todo negocio requiere ser analizado con la inclusión de todas las variables macro y micro que pudiesen afectarnos. Ante esto, La Tasa de Inflación constituye una medida para evaluar el valor de la moneda en determinado período. Ejemplo de ello: Una inflación anual del 0% eleva en promedio el precio de un bien de x cantidad a.0x entre un período y otro (de un año al siguiente). Así, si el precio actual de un producto es y pesos, entonces el año anterior en promedio sería de y/.0. Pastor (999) señala un error que es muy común en la práctica, ya que se pensaría que el año anterior, el valor de 00 pesos, era de

14 El verdadero significado es, que lo que hoy vale 00, hace un año hubiera sido de 00/.0= (comprobando *.0% =00.00) Supongamos que en dos años la inflación continúa siendo del 0%. Hoy pagamos x pesos y en un año.0x pesos, en dos años.09 (.09x)=(.09) 2 x Su equivalencia sería, que lo que hoy nos cuesta y pesos, hubiéramos pagado y/.0 pesos y hace dos años debimos haber pagado: y.0 y y.0.0*.0 (.09) 2 Así, aplicando el factor de acumulación y el tiempo, en resumen podemos decir que: Lo que hoy cuesta X pesos, con el tiempo n costará x Lo que hoy cuesta Y pesos, habría costado y ( i) n ( i ) n Veamos otro ejemplo: En cuánto tiempo se podría reducir el poder adquisitivo de la moneda a la mitad, si la tasa de inflación anual promedio es del 5%? (sólo es un ejemplo, no se asusten). Esto en lenguaje coloquial sería, en que tiempo lo que hoy vale X pesos costará 2X pesos. Despeja n de la ecuación x (+i) n =2x además sustituye i = 0.5 y si divides por x llegamos a (.5) n = 2 87

15 Recordemos que en las ecuaciones en las que se tiene que despejar el exponente, se requiere utilizar logaritmos, de ahí que ahora tenemos: Log ((,5) n ) = log (2) entonces Log ((,5) n ) es = a log (.5) Entonces n log( 2) log g(.5) Algo así como años (casi cinco), el poder adquisitivo de la moneda será como de la mitad, o sea peso, valdrá.50 centavos, desde luego si la inflación promedio fuera del 5% anual.. Lo bueno es que sólo es un ejemplo Calcular la tasa de Inflación Una pregunta que viene a coalición sería, cómo podríamos calcular la tasa de inflación? Fuente. Imágenes Google 88

16 De igual forma esta pregunta nos lleva a cuestionarnos acerca de: cómo se puede calcular la tasa de inflación porcentual entre dos períodos de tiempo? Y cuál sería la tasa de inflación promedio entre esos dos períodos de tiempo? Fuente. Imágenes Google Para ello primero debemos definir las variables a utilizar en el desarrollo de las fórmulas que utilizaremos, para ello consideramos la propuesta matemática del INEGI, la cual se da a partir de la siguiente: Notación: t Tiempo inicial o t Tiempo final I I t o ( INPC ) t( INPC ) o, Valor del Índice Nacional de Precios al Consumidor en la fecha inicial Valor del Índice Nacional de Precios al Consumidor en la fecha final i t t Tasa de inflación porcentual en el período (t0, t), (t>to) i t t o, Tasa de inflación porcentual promedio en el período (t0, t) Para calcular la tasa de inflación porcentual del INPC en el período (to, t) I t (, ( INPC i t ) o t) *00 It o ( INPC ) Para calcular la tasa de inflación porcentual promedio del INPC en el período (to, t) I i t, t I t ( INPC ) o t o ( INPC) t t 0 *00 89

17 Refiere el INEGI en la metodología empleada para el cálculo de la Tasa de inflación Porcentual Promedio i t t, o en el lapso de tiempo ( to, t ), que dicha tasa tiene la propiedad de aplicar al índice como una tasa de interés compuesto constante durante ( t t0) Fuente. Imágenes Google periodos, misma que generaría una tasa porcentual de inflación similar que la observada en todo el periodo de tiempo, de ahí que sea denominada como tasa promedio. A modo de ejemplo:.- Calcular la tasa de inflación observada entre noviembre del 2002 y julio del 2005 medida a través del INPC. to Tiempo inicial (noviembre del 2002) t Tiempo final (julio del 2005) I t o ( INPC ) Valor del Índice Nacional de Precios al Consumidor en la fecha inicial = I Valor del Índice Nacional de Precios al Consumidor en la fecha final t( INPC ) = i t, t / * o La inflación observada entre Noviembre del 2002 a Julio del 2005 es del 7.055% 90

18 2.- Calcular la tasa media mensual de ese periodo: i t t o, i t, t o i t t o, i t, t o i t, t o ( /30) / *00 ( ) ) * ) * _por_ciento A manera de comprobación i t t 30 o, (( ) )*00 i t, t o i t, t 7.0% o 9

19 Fin del Capitulo: Sugerencias o comentarios Enviar correo a: 92

CAPÍTULO III TASAS DE RENDIMIENTO Y DESCUENTO

CAPÍTULO III TASAS DE RENDIMIENTO Y DESCUENTO CAPÍTULO III S DE RENDIMIENTO Y DESCUENTO 151 3.1. S DE RENDIMIENTO Y DESCUENTO 3.1.1.- Conceptos básicos y ejercicios: La tasa de interés se refiere: A la valoración del costo que implica la posesión

Más detalles

Unidad 3. Interés compuesto. Objetivos. Al finalizar la unidad, el alumno:

Unidad 3. Interés compuesto. Objetivos. Al finalizar la unidad, el alumno: Unidad 3 Interés compuesto Objetivos Al finalizar la unidad, el alumno: Calculará el monto producido por un cierto capital colocado a una tasa de interés compuesto convertible anualmente, semestralmente

Más detalles

Glosario de términos. Introducción a las Matemáticas Financieras

Glosario de términos. Introducción a las Matemáticas Financieras Introducción a las Matemáticas Financieras Carlos Mario Morales C 2012 1 Interés compuesto UNIDAD 2: INTERÉS COMPUESTO OBJETIVO Al finalizar la unidad los estudiantes estarán en capacidad de conceptuar

Más detalles

Nota de Clase OPERACIONES FINANCIERAS EN UN CONTEXTO INFLACIONARIO T E M A S

Nota de Clase OPERACIONES FINANCIERAS EN UN CONTEXTO INFLACIONARIO T E M A S Nota de Clase OPERACIONES FINANCIERAS EN UN CONTEXTO INFLACIONARIO T E M A S Significado de tasa de interés real Medición de una operación financiera en términos reales (en bienes) Relación entre tasa

Más detalles

EJERCICIOS DE PRÉSTAMOS (I)

EJERCICIOS DE PRÉSTAMOS (I) - 1 - EJERCICIOS DE PRÉSTAMOS (I) SUPUESTO 1 Un particular tiene concertado un préstamo de 50.000 euros de principal amortizable en l0 años, mediante mensualidades constantes a un tanto de interés nominal

Más detalles

CAPITULO 6 ANUALIDADES ANTICIPADAS OBJETIVO

CAPITULO 6 ANUALIDADES ANTICIPADAS OBJETIVO CAPITULO 6 ANUALIDADES ANTICIPADAS OBJETIVO Al finalizar el estudio de este capitulo el estudiante podrá definir que es una anualidad anticipada. La diferencia con la vencida, como resolver problemas que

Más detalles

JORGE LUIS GONZÁLEZ ESCOBAR

JORGE LUIS GONZÁLEZ ESCOBAR 1. Se invierten 200.000 en un depósito a término fijo de 6 meses en un banco que paga el 28,8% Nominal Mensual. Determinar el monto de la entrega al vencimiento. R/230.584,30. 2. Una persona debe pagar

Más detalles

FICHERO MUESTRA Pág. 1

FICHERO MUESTRA Pág. 1 FICHERO MUESTRA Pág. 1 Fichero muestra que comprende parte del Tema 3 del libro Gestión Financiera, Teoría y 800 ejercicios, y algunas de sus actividades propuestas. TEMA 3 - CAPITALIZACIÓN COMPUESTA 3.15.

Más detalles

MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de

MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de un año la suma de $1.536.000. Se pide: a) La suma ganada

Más detalles

Unidad 2. Interés simple. Objetivos. Al finalizar la unidad, el alumno:

Unidad 2. Interés simple. Objetivos. Al finalizar la unidad, el alumno: Unidad 2 Interés simple Objetivos Al finalizar la unidad, el alumno: Calculará el interés simple producido por un cierto capital colocado a una tasa determinada durante un periodo de tiempo dado. Calculará

Más detalles

Interés Simple y Compuesto

Interés Simple y Compuesto Interés Simple y Compuesto Las finanzas matemáticas son la rama de la matemática que se aplica al análisis financiero. El tema tiene una relación cercana con la disciplina de la economía financiera, que

Más detalles

Matemáticas Financieras I. Febrero, 2009

Matemáticas Financieras I. Febrero, 2009 Matemáticas Financieras I. Febrero, 2009 Tarea II. Interés simple, descuento Simple. Instrucciones: Van algunos ejercicios de interés y descuento simple, están bastante sencillos, pero confío en que sean

Más detalles

PROBLEMARIO MATEMÁTICAS FINANCIERAS

PROBLEMARIO MATEMÁTICAS FINANCIERAS PROBLEMARIO MATEMÁTICAS FINANCIERAS CONVERSIÓN DE TIEMPOS Realizar las siguientes conversiones: 1. 4 cuatrimestres a meses R.- 16 meses 2. 5 años a trimestres R.- 20 trimestres 3. 12 meses a cuatrimestres

Más detalles

MATEMATICAS FINANCIERAS

MATEMATICAS FINANCIERAS 1. Hallar el valor equivalente de un monto de $94 000.000 en 450 días suponiendo una tasa de interés bancaria del 12% ES. o Valor inicial o presente: 94 millones o Tasa de interés: 12% ES o Periodo de

Más detalles

MODELO DE RESPUESTAS

MODELO DE RESPUESTAS PRIMERA PRUEBA INTEGRAL LAPSO 2 008-2 734-1/5 Universidad Nacional Abierta MATEMÁTICA III ( 734 ) Vicerrectorado Académico Fecha: 25/10/2 008 Cód. Carrera: 610-612 - 613 MODELO DE RESPUESTAS OBJ 1 PTA

Más detalles

Matemáticas Financieras Problemas resueltos Tema 1 Grado ADE

Matemáticas Financieras Problemas resueltos Tema 1 Grado ADE (Francisco Begines Begines. Departamento de Economía Aplicada I. Universidad de Sevilla) 1 Matemáticas Financieras Problemas resueltos Tema 1 Grado ADE 1. Para comprar un artículo entregamos 3 euros en

Más detalles

Valor del Dinero en el Tiempo Uno de los principios más importantes en todas las finanzas.

Valor del Dinero en el Tiempo Uno de los principios más importantes en todas las finanzas. Valor del Dinero en el Tiempo Uno de los principios más importantes en todas las finanzas. El dinero es un activo que cuesta conforme transcurre el tiempo, permite comprar o pagar a tasas de interés periódicas

Más detalles

PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S

PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA Valor del dinero en el tiempo Conceptos de capitalización y descuento Ecuaciones de equivalencia financiera Ejercicio de reestructuración de deuda T E M A

Más detalles

MATEMÁTICAS FINANCIERAS PARTE II PROBLEMAS

MATEMÁTICAS FINANCIERAS PARTE II PROBLEMAS MATEMÁTICAS FINANCIERAS PARTE II PROBLEMAS 1. Sea una renta pospagable de cuantía a, duración 12 años y tipo de interés constante, cuyo valor actual es de 10.000 y su valor final de 17.958,56. Calcular:

Más detalles

RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión?

RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión? 1 RIESGO Y RENTABILIDAD DE LA EMPRESA (Riesgo y Rendimiento) Qué es lo que determina el rendimiento requerido de una inversión? La respuesta es sencilla. El rendimiento requerido siempre depende del riesgo

Más detalles

Financiamiento a corto plazo

Financiamiento a corto plazo Financiamiento a corto plazo 1 Introducción La obtención de recursos para financiar el capital de trabajo es una preocupación importante para los empresarios, sobre todo de aquellas empresas que no cuentan

Más detalles

Financiamiento a corto plazo. Financiamiento a corto plazo. D.R. Universidad TecVirtual del Sistema Tecnológico de Monterrey México, 2012.

Financiamiento a corto plazo. Financiamiento a corto plazo. D.R. Universidad TecVirtual del Sistema Tecnológico de Monterrey México, 2012. Financiamiento a corto plazo D.R. Universidad TecVirtual del Sistema Tecnológico de Monterrey México, 2012. 1 Índice Inicio... 3 - Introducción - Objetivo - Temario - Antecedentes Tema 1. Las cuentas por

Más detalles

Unidad 9. Fondo de amortización. Objetivos. Al finalizar la unidad, el alumno:

Unidad 9. Fondo de amortización. Objetivos. Al finalizar la unidad, el alumno: Unidad 9 Fondo de amortización Objetivos Al finalizar la unidad, el alumno: Calculará el valor de los depósitos de un fondo de amortización. Construirá tablas de fondos de amortización. Calculará el fondo

Más detalles

UNIVERSIDAD VERACRUZANA SISTEMA DE ENSEÑANZA ABIERTA CURSO DE MATEMÁTICAS FINANCIERAS

UNIVERSIDAD VERACRUZANA SISTEMA DE ENSEÑANZA ABIERTA CURSO DE MATEMÁTICAS FINANCIERAS UNIVERSIDAD VERACRUZANA SISTEMA DE ENSEÑANZA ABIERTA CURSO DE MATEMÁTICAS FINANCIERAS CONTENIDO Tema 1: INTERÉS SIMPLE Tema 2: INTERÉS COMPUESTO Tema 3: ANUALIDADES Tema 4: AMORTIZACIÓN Tema 5: DEPRECIACIÓN

Más detalles

Matemáticas financieras y criterios de evaluación

Matemáticas financieras y criterios de evaluación Matemáticas financieras y criterios de evaluación 01/06/03 1 Momentos y períodos Conceptos generales Momento Momento Momento Momento Momento Momento 0 1 2 3 4 5 Período 1 Período 2 Período 3 Período 4

Más detalles

Fundamentos y Aplicación de las Matemáticas Financieras

Fundamentos y Aplicación de las Matemáticas Financieras CAPITULO 3 INTERÉS COMPUESTO OBJETIVO Al finalizar el estudio de éste capítulo el estudiante podrá: Definir el interés compuesto y la diferencia con el interés simple. Deducir de un valor presente, valor

Más detalles

Anexo 11 ELABORADO POR: Simón Sarabia Sánchez Ma. Del Rosario Durán Hernández Ariadna Perdomo Báez

Anexo 11 ELABORADO POR: Simón Sarabia Sánchez Ma. Del Rosario Durán Hernández Ariadna Perdomo Báez Anexo 11 ELABORADO POR: Simón Sarabia Sánchez Ma. Del Rosario Durán Hernández Ariadna Perdomo Báez 681 Tabla de contenido 1.0 EJERCICIO DE INTERES SIMPLE... 684 2.0 EJERCICIO DE INTERES COMPUESTO... 687

Más detalles

Lista de problemas de Matemática Financiera (Temas 1 y 2) Leyes de interés y descuento

Lista de problemas de Matemática Financiera (Temas 1 y 2) Leyes de interés y descuento MÉTODOS MATEMÁTICOS DE LA ECONOMÍA (2009 2010) LICENCIATURAS EN ECONOMÍA Y ADE - DERECHO Lista de problemas de Matemática Financiera (Temas 1 y 2) Leyes de interés y descuento 1. Se considera la ley de

Más detalles

Tipo de interés nominal (TIN)

Tipo de interés nominal (TIN) Tipo de interés nominal (TIN) Se llama Tipo de Interés Nominal (TIN), abreviado también como interés nominal, al porcentaje aplicado cuando se ejecuta el pago de intereses. Por ejemplo: Si se tiene un

Más detalles

Instrumentos matemáticos para la empresa (2/4) 1º GRADO DERECHO-ADE CURSO 2011-2012. Prof. Pedro Ortega Pulido

Instrumentos matemáticos para la empresa (2/4) 1º GRADO DERECHO-ADE CURSO 2011-2012. Prof. Pedro Ortega Pulido Instrumentos matemáticos para la empresa (2/4) 1º GRADO DERECHO-ADE CURSO 2011-2012. Prof. Pedro Ortega Pulido 1. Matemática Financiera 1.0. Introducción a la matemática financiera. 1.1. Capitales financieros

Más detalles

OPERACIONES EN RÉGIMEN DE COMPUESTA

OPERACIONES EN RÉGIMEN DE COMPUESTA OPERACIONES EN RÉGIMEN DE COMPUESTA Las operaciones en régimen de compuesta se caracterizan porque los intereses, a diferencia de lo que ocurre en régimen de simple, a medida que se van generando pasan

Más detalles

1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital

1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital 1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital inicial necesario para obtener un capital de 20.000

Más detalles

Interés Compuesto con tasa variable

Interés Compuesto con tasa variable CASOS PRACTICOS UTILIZANDO LAS FUNCIONES FINANCIERAS Como primera medida debemos acceder a las funciones financieras faltantes ya que las mismas no se encuentran habilitadas por default en la planilla

Más detalles

MODELO DE RESPUESTAS

MODELO DE RESPUESTAS SEGUNDA PRUEBA INTEGRAL LAPSO 2 008-2 734-1/5 Universidad Nacional Abierta MATEMÁTICA III ( 734 ) Vicerrectorado Académico Fecha: 10/01/2 009 Cód. Carrera: 610-612 - 613 MODELO DE RESPUESTAS OBJ 1 PTA

Más detalles

Unidad 13. Amortización y Fondos de Amortización

Unidad 13. Amortización y Fondos de Amortización Unidad 13 Amortización y Fondos de Amortización INTRODUCCION En la sección 6.8 se mencionó que la palabra amortizar proviene del latín y que su significado literal es "dar muerte". En matemática financiera

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID E3 25 JUNIO 2008 PARTE SIN MATERIAL PRIMERA PREGUNTA (2 puntos) Un individuo adquiere un equipo de grabación cuyo precio al contado es de.345, que va a pagar en dos plazos: a los dos meses y a los seis

Más detalles

TEMA 13. FONDOS DE INVERSIÓN

TEMA 13. FONDOS DE INVERSIÓN FICHERO MUESTRA Pág. 1 Fichero muestra que comprende parte del Tema 13 del libro Productos y Servicios Financieros,, y algunas de sus actividades y ejercicios propuestos. TEMA 13. FONDOS DE INVERSIÓN 13.6.

Más detalles

El primero se calcula utilizando la fórmula del interés simple M = C(1 + it)

El primero se calcula utilizando la fórmula del interés simple M = C(1 + it) Tasa de descuento: Se aplica para determinar el valor actual de un pago futuro. La tasa de descuento se diferencia de la tasa de interés, La tasa de interés se aplica a una cantidad original para obtener

Más detalles

Ejercicios prácticos de Cálculo Financiero

Ejercicios prácticos de Cálculo Financiero Ejercicios prácticos de Cálculo Financiero 1) Se necesita calcular el monto que percibiría una persona en un juicio laboral por despido. El monto de la indemnización era de $10.000, que debía ser ajustado

Más detalles

UNIVERSIDAD NACIONAL DE SALTA CÁLCULO FINANCIERO

UNIVERSIDAD NACIONAL DE SALTA CÁLCULO FINANCIERO UNIVERSIDAD NACIONAL DE SALTA FACULTAD DE CIENCIAS ECONÓMICAS, JURÍDICAS Y SOCIALES CÁLCULO FINANCIERO CARTILLA DE EJERCICIOS SISTEMAS DE AMORTIZACION Año 2011 1 FACULTAD DE CIENCIAS ECONÓMICAS, JURÍDICAS

Más detalles

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ORDINARIAS. 1.Una mina en explotación tiene una producción anual de

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ORDINARIAS. 1.Una mina en explotación tiene una producción anual de PROBLEMAS RESUELTOS DE ANUALIDADES ORDINARIAS 1.Una mina en explotación tiene una producción anual de 600 000 dólares y se calcula que se agotará en 5 años. Cuál es el valor actual de la producción si

Más detalles

INTERÉS SIMPLE $15000 + $15 000. Monto. Capital Interés 15000(.08) = 1200 15 000 + 1 200 = 16 200. Tasa de interés: 8% mensual (.

INTERÉS SIMPLE $15000 + $15 000. Monto. Capital Interés 15000(.08) = 1200 15 000 + 1 200 = 16 200. Tasa de interés: 8% mensual (. INTERÉS SIMPLE Capital Interés $15 000 Tasa de interés: 8% mensual (.08) $15000 + 15000(.08) = 1200 1 mes 15 000 + 1 200 = 16 200 Monto INTERÉS SIMPLE Capital Interés C Tasa de interés: i C + I Ci 1 periodo

Más detalles

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros.

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. Qué significa esto? Decir que una empresa es eficiente es decir que no

Más detalles

está determinado por su precio; la fuente de dicho valor puede ser el trabajo que se

está determinado por su precio; la fuente de dicho valor puede ser el trabajo que se CAPÍTULO I EL VALOR DEL DINERO A TRAVÉS DEL TIEMPO Todos los bienes o servicios que existen en una economía poseen un valor que comúnmente está determinado por su precio; la fuente de dicho valor puede

Más detalles

Pero independientemente del tipo de operación que tengamos en frente, el principio es el mismo. Veamos de que se trata con un ejemplo:

Pero independientemente del tipo de operación que tengamos en frente, el principio es el mismo. Veamos de que se trata con un ejemplo: Operaciones de interés Breve consideración El presente trabajo, tiene por fin principal, otorgar un concepto breve, sobre las principales operaciones de interés. Sin la intención de reemplazar a los tratadistas

Más detalles

Unidad 8. Amortización. Objetivos. Al finalizar la unidad, el alumno:

Unidad 8. Amortización. Objetivos. Al finalizar la unidad, el alumno: Unidad 8 Amortización Objetivos Al finalizar la unidad, el alumno: Calculará el valor de las cuotas de amortización. Construirá tablas de amortización. Calculará el saldo insoluto de una deuda en cualquier

Más detalles

Funcionamiento de las herramientas de simulación. Planificador de Pensión y como Duplicar Ahorros

Funcionamiento de las herramientas de simulación. Planificador de Pensión y como Duplicar Ahorros Funcionamiento de las herramientas de simulación Planificador de Pensión y como Duplicar Ahorros Se puede simular el monto de pensión al momento de jubilar, suponiendo diferentes escenarios, como son:

Más detalles

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO - 1 - UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO Tema 1: Operaciones financieras: elementos Tema 2: Capitalización y descuento simple Tema 3: Capitalización y descuento compuesto Tema

Más detalles

Unidad de Aprendizaje: Anualidades y gradientes

Unidad de Aprendizaje: Anualidades y gradientes Carlos Mario Morales C 2012 1 Matemáticas Financieras No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma o por cualquier

Más detalles

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 1 Nombre: Interés simple Objetivo Al término de la sesión el estudiante solucionará problemas aplicando los conceptos de interés simple, a través de la resolución

Más detalles

CAPÍTULO I INTERÉS SIMPLE

CAPÍTULO I INTERÉS SIMPLE CAPÍTULO I INTERÉS SIMPLE 1 1.1.- INTERÉS SIMPLE 1.1.1.- Conceptos básicos y ejercicios: NOTAS DEL TEMA: Cuando el interés se paga sólo sobre el capital prestado, se le conoce como interés simple y se

Más detalles

Fórmulas y enfoques utilizados para calcular el Tasa Efectiva de Interés (TEI) o Costo Anual Total (CAT)

Fórmulas y enfoques utilizados para calcular el Tasa Efectiva de Interés (TEI) o Costo Anual Total (CAT) Fórmulas y enfoques utilizados para calcular el Tasa Efectiva de Interés (TEI) o Costo Anual Total (CAT) El propósito del Costo Anual Total (CAT) El precio verdadero del préstamo no solamente incluye los

Más detalles

VALOR DEL DINERO EN EL TIEMPO

VALOR DEL DINERO EN EL TIEMPO VALOR DEL DINERO EN EL TIEMPO Tema 1.4 Licenciatura en Economía y Finanzas 7º semestre. Dr. José Luis Esparza A. Introducción En la empresa como en la vida personal, constantemente se deben tomar decisiones,

Más detalles

CAPÍTULO II INTRODUCCION A LA MATEMÁTICA FINANCIERA EN LA GESTIÓN

CAPÍTULO II INTRODUCCION A LA MATEMÁTICA FINANCIERA EN LA GESTIÓN CAPÍTULO II INTRODUCCION A LA MATEMÁTICA FINANCIERA EN LA GESTIÓN Introducción. En la bibliografía dreferida a la matemática financiera el primer término que aparece es el de "Capital financiero". Se entiende

Más detalles

RENTA FIJA VS. RENTA VARIABLE

RENTA FIJA VS. RENTA VARIABLE RENTA FIJA VS. RENTA VARIABLE TÍTULOS DE RENTA FIJA: Se denominan también de contenido crediticio. Incorporan un derecho de crédito, por lo tanto obligan y dan derecho a una prestación en dinero, es decir,

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Ganancia Anual Total (GAT)

Ganancia Anual Total (GAT) (GAT) Contenido I. Significado y antecedentes II. Tipos y montos de operaciones III. Fórmulas para el cálculo de la GAT IV. GAT Real V. Información al público 2 I. Significado y antecedentes Qué es la?

Más detalles

FINANZAS PARA MORTALES. Presenta

FINANZAS PARA MORTALES. Presenta FINANZAS PARA MORTALES Presenta Tú y tu ahorro FINANZAS PARA MORTALES Se entiende por ahorro la parte de los ingresos que no se gastan. INGRESOS AHORROS GASTOS Normalmente, las personas estamos interesadas

Más detalles

En Evaluaciones y Análisis Financiero, La TASA DE INTERES recibe diferentes

En Evaluaciones y Análisis Financiero, La TASA DE INTERES recibe diferentes CLASES DE TASAS DE INTERES En Evaluaciones y Análisis Financiero, La TASA DE INTERES recibe diferentes Nombres según las Condiciones en que esté Operando, y es así como encontramos los siguientes Términos

Más detalles

LECCION 1ª Curso de Matemáticas Financieras

LECCION 1ª Curso de Matemáticas Financieras LECCION 1ª Curso de Matemáticas Financieras Aula Fácil pone en marcha este nuevo curso de matemáticas financieras, dirigido tanto a estudiantes universitarios como a profesionales del sector financiero,

Más detalles

EL INTERÉS SIMPLE. El interés, como precio por el uso del dinero, se puede presentar como interés simple o como interés compuesto.

EL INTERÉS SIMPLE. El interés, como precio por el uso del dinero, se puede presentar como interés simple o como interés compuesto. EL INTERÉS SIMPLE El concepto de interés tiene que ver con el precio del dinero. Si alguien pide un préstamo debe pagar un cierto interés por ese dinero. Y si alguien deposita dinero en un banco, el banco

Más detalles

PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED

PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED Ahorradores inteligentes 100 AÑOS Descripción de la lección Conceptos Objetivos Los estudiantes calculan el interés compuesto para identificar las ventajas de

Más detalles

(TODA LA GUÍA, INCLUYENDO LOS PROBLEMAS, SE PUEDE RESOLVER CON LOS APUNTES DADOS EN CLASE).

(TODA LA GUÍA, INCLUYENDO LOS PROBLEMAS, SE PUEDE RESOLVER CON LOS APUNTES DADOS EN CLASE). GUÌA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE FINANZAS ( JUNIO 2015 ). Prof. Sergio Monroy R. (TODA LA GUÍA, INCLUYENDO LOS PROBLEMAS, SE PUEDE RESOLVER CON LOS APUNTES DADOS EN CLASE). I. Subraya el

Más detalles

Ejercicios página 179 y siguientes

Ejercicios página 179 y siguientes Ejercicios página 179 y siguientes Nota: El valor del derecho de suscripción procede de VDS = VC - Vtpost = VC - [(VC*a + VN*n) / a + n]. Una fórmula derivada de la anterior y que se usa en la solución

Más detalles

DIRECCIÓN FINANCIERA I TEMA 3

DIRECCIÓN FINANCIERA I TEMA 3 DIRECCIÓN FINANCIERA I TEMA 3 UNA BUENA INVERSIÓN ES UNA BUENA INVERSIÓN SI ES UNA BUENA INVERSIÓN SI LOS MERCADOS FINANCIEROS SON PERFECTOS SI LOS INVERSORES SON RACIONALES EL VALOR DE UNA INVERSIÓN NO

Más detalles

Capitalización y descuento compuesto

Capitalización y descuento compuesto Unidad 4 Capitalización y descuento compuesto 4.1. Capitalización compuesta 4.1.1. Magnitudes derivadas 4.2. Comparación entre la capitalización simple y compuesta 4.3. Equivalencia de tantos en capitalización

Más detalles

Universidad de Salamanca - Escuela de Educación y Turismo

Universidad de Salamanca - Escuela de Educación y Turismo Universidad de Salamanca - Escuela de Educación y Turismo ! "!# $%& '( )*+ ,#*#-./ * 01/.2 3345 6 72.8.9).#) 7".4.34. 334.9 0 (actual) 25 50 100 años (n) futuro 0,. #/5, # * # /-: # 79 ;) 7

Más detalles

Excel Funciones financieras

Excel Funciones financieras Excel Funciones financieras CONTENIDOS Inversiones Operaciones con Capitales Préstamos Bancarios Proyectos de Inversión Inversiones Capitales Conceptos Valor Actual Interés/Tasa Número de periodos Valor

Más detalles

Operaciones Financieras

Operaciones Financieras Operaciones Financieras Módulo Instruccional Programático Barquisimeto, 2014 UNIDAD I - DESCUENTO SIMPLE OBJETIVO GENERAL Aplicar el Descuento Simple en las diferentes actividades comerciales desarrollando

Más detalles

EJERCICIOS PROPUESTOS CAPÍTULO 3

EJERCICIOS PROPUESTOS CAPÍTULO 3 ADMINISTRACIÓN FINANCIERA FUNDAMENTOS Y APLICACIONES Oscar León García S. Cuarta Edición EJERCICIOS PROPUESTOS CAPÍTULO 3 Matemáticas Financieras Última Actualización: Agosto 18 de 2009 Consultar últimas

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Financieras

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Financieras COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Financieras Manuel León Navarro 2 Capítulo 1 Ejercicios lección 2 1. Determinar el capital equivalente a (1000000,2020) en 2012

Más detalles

Tres hermanos, X, Y y Z deciden iniciar un negocio familiar, para lo cual deberán aportar hoy, cada uno de ellos, 24.000.

Tres hermanos, X, Y y Z deciden iniciar un negocio familiar, para lo cual deberán aportar hoy, cada uno de ellos, 24.000. Regímenes financieros. Ejercicios propuestos 1 REGÍMENES FINANCIEROS. EJERCICIOS PROPUESTOS EJERCICIO 1 Tres hermanos, X, Y y Z deciden iniciar un negocio familiar, para lo cual deberán aportar hoy, cada

Más detalles

Préstamos hipotecarios. Recomendaciones antes de contratar una hipoteca

Préstamos hipotecarios. Recomendaciones antes de contratar una hipoteca Préstamos hipotecarios Recomendaciones antes de contratar una hipoteca H Qué es un préstamo hipotecario? Para la compra de su vivienda podrá solicitar un préstamo hipotecario, a través del cual, una entidad

Más detalles

MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE

MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE Índice de contenidos: 1. Ley Financiera de capitalización a interés vencido. 1.1. Equivalencia de capitales. 1.2. Tipos de interés equivalentes.

Más detalles

EJERCICIOS DE PRÉSTAMOS (I)

EJERCICIOS DE PRÉSTAMOS (I) - 1 - EJERCICIOS DE PRÉSTAMOS (I) SUPUESTO 1 El Sr. Martínez está, pagando al final de cada mes 775,5 euros para amortizar un préstamo por el sistema francés, contratado a un tipo nominal mensual del 4,75%

Más detalles

MATEMÁTICAS DE LAS OPERACIONES FINANCIERAS 2º ADMÓN. Y DIRECCIÓN DE EMPRESAS (GRUPO PILOTO) PRÁCTICA 3 OBLIGATORIA (GRUPO 5, GRUPO 10)

MATEMÁTICAS DE LAS OPERACIONES FINANCIERAS 2º ADMÓN. Y DIRECCIÓN DE EMPRESAS (GRUPO PILOTO) PRÁCTICA 3 OBLIGATORIA (GRUPO 5, GRUPO 10) UNIVERSIDAD DE CASTILLA-LA MANCHA FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ANÁLISIS ECONÓMICO Y FINANZAS ÁREA DE ECONOMÍA FINANCIERA MATEMÁTICAS DE LAS OPERACIONES FINANCIERAS 2º

Más detalles

Invertir en dólares o en UIs? Quién es el especulador?

Invertir en dólares o en UIs? Quién es el especulador? Invertir en dólares o en UIs? Quién es el especulador? En el mercado, muchos individuos se están preguntando si vender dólares en estos niveles para invertir en unidades indexadas. Al hacerse esta interrogante,

Más detalles

Matemáticas Financieras 13 de junio de 2006. 2º Curso. Universidad Rey Juan Carlos

Matemáticas Financieras 13 de junio de 2006. 2º Curso. Universidad Rey Juan Carlos Matemáticas Financieras 13 de junio de 2006. 2º Curso. Universidad Rey Juan Carlos Nombre: Grupo: 1) Durante 4 años y medio un inversor ingresa 451,31 al inicio de cada semestre en una cuenta remunerada

Más detalles

MATEMATICAS FINANCIERAS

MATEMATICAS FINANCIERAS MATEMATICAS FINANCIERAS 1 MATEMATICAS FINANCIERAS OBJETIVO GENERAL: Dominio y uso de las herramientas básicas para realizar los cálculos matemáticos, frecuentemente utilizados en el medio financiero. Particularmente

Más detalles

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 4 Nombre: Interés compuesto. Calculo de Monto, Valor actual y tiempo. Objetivo Al término de la sesión el estudiante aplicará el cálculo del valor actual

Más detalles

Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente:

Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente: 2 Matemática financiera 1. Porcentajes Piensa y calcula Fíjate cómo se expresan los siguientes porcentajes y completa la tabla calculando mentalmente: Porcentaje 10% = 10/100 = 1/10 20% = 20/100 = 1/5

Más detalles

Regla Comercial y Descuento compuesto.

Regla Comercial y Descuento compuesto. Regla Comercial y Descuento compuesto. Regla comercial: consiste en calcular el monto que se acumula durante los periodos de capitalización completos, utilizando la fórmula de interés compuesto, para luego

Más detalles

Aritmética. Preguntas Propuestas

Aritmética. Preguntas Propuestas 7 Preguntas Propuestas 1 ... Regla de interés 1. El monto de un capital impuesto durante 6 años es S/.15 800. Si el mismo capital se hubiera impuesto al mismo rédito durante 7 años y medio, el monto sería

Más detalles

TEMA 3: OPERACIONES FINANCIERAS A C. PLAZO

TEMA 3: OPERACIONES FINANCIERAS A C. PLAZO TEMA 3: OPERACIONES FINANCIERAS A C. PLAZO 1. El descuento comercial: remesas de efectos. 2. Cálculo de tantos efectivos. 3. Principales activos financieros a corto plazo en el mercado: Letras del Tesoro.

Más detalles

Glosario de términos. Introducción a las Matemáticas Financieras

Glosario de términos. Introducción a las Matemáticas Financieras Introducción a las Matemáticas Financieras Carlos Mario Morales C 2012 1 Interés No hay inversión más rentable que la del conocimiento (Benjamín Franklin) UNIDAD 1: INTERÉS OBJETIVO Al finalizar la unidad

Más detalles

APUNTES DE MATEMATICAS FINANCIERAS. C.P. CELIA GABRIELA CAMACHO MONTES.

APUNTES DE MATEMATICAS FINANCIERAS. C.P. CELIA GABRIELA CAMACHO MONTES. 1 APUNTES DE MATEMATICAS FINANCIERAS. C.P. CELIA GABRIELA CAMACHO MONTES. GENERALIDADES. Las matemáticas Financieras es una rama de las matemáticas utilizada para el cálculo de los diferentes tipos de

Más detalles

TEMA VIII. EVALUACIÓN DE PROYECTOS (ESTUDIO FINANCIERO)

TEMA VIII. EVALUACIÓN DE PROYECTOS (ESTUDIO FINANCIERO) UNIVERSIDAD NACIONAL ESCUELA DE CIENCIAS AMBIENTALES CURSO: FORMULACIÓN Y EVALUACIÓN DE PROYECTOS PROFESOR: ING. IGOR ZÚÑIGA GARITA. MAP TEMA VIII. EVALUACIÓN DE PROYECTOS (ESTUDIO FINANCIERO) CUAL ES

Más detalles

TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO

TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO 1.- Tenemos que pagar una deuda de 1.500 dentro de 3 años. Si se adelanta su pago al momento presente, qué cantidad tendremos que pagar sabiendo

Más detalles

Situaciones problémicas contables de la contabilidad básica

Situaciones problémicas contables de la contabilidad básica 1 Situaciones problémicas contables de la contabilidad básica 1. Pa garé. 2. Pagaré descontado. 3. Devoluciones de compras. 4. Ventas. 5. Devoluciones de ventas. 6. Descuento por pronto pago obtenido.

Más detalles

Matemática financiera

Matemática financiera Matemática financiera Evaluación En la sucesión, /, /, /, / calcula la suma de sus términos. a) b) No tiene solución. c) / Un artículo cuesta 00. En unas primeras rebajas su valor disminuye un 0 % pero

Más detalles

FACULTAD: DERECHO Y GOBERNABILIDAD ASIGNATURA: INFORMATICA APLICADA A NEGOCIOS TITULO: INVESTIGACION DE CONCEPTOS FINANCIEROS

FACULTAD: DERECHO Y GOBERNABILIDAD ASIGNATURA: INFORMATICA APLICADA A NEGOCIOS TITULO: INVESTIGACION DE CONCEPTOS FINANCIEROS FACULTAD: DERECHO Y GOBERNABILIDAD ASIGNATURA: INFORMATICA APLICADA A NEGOCIOS TITULO: INVESTIGACION DE CONCEPTOS FINANCIEROS AUTOR: CARLOS RAUL FERNANDEZ BARCIA PROFESOR: ING. JOHANNA NAVARRO FECHA: 16

Más detalles

Cálculo de la rentabilidad de un plan de pensiones

Cálculo de la rentabilidad de un plan de pensiones Cálculo de la rentabilidad de un plan de pensiones Germán Carrasco Castillo Resumen: En este artículo se pretende desarrollar el procedimiento para calcular la rentabilidad de los planes de pensiones,

Más detalles

de la empresa Al finalizar la unidad, el alumno:

de la empresa Al finalizar la unidad, el alumno: de la empresa Al finalizar la unidad, el alumno: Identificará el concepto de rentabilidad. Identificará cómo afecta a una empresa la rentabilidad. Evaluará la rentabilidad de una empresa, mediante la aplicación

Más detalles

Análisis y evaluación de proyectos

Análisis y evaluación de proyectos Análisis y evaluación de proyectos UNIDAD 4.- ESTUDIO FINANCIERO (ECONÓMICO) DEL PROYECTO José Luis Esparza A. IMPORTANCIA DE LA ELABORACIÓN DE LOS ASPECTOS DEL ESTUDIO FINANCIERO se habrá dado cuenta

Más detalles

Curso de Excel Empresarial y Financiero

Curso de Excel Empresarial y Financiero Curso de Excel Empresarial y Financiero SESIÓN 2: FUNCIONES FINANCIERAS Rosa Rodríguez Funciones En Excel Una función es una fórmula predefinida por Excel (o por el usuario) que opera con uno o más valores

Más detalles

Gestión Financiera 2º AF 1

Gestión Financiera 2º AF 1 LEY FINANCIERA DE INTERÉS SIMPLE Gestión Financiera 2º AF 1 1.1 Concepto Operación financiera cuyo objeto es la sustitución de un capital presente por otro equivalente con vencimiento posterior, mediante

Más detalles

Administración de Empresas. 13 El coste de capital 13.1

Administración de Empresas. 13 El coste de capital 13.1 Administración de Empresas. 13 El coste de capital 13.1 TEMA 13: EL COSTE DE CAPITAL ESQUEMA DEL TEMA: 13. 1. El coste de capital en general. 13.2. El coste de préstamos y empréstitos. 13.3. El efecto

Más detalles

CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 2 CAPITALIZACIÓN SIMPLE

CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 2 CAPITALIZACIÓN SIMPLE CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 2 CAPITALIZACIÓN SIMPLE Javier Bilbao García 1 1.- Capitalización Simple Definición: Se pretende sustituir un capital presente por otro equivalente en

Más detalles

ARITMÉTICA MERCANTIL

ARITMÉTICA MERCANTIL ARITMÉTICA MERCANTIL Página 49 REFLEXIONA Y RESUELVE Aumentos porcentuales En cuánto se transforman 50 si aumentan el 1%? 50 1,1 = 80 Calcula en cuánto se transforma un capital C si sufre un aumento del:

Más detalles

TEMA 6: EL DESCUENTO COMPUESTO 1.- DESCUENTO COMPUESTO RACIONAL O MATEMÁTICO

TEMA 6: EL DESCUENTO COMPUESTO 1.- DESCUENTO COMPUESTO RACIONAL O MATEMÁTICO TEMA 6: EL DESCUENTO COMPUESTO 1- DESCUENTO COMPUESTO RACIONAL O MATEMÁTICO Se calcula sobre valor efectivo y, tal y como se vio en el descuento simple, coincide cuantitativamente con el interés compuesto:

Más detalles