Un sistema experto desarrollado en el software Mathematica para analizar funciones de R en R

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Un sistema experto desarrollado en el software Mathematica para analizar funciones de R en R"

Transcripción

1 Un sistema experto desarrollado en el software para analizar funciones de R en R VII FAST WORKSHOP ON APPLIED AND COMPUTATIONAL MATHEMATICS Robert Ipanaqué Chero Trujillo, 08 de Enero de

2 Introducción Esta presentación describe el nuevo sistema experto Functions, codificado en el lenguaje de programación del v.9.0. Este sistema experto amplía las capacidades del para analizar funciones reales de variable real. Específicamente se ha conseguido mejorar las gráficas de las funciones definidas a trozos, implementar comandos para realizar operaciones concernientes al álgebra de funciones y automatizar el cálculo de la función inversa. La descripción se hace mostrando, inicialmente, los comandos con los que cuenta el para analizar funciones y luego se muestran los comandos incorporados en el nuevo sistema experto; de esta manera el lector puede comparar las salidas obtenidas. 2

3 El El es un Sistema de Álgebra Computacional (SAC), es decir, es un programa de ordenador que facilita el cálculo simbólico (trabaja con ecuaciones y fórmulas simbólicamente, en lugar de numéricamente). Cálculo numérico: Cálculo simbólico: 7x 3x + 6 4x + 6 Una característica muy importante del es que efectúa la reducción de cuantificadores. Esto puede apreciarse al calcular el dominio de la siguiente función. In[1]:= Reduce [ y ( y = Out[1]= 2 3 < x ) ] 2 x x 2 +2 x(3x 2), Reals 3

4 Comandos del para analizar funciones Comando PiecewiseExpand Expansión de una expresión con Piecewise anidado en una función con un solo Piecewise. In[1]:= Piecewise[{{Piecewise[{{1, { x < 1}}, 2], x > 0}}, 3] 1 x < 1 x > 0 Out[1]= 2 True 3 True In[2]:= PiecewiseExpand[%] 1 0 < x < 1 Out[2]= 2 x 1 3 True 4

5 Conversión de un arreglo de funciones especiales a trozos en un único objeto Piecewise. In[3]:= Piecewise[{{Max[x, x 2 ], 2 < x < 2}, {UnitStep[x], True}}] { [ Max x, x 2 ] 2 < x < 2 Out[3]= Out[4]= UnitStep[x] True In[4]:= PiecewiseExpand[%] 1 x 2 x 0 x 1 x 2 2 < x < 0 1 < x < 2 0 True 5

6 Expansión de una función con un número infinito de trozos sobre un intervalo acotado. In[5]:= PiecewiseExpand[Floor[x], 0 < x < 4] 1 1 x < x < 3 3 x 3 0 True Out[5]= 6

7 Comando Plot Gráfica de la función f (x) = JxK. In[6]:= Plot[Floor[x], {x, 3, 3}] 2 1 Out[6]=

8 Gráfica de una función obtenida al incluir algunas opciones de Plot. x Floor[2x] 1 x < 1 x 1 x <4 2 + Floor[x] In[7]:= f [x_]:= In[8]:= Plot[ f [x], {x, 2, 5}, PlotRange All, ] Out[8]=

9 Suma de funciones Resultado incorrecto de la suma de dos funciones a trozos. { 7x 3 3 < x < 0 In[9]:= f [x_]:= 2x x < 5 { 2x 6 2 < x < 2 In[10]:= g[x_]:= x x < 4 In[11]:= PiecewiseExpand[f [x] + g[x]] 9(x 1) 2 < x < 0 2(x + 4) 4 x < 5 2(2x + 1) 0 x < 2 Out[11]= 7x 3 3 < x 2 x 2 + 2x x < 4 0 True 9

10 Producto de funciones Resultado aparentemente correcto; sin embargo, note que los dominios parciales están en desorden y que el producto no debería estar definido para x [0, 4] (en este caso tiene el valor 0). { 7x 3 3 < x < 0 In[12]:= f [x_]:= 2x x < 5 { 2x 6 2 < x < 2 In[13]:= g[x_]:= x x < 4 In[14]:= PiecewiseExpand[f [x] g[x]] 4(x 3)(x + 4) 0 x < 2 2(x 3)(7x 3) 2 < x < 0 Out[14]= 2(x + 4) ( x 2 2 ) 2 x < 4 0 True 10

11 Cociente de funciones Resultado incorrecto del cociente de dos funciones a tozos. { 7x 3 3 < x < 0 In[15]:= f [x_]:= 2x x < 5 { 2x 6 2 < x < 2 In[16]:= g[x_]:= x x < 4 In[17]:= PiecewiseExpand[f [x] g[x]] Indeterminate x 5 x 3 x+4 x 3 0 x < 2 7x 3 2(x 3) 2 < x < 0 Out[17]= 2(x+4) x 2 2 ComplexInfinity 2 x < 4 True 11

12 Composición de funciones Resultado incorrecto de la composición de dos funciones a tozos. { 7x 3 3 < x < 0 In[18]:= f [x_]:= 2x x < 5 { 2x 6 2 < x < 2 In[19]:= g[x_]:= x x < 4 In[20]:= PiecewiseExpand[Composition[f, g][x]] 3 7(2x 6) 3 2 < x < 2 2 ( x 2 2 ) x < x < 7 x 4 x 2 0 True Out[20]= 12

13 Inversa de una función Resultado aparentemente correcto de la inversa de una función; sin embargo, no hay información con respecto al dominio de definición de dicha inversa. In[21]:= h[x_]:= x x In[22]:= InverseFunction[h][x] Out[22]= x 2 7 2x 13

14 El sistema experto Functions Comando PwExpand Expansión de una expresión con Piecewise anidado en una función con un solo Piecewise. In[1]:= Piecewise[{{Piecewise[{{1, { x < 1}}, 2], x > 0}}, 3] 1 x < 1 x > 0 Out[1]= 2 True 3 True In[2]:= PwExpand[%] Out[2]= 3 x < x < 1 2 x 1 Null True 14

15 Conversión de un arreglo de funciones especiales a trozos en un único objeto Piecewise. In[3]:= Piecewise[{{Max[x, x 2 ], 2 < x < 2}, {UnitStep[x], True}}] { [ Max x, x 2 ] 2 < x < 2 Out[3]= UnitStep[x] In[4]:= PwExpand[%] Out[4]= True x 0 x 1 x 2 2 < x < 0 1 < x < 2 0 x 2 1 x 2 Null True 15

16 Expansión de una función con un número infinito de trozos sobre un intervalo acotado. In[5]:= PwExpand[Floor[x], 0 < x < 4] 0 0 < x < x < 2 Out[5]= 2 2 x < x < 4 Null True 16

17 Comando PwPlot Gráfica de la función f (x) = JxK. In[6]:= PwPlot[Floor[x], {x, 3, 3}] Out[6]=

18 Gráfica de una función obtenida al incluir algunas opciones propias de Plot, conjuntamente con la opción EndsSize. In[7]:= f [x_]:= In[8]:= x Floor[2x] 1 x < 1 x 1 x <4 2 + Floor[x] PwPlot[ f [x], {x, 2, 5}, EndsSize 5, PlotRange All, ] Out[8]=

19 Suma de funciones Resultado correcto de la suma de dos funciones a trozos. { 7x 3 3 < x < 0 In[9]:= f [x_]:= 2x x < 5 { 2x 6 2 < x < 2 In[10]:= g[x_]:= x x < 4 In[11]:= (f + g)[x] Out[11]= 9x 9 2 < x < 0 4x x < 2 x 2 + 2x x < 4 Null True 19

20 Producto de funciones Resultado correcto del producto de dos funciones a trozos. { 7x 3 3 < x < 0 In[12]:= f [x_]:= 2x x < 5 { 2x 6 2 < x < 2 In[13]:= g[x_]:= x x < 4 In[14]:= (f g)[x] Out[14]= 14x 2 48x < x < 0 4x 2 + 4x 48 0 x < 2 2x 3 + 8x 2 4x 16 2 x < 4 Null True 20

21 Cociente de funciones Resultado correcto del cociente de dos funciones a tozos. { 7x 3 3 < x < 0 In[15]:= f [x_]:= 2x x < 5 { 2x 6 2 < x < 2 In[16]:= g[x_]:= x x < 4 In[17]:= (f /g)[x] 3 7x 6 2x 2 < x < 0 x+4 x 3 0 x < 2 2(x+4) 2 x < 4 x 2 2 Null True Out[17]= 21

22 Composición de funciones Resultado correcto de la composición de dos funciones a tozos. { 7x 3 3 < x < 0 In[18]:= f [x_]:= 2x x < 5 { 2x 6 2 < x < 2 In[19]:= g[x_]:= x x < 4 In[20]:= (f g)[x] Out[20]= 14x < x < 2 2x x < 7 Null True 22

23 Inversa de una función Resultado correcto de la inversa de una función. In[21]:= h[x_]:= x x In[22]:= IFunction[{h[x] x > 0, x] Out[22]= { x 2 7 2x x > 7 Null True 23

24 Resultado correcto de la inversa de una función a trozos. [{ ] 2x + 1 x 0 In[23]:= IFunction x x > 0, x x 1 2 x 1 Out[23]= x 1 x > 1 Null True 24

25 Bibliografía IPANAQUÉ, R. Y VELESMORO, R., Breve Manual del 5.1, Eumed.net, 2005, WIKIPEDIA,, WOLFRAM MATHEMATICA DOCUMENTATION CENTER, Element, WOLFRAM MATHEMATICA DOCUMENTATION CENTER, Exists, WOLFRAM MATHEMATICA DOCUMENTATION CENTER, ForAll, 25

26 MUCHAS GRACIAS! 26

Operaciones con Funciones

Operaciones con Funciones Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido : Contenido Discutiremos: suma, resta, multiplicación y división de funciones : Contenido Discutiremos: suma, resta, multiplicación y

Más detalles

3. OPERACIONES CON FUNCIONES.

3. OPERACIONES CON FUNCIONES. 3. OPERACIONES CON FUNCIONES. Las operaciones de suma, resta, multiplicación y división entre funciones son posibles y semejantes a las correspondientes efectuadas con los números. En esta sección definiremos

Más detalles

Recomendaciones para la preparación de las P.A.U. en la materia MATEMÁTICAS para Mayores de 25 años.

Recomendaciones para la preparación de las P.A.U. en la materia MATEMÁTICAS para Mayores de 25 años. MATEMÁTICAS para Mayores de 25 años Recomendaciones para la preparación de las P.A.U. en la materia MATEMÁTICAS para Mayores de 25 años. Curso 2014-2015 Conviene recordar que los contenidos y criterios

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

Introducción al sistema Wolfram Mathematica

Introducción al sistema Wolfram Mathematica Introducción al sistema Wolfram Mathematica Expresiones Usamos la interfaz gráfica ( Notebook ) de Wolfram Mathematica. Para calcular una expresión en Notebook, hay que oprimir Shift-Enter (Mayús-Intro).

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

Capítulo 1 Instrucciones Básicas de Mathematica

Capítulo 1 Instrucciones Básicas de Mathematica Capítulo 1 Instrucciones Básicas de Mathematica En este capítulo se presentan algunas instrucciones y operaciones básicas para empezar a familarizarse con el programa Mathematica. Se pueden encontrar explicaciones

Más detalles

Cálculo Simbólico también es posible con GeoGebra

Cálculo Simbólico también es posible con GeoGebra www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades

Más detalles

MATEMÁTICAS CON MATHEMATICA

MATEMÁTICAS CON MATHEMATICA MATEMÁTICAS CON MATHEMATICA SIGMA 28 José Luis Malaina (*) y Antón Albóniga (**) 1. INTRODUCCIÓN El sistema educativo, tanto a nivel universitario como preuniversitario (ESO y Bachillerato), debe estar

Más detalles

FUNCIONES EN R. Agosto 2007

FUNCIONES EN R. Agosto 2007 FUNCIONES EN R Alexis Vera Pérez Instituto de Estadística & Sistemas Computarizados de Información Universidad de Puerto Rico, Recinto de Río Piedras Agosto 2007 1 Definición y notación Definición 1 Una

Más detalles

Cálculo Simbólico. (MathCad) Ricardo Villafaña Figueroa

Cálculo Simbólico. (MathCad) Ricardo Villafaña Figueroa Cálculo Simbólico (MathCad) Ricardo Villafaña Figueroa Contenido Introducción al Cálculo Simbólico Cálculos Algebraicos Representación simbólica o algebraica de epresiones matemáticas Suma y resta algebraica

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7

Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Apartado A Sabiendo que f(x)= 3x+3 y g(x)= x^2-7 la operación f(x)+g(x) consiste en sumar los miembros

Más detalles

Introducción al Cálculo Simbólico a través de Maple

Introducción al Cálculo Simbólico a través de Maple 1 inn-edu.com ricardo.villafana@gmail.com Introducción al Cálculo Simbólico a través de Maple A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos

Más detalles

CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS DIVISIÓN DE ELECTRÓNICA Y COMPUTACIÓN

CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS DIVISIÓN DE ELECTRÓNICA Y COMPUTACIÓN DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: CIENCIAS COMPUTACIONALES ACADEMIA A LA QUE PERTENECE: SISTEMAS DE INFORMACION NOMBRE DE LA MATERIA: BASES DE DATOS CLAVE DE LA MATERIA: CC302 CARÁCTER DEL

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

Práctica 02 Gráficos 2D con Mathematica

Práctica 02 Gráficos 2D con Mathematica Práctica 0 Gráficos D con Mathematica Mathematica dispone de varias instrucciones para representar gráficamente funciones,curvas o elementos geométricos en el plano.la instrucción Plot nos permite representar

Más detalles

FUNCIÓN REAL DE VARIABLE REAL

FUNCIÓN REAL DE VARIABLE REAL Ejercicios de Repaso 2 de mayo de 2011 Ejercicio Halla el dominio de las siguientes funciones. (a) 7 x 2 5 (b) 1 x 3 +1 (c) x 1 x 4 3x 2 4 (d) x3 6x 2 +4x+8 x 3 x 2 9x+9 (g) 1 3 x (j) ln(x) 1 (e) x2 4

Más detalles

FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA. Tema 11. Cálculo Relacional

FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA. Tema 11. Cálculo Relacional FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA Tema 11. Cálculo Relacional 1.- Introducción. 2.- Cálculo Relacional Orientado a Tuplas. 3.- Cálculo Relacional vs Álgebra Relacional: Algoritmo

Más detalles

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MATEMÁTICAS MISIÓN

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MATEMÁTICAS MISIÓN UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MATEMÁTICAS MISIÓN Formar profesionales altamente capacitados, desarrollar investigación y realizar actividades de extensión, en matemáticas y computación, así

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

Práctica 2. Si se quiere indicar el tipo del objeto simbólico se puede escribir:

Práctica 2. Si se quiere indicar el tipo del objeto simbólico se puede escribir: PRÁCTICA FUNCIONES DE UNA VARIABLE Prácticas Matlab Práctica Objetivos Dibujar gráficas de funciones definidas a trozos con el comando Plot. Dibujar funciones implícitas con el comando ezplot. Calcular

Más detalles

Introducción al comando Manipulate en Mathematica

Introducción al comando Manipulate en Mathematica Introducción al comando Manipulate en Mathematica José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez Manipulando números Aquí se usa Manipulate para mostrar valores de x desde hasta 5. Usa el ratón

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

FACULTAD DE INGENIERÍA FORESTAL EXCELENCIA ACADÉMICA QUE CONTRIBUYE AL DESARROLLO DE LAS CIENCIAS FORESTALES

FACULTAD DE INGENIERÍA FORESTAL EXCELENCIA ACADÉMICA QUE CONTRIBUYE AL DESARROLLO DE LAS CIENCIAS FORESTALES IDENTIFICACIÓN DE LA ASIGNATURA Nombre: Matemáticas Fundamentales Código: 0701479 Área Específica: Ciencias Básicas Semestre de Carrera: Primero JUSTIFICACIÓN El estudio de las matemáticas es parte insustituible

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

INDICE. XVII Prólogo a la edición en español. XXI 1. Calculo proporcional 1.1. Argumentos y proporciones lógicas

INDICE. XVII Prólogo a la edición en español. XXI 1. Calculo proporcional 1.1. Argumentos y proporciones lógicas INDICE Prologo XVII Prólogo a la edición en español XXI 1. Calculo proporcional 1.1. Argumentos y proporciones lógicas 1 1.1.1. Introducción 1.1.2. Algunos argumentos lógicos importantes 2 1.1.3. Proposiciones

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

Introducción al lenguaje de especificación JML

Introducción al lenguaje de especificación JML Introducción al lenguaje de especificación JML Elena Hernández Pereira Óscar Fontenla Romero Tecnología de la Programación Octubre 2006 Departamento de Computación Facultad de Informática Universidad de

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Departamento de Matemática Aplicada Universidad Granada Introducción El Cálculo o Análisis Numérico es

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora

Más detalles

Límites, álgebra y continuidad 11.2 MATE 3013

Límites, álgebra y continuidad 11.2 MATE 3013 Límites, álgebra y continuidad 11. MATE 3013 PROPIEDADES DE LIMITES : Si f (x) L y g(x) M entonces tenemos que: L.1 a) c c b) x a x = a El límite de una constante es la constante. El límite de la función

Más detalles

Carlos A. Rivera-Morales. Precálculo I

Carlos A. Rivera-Morales. Precálculo I Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido : Contenido Discutiremos: función inversa : Contenido Discutiremos: función inversa construcción de la función inversa : Contenido Discutiremos:

Más detalles

CAPÍTULO III. FUNCIONES

CAPÍTULO III. FUNCIONES CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN

Más detalles

43.8 43.8. Ejercicios de práctica para el examen TASC de Matemáticas

43.8 43.8. Ejercicios de práctica para el examen TASC de Matemáticas Ejercicios de práctica para el examen TASC de Usa estos ejercicios para practicar para el subconjunto de exámenes de de TASC. Antes de comenzar, revisa la información que está a continuación acerca del

Más detalles

Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 F-TF.4

Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 F-TF.4 Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 (+) Use triángulos especiales para determinar geométricamente los valores de seno, coseno, tangente

Más detalles

TITULACIÓN: INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN CURSO ACADÉMICO: 2011/2012

TITULACIÓN: INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN CURSO ACADÉMICO: 2011/2012 TITULACIÓN: INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN GUÍA DOCENTE de ÁLGEBRA II CURSO ACADÉMICO: 2011/2012 EXPERIENCIA PILOTO DE IMPLANTACIÓN DEL SISTEMA DE CRÉDITOS EUROPEOS EN LA UNIVERSIDAD DE JAÉN.

Más detalles

Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media

Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media Este instrumento presenta los indicadores de evaluación del proceso 2014 de la Modalidad Flexible de Estudios;

Más detalles

INTRODUCCIÓN A Maxima

INTRODUCCIÓN A Maxima INTRODUCCIÓN A Maxima Ing. Matías De la Puente 1. Introducción El sistema de álgebra computacional Maxima 1 es un motor de cálculo simbólico escrito en lenguaje Lisp publicado bajo

Más detalles

Uso de Mathematica para análisis de error y elaboración de informes

Uso de Mathematica para análisis de error y elaboración de informes Uso de Mathematica para análisis de error y elaboración de informes Laboratorio de Física 1 Segundo Semestre de 2013 ocentes: Mauricio Suárez urán; Christian Sarmiento Cano Escuela de Física - Facultad

Más detalles

Sumario... 5. Presentación... 7. Capítulo 1. Divisibilidad... 9

Sumario... 5. Presentación... 7. Capítulo 1. Divisibilidad... 9 ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Presentación... 7 Capítulo 1. Divisibilidad... 9 1. Múltiplos de un número... 10 2. Divisores de un número... 11 2.1. Cuándo un número es divisor de otro?... 11 2.2.

Más detalles

1. Representación de la información en los sistemas digitales

1. Representación de la información en los sistemas digitales Oliverio J. SantanaJaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2005 2006 1. Representación de la información en los sistemas digitales Durante Hoy Los digital tipo muchos

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Introducción a la Programación en MATLAB

Introducción a la Programación en MATLAB Introducción a la Programación en MATLAB La programación en MATLAB se realiza básicamente sobre archivos M, o M-Files. Se los denomina de esta forma debido a su extensión.m. Estos archivos son simple archivos

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

Criterios de evaluación del Módulo de Ciencias Aplicadas I.

Criterios de evaluación del Módulo de Ciencias Aplicadas I. Criterios de evaluación del Módulo de Ciencias Aplicadas I. Curso 2014-15 1.1. Resuelve problemas matemáticos en situaciones cotidianas, utilizando los elementos básicos del lenguaje matemático y sus operaciones.

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES

RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Dpto. de Matemáticas (Área de Álgebra) 1. Sean X e Y conjuntos. Demostrar: a) X = X Y Y X. b) X = X Y X Y. RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Funciones I

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Funciones I Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Funciones I Una función es una relación que se propone modelar matemáticamente una serie de fenómenos en los que

Más detalles

REPRESENTACIONES GRÁFICAS: CONCEPTOS PREVIOS

REPRESENTACIONES GRÁFICAS: CONCEPTOS PREVIOS graficos.nb 1 REPRESENTACIONES GRÁFICAS: CONCEPTOS PREVIOS PLANO: CURVAS PLANAS 1) FORMA EXPLICITA : y=f(x) Ejemplo: y = x 2 2) FORMA PARAMETRICA : x x t y y t Comando: Plot Comando: ParametricPlot Ejemplo:

Más detalles

GUIA I (Limites Por Definición E Indeterminaciones)

GUIA I (Limites Por Definición E Indeterminaciones) REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR DE LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL DE LA FUERZA ARMADA NACIONAL NUCLEO- GUANARE GUIA I (ites Por Definición E Indeterminaciones)

Más detalles

1. Graficando con Maple

1. Graficando con Maple 1. Graficando con Maple Maple es un programa de computación simbólica que permite, entre otras cosas, calcular derivadas, límites, integrales de funciones de una o varias variables; graficar funciones

Más detalles

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS 1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS Primera Evaluación TEMA 1. NÚMEROS REALES Distintos tipos de números. Recta real. Radicales. Logaritmos. Notación científica. Calculadora. TEMA 2.

Más detalles

Web: www.iesmarmenor.org Curso 2012-2013 MATEMÁTICAS-I 1ª EVALUACIÓN 2ª EVALUACIÓN 3ª EVALUACIÓN. La recta en el plano. (1 semana)

Web: www.iesmarmenor.org Curso 2012-2013 MATEMÁTICAS-I 1ª EVALUACIÓN 2ª EVALUACIÓN 3ª EVALUACIÓN. La recta en el plano. (1 semana) MATEMÁTICAS-I DISTRIBUCIÓN TEMPORAL DE LOS CONTENIDOS 1ª EVALUACIÓN 2ª EVALUACIÓN 3ª EVALUACIÓN Aritmética y Álgebra Trigonometría (4 semanas) Números complejos Vectores en el plano La recta en el plano

Más detalles

Panorama del curso Métodos Numéricos I

Panorama del curso Métodos Numéricos I Panorama del curso Métodos Numéricos I Egor Maximenko ESFM del IPN 2014 Egor Maximenko (ESFM del IPN) Métodos Numéricos I 2014 1 / 35 Contenido 1 Propósito y programa del curso, software y literatura 2

Más detalles

CONTENIDO PRÓLOGO LAS FUNCIONES... 5

CONTENIDO PRÓLOGO LAS FUNCIONES... 5 CONTENIDO PRÓLOGO... 1 1. LAS FUNCIONES... 5 1.1 FORMAS DE REPRESENTACIÓN... 5 1.1.1 Representación de funciones... 6 1.1.2 Funciones definidas a trozos... 7 1.1.3 Simetría... 8 1.1.4 Funciones crecientes

Más detalles

Proyecto de Cátedra Ciclo Académico 2013 Teoría del Control Prof. Ing. Especialista Leonardo José Hoet

Proyecto de Cátedra Ciclo Académico 2013 Teoría del Control Prof. Ing. Especialista Leonardo José Hoet Índice Datos Generales de la Asignatura...2 Composición del Equipo Docente...2 Fundamentación de la Asignatura...3 Aportes al Perfil del Egresado...3 Objetivos de la Cátedra...3 Incumbencias laborales

Más detalles

Educación en la Red: Wolfram Alpha

Educación en la Red: Wolfram Alpha www.fisem.org/web/union ISSN: 1815-0640 Número 39. Septiembre de 2014 páginas 187-193 Educación en la Red: Wolfram Alpha En 2009, sobre la base de lo que hoy es Wolfram Language, la compañía de investigación,

Más detalles

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica.

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. Tema 1 Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. 1.1. Un esbozo de qué es el Cálculo: paradojas y principales problemas planteados. Los orígenes del Cálculo se

Más detalles

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales Radicales " Raíz: se llama raíz de un número o de una expresión algebraica a todo número o expresión algebraica que elevada a una potencia "n"; reproduce la expresión dada. " Elementos de la raíz. - Radical:

Más detalles

MATEMÁTICAS aplicadas a las Ciencias Sociales II

MATEMÁTICAS aplicadas a las Ciencias Sociales II MATEMÁTICAS aplicadas a las Ciencias Sociales II UNIDAD 1: SISTEMAS DE ECUACIONES. MÉODO DE GAUSS Sistemas de ecuaciones lineales Sistemas equivalentes. Transformaciones que mantienen la equivalencia.

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ester Simó Mezquita Matemática Aplicada IV 1 1. Transformada de Laplace de una función admisible 2. Propiedades básicas de la transformada de Laplace

Más detalles

5.2 Estructuras Algebraicas Introducción

5.2 Estructuras Algebraicas Introducción 5.2 Introducción * Los números naturales: N Al contar objetos se les asigna números: 1, 2, 3,, pasando de un número a su sucesor. La representación en el sistema decimal de números está hecha de tal forma

Más detalles

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA CALCULO INTEGRAL LA ANTIDERIVADA Así como las operaciones matemáticas de la adición, la multiplicación y la potenciación tienen sus inversas en la sustracción, la división y la radicación, la diferenciación

Más detalles

Sistemas de Numeración

Sistemas de Numeración UNIDAD Sistemas de Numeración Introducción a la unidad Para la mayoría de nosotros el sistema numérico base 0 aparentemente es algo natural, sin embargo si se establecen reglas de construcción basadas

Más detalles

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales.

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales. ELECTRÓNICA DIGITAL El tratamiento de la información en electrónica se puede realizar de dos formas, mediante técnicas analógicas o mediante técnicas digitales. El analógico requiere un análisis detallado

Más detalles

Universidad Central Del Este U C E Facultad de Ciencias de la Salud Escuela de Farmacia Programa de la asignatura:

Universidad Central Del Este U C E Facultad de Ciencias de la Salud Escuela de Farmacia Programa de la asignatura: Universidad Central Del Este U C E Facultad de Ciencias de la Salud Escuela de Farmacia Programa de la asignatura: MAT-011 Análisis Matemático I Descripción General: Total de Créditos: 4 Teórico: 4 Práctico:

Más detalles

I. DATOS DE IDENTIFICACIÓN. 10. Requisitos para cursar la asignatura: Recomendada_Introducción a las Matemáticas

I. DATOS DE IDENTIFICACIÓN. 10. Requisitos para cursar la asignatura: Recomendada_Introducción a las Matemáticas UNIVERSIDAD AUTONOMA DE BAJA CALIFORNIA COORDINACIÓN DE FORMACIÓN BÁSICA COORDINACIÓN DE FORMACIÓN PROFESIONAL Y VINCULACIÓN PROGRAMA DE UNIDAD DE APRENDIZAJE POR COMPETENCIAS I. DATOS DE IDENTIFICACIÓN

Más detalles

Introducción bloques intro Control+Intro mayúsculas y minúsculas

Introducción bloques intro Control+Intro mayúsculas y minúsculas Wiris Wiris... 1 Introducción... 2 Aritmética... 3 Álgebra... 4 Ecuaciones y Sistemas... 4 Análisis... 5 Objetos matemáticos, definición de identificadores y funciones... 7 Funciones predefinidas:... 10

Más detalles

4. Sucesiones y funciones

4. Sucesiones y funciones 1 4. Sucesiones y funciones Mathematica dispone de herramientas para hacer sumas de series numéricas, derivadas de funciones de una y varias variables, cálculo de primitivas de funciones de una variable,

Más detalles

Funciones de dos o más variables. Gráficas. Curvas de nivel

Funciones de dos o más variables. Gráficas. Curvas de nivel Funciones de dos o más variables. Gráficas. Curvas de nivel 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 5 6 Índice Introducción 1 Introducción 2 3

Más detalles

Ejercicios de Funciones, límites y continuidad.

Ejercicios de Funciones, límites y continuidad. Matemáticas 1ºBach CNyT. Ejercicios Funciones. Pág 1/12 Ejercicios de Funciones, límites y continuidad. 1. Estudia el dominio de las siguientes funciones 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS Se ha trabajado con números complejos, polinomio y matrices y hemos efectuado con ellos ciertas operaciones: sin embargo no todas las operaciones se comportan de la misma manera,

Más detalles

LENGUAJES FORMALES Y AUTÓMATAS. álgebra computacional LENGUAJES FORMALES Y AUTÓMATAS. álgebra computacional LENGUAJES FORMALES Y AUTÓMATAS

LENGUAJES FORMALES Y AUTÓMATAS. álgebra computacional LENGUAJES FORMALES Y AUTÓMATAS. álgebra computacional LENGUAJES FORMALES Y AUTÓMATAS 6. bibliografía CONTENIDO Definición de [G8.1]. Estructuras algebraicas: monoides, semigrupos, grupos, [G8.1], anillos, cuerpos [H10.1]. Subgrupos, isomorfismo entre grupos [G8.1]. Álgebras concretas y

Más detalles

Temario. Índices simples Árboles B Hashing

Temario. Índices simples Árboles B Hashing Temario Introducción y fundamentos Introducción a SQL Modelo Entidad / Relación Modelo relacional Diseño relacional: formas normales Consultas Cálculo relacional Álgebra relacional Implementación de bases

Más detalles

Capítulo 1. Introducción

Capítulo 1. Introducción Capítulo 1. Introducción 1.1 Antecedentes La selección de personal siempre ha sido una tarea en la cual se ha requerido mucho tiempo y esfuerzo para el área de recursos humanos dentro de una organización.

Más detalles

Repasando lo aprendido...con una propuesta autoinstruccional

Repasando lo aprendido...con una propuesta autoinstruccional Repasando lo aprendido......con una propuesta autoinstruccional Te propongo un rápido repaso en matemática básica, que te será de suma utilidad para fijar los conocimientos dados. Sólo te brindo una guía

Más detalles

Números y desigualdades

Números y desigualdades 1/59 Números y desigualdades 2/59 Distintas clases de números 3/59 Números naturales Los números naturales 1,2,3,.... El conjunto de todos ellos se representa por N. 4/59 Números enteros Los números enteros...,-2,-1,0,1,2,...

Más detalles

SINTAXIS DE SQL-92. ::= CREATE SCHEMA [ ... ]

SINTAXIS DE SQL-92. <definición de esquema >::= CREATE SCHEMA <cláusula de nombre de esquema> [ <elemento de esquema>... ] SINTAXIS DE SQL-92 Introducción: Se presenta brevemente un resumen de la sintaxis de SQL según el estándar ISO 9075 (SQL- 92), dividido en tres partes: - Lenguaje de Definición de Daots (LDD), - Lenguaje

Más detalles

PLANEACIÓN DEL CONTENIDO DE CURSO

PLANEACIÓN DEL CONTENIDO DE CURSO PÁGINA: 1 de 9 FACULTAD DE: CIENCJAS BÁSICAS PROGRAMA DE: FÍSICA PLANEACIÓN DEL CONTENIDO DE CURSO 1. IDENTIFICACIÓN DEL CURSO NOMBRE : PROGRAMACIÓN Y ANÁLISIS NUMÉRICO CÓDIGO : 22445 SEMESTRE : IV NUMERO

Más detalles

Universidad Autónoma de San Luis Potosí Coordinación Académica Región Altiplano Programas Sintéticos de la Licenciatura de Ingeniería de Minerales

Universidad Autónoma de San Luis Potosí Coordinación Académica Región Altiplano Programas Sintéticos de la Licenciatura de Ingeniería de Minerales Cálculo en una variable PROGRAMA ANALÍTICO Datos básicos del curso Tipo de propuesta curricular: Tipo de materia: Materia compartida con otro PE o entidad académica Semestre Horas de teoría por semana

Más detalles

ESPECIALISTA EN BASE DE DATOS

ESPECIALISTA EN BASE DE DATOS ESPECIALISTA EN BASE DE DATOS EXPERTO ANALISIS Y DISEÑO DE BASE DE DATOS EN MANEJAR BASES DE ACCESS COMPLETO DATOS MYSQL Requisito: Manejo Windows POSTGRESQL DURACION: 3 MESES DE L-V SQL SERVER Cliente-Administración

Más detalles

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O.

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. Calcular el valor de posición de cualquier cifra en cualquier número natural. Aplicar las propiedades fundamentales de la suma, resta, multiplicación y división

Más detalles

Conjuntos, Relaciones y Grupos. Problemas de examen.

Conjuntos, Relaciones y Grupos. Problemas de examen. Conjuntos, Relaciones y Grupos. Problemas de examen. Mayo 2006 1. La función f es definida por (a) Halle el recorrido exacto, A, de f. f : R R donde f(x) = e senx 1. (b) (i) Explique por qué f no es inyectiva.

Más detalles

Funciones Reales en una Variable

Funciones Reales en una Variable Funciones Reales en una Variable Contenidos Concepto función Grafica de una función Dominio y Recorrido de una función Clasificación de la funciones Función Inversa Paridad de las Funciones Operaciones

Más detalles

Conceptos básicos de Matemática. Recopilación de materiales

Conceptos básicos de Matemática. Recopilación de materiales Conceptos básicos de Matemática de materiales 23 de abril de 202 Índice general. Conceptos elementales del lenguaje algebraico 7.. Conjuntos, elementos y pertenencia........................ 7... Operaciones

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

El rincón de la calculadora gráfica A cargo de Francisco Puerta García. El dominio de definición de una función racional y sus asíntotas verticales

El rincón de la calculadora gráfica A cargo de Francisco Puerta García. El dominio de definición de una función racional y sus asíntotas verticales NÚMEROS. Revista de didáctica de las matemáticas Volumen 33, marzo de 1998, páginas 5-56 El rincón de la calculadora gráfica A cargo de Francisco Puerta García El dominio de definición de una función racional

Más detalles

PROPIEDADES FUNCIONES PRINCIPALES

PROPIEDADES FUNCIONES PRINCIPALES PROPIEDADES FUNCIONES PRINCIPALES 1.- FUNCIÓN EXPONENCIAL Sea a un número real positivo no nulo distinto de 1. Se llama función exponencial real de base a, a la función: a) a 0 = 1 b) a 1 = a f: R R x

Más detalles

Modelos y Bases de Datos

Modelos y Bases de Datos Modelos y Bases de Datos MODELOS Y BASES DE DATOS 1 Sesión No. 12 Nombre: Lenguaje SQL: Valores Nulos Contextualización Qué más ofrece el lenguaje SQL? Así como te has introducido en el desarrollo de la

Más detalles

Capacidad de procesamiento del compilador Python para el Sistema Operativo Windows y Linux Palabras Clave:

Capacidad de procesamiento del compilador Python para el Sistema Operativo Windows y Linux Palabras Clave: Capacidad de procesamiento del compilador Python para el Sistema Operativo Windows y Linux Stiven Unsihuay, Paulo Pereira, Norma León unsihuay_carlos@hotmail.com, paulopereiraa10@gmail.com, nleonl@usmp.pe

Más detalles

ANEXO 5. RECURSOS Y MATERIALES

ANEXO 5. RECURSOS Y MATERIALES ANEXO 5. RECURSOS Y MATERIALES Materiales y tareas Acciones Fenomenología Sistemas Representación Estructura conceptual Expectativas aprendizaje Limitaciones aprendizaje SOFTWARE DIDÁCTICO (CLIC 3.0) Contexto:

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

Dada la gráfica de la función f, encuentre los límites que se le piden. c) Lím f( x) = + i) Lí mf( x) =

Dada la gráfica de la función f, encuentre los límites que se le piden. c) Lím f( x) = + i) Lí mf( x) = Dada la gráfica de la función f, encuentre los límites que se le piden. a) Lí m d) Lí m g) Lí m j) Lí m b) Lím e) Lí m h) Lí m 4 4 c) Lím f) Lí m i) Lí m Dada la gráfica de la función f, encuentre: a)

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles