Función exponencial y Logaritmos
|
|
- Ricardo Plaza Silva
- hace 5 años
- Vistas:
Transcripción
1 Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes de crecimiento exponencial; por ejemplo, un papel que se dobla sucesivamente en 2 partes iguales. La hoja de un determinado grosor tendrá al primer doblez un grosor igual al doble del primero; y en el segundo doblez tendrá un grosor equivalente a cuatro veces el primer grosor, y luego grosor 8, 16, 32, 64, etc. En otro ejemplo práctico, vemos crecimiento exponencial en el aumento de un capital invertido a interés continuo o en el crecimiento de las poblaciones. Al contrario, vemos que las partículas radiactivas tienen una función exponencial que da cuenta la desintegración de la partícula inicial en el tiempo. 1.1 Definición de función exponencial Se llama función exponencial de base a, a aquella cuya forma genérica es f (x) = a x, siendo a un número positivo distinto de 1. Por lo tanto, en una función exponencial la variable independiente (absisa) es el exponente de la función. Por su propia definición, el dominio de toda función exponencial es el conjunto de los números reales R. 1.2 Función exponencial según el valor de la base. - Si 0 < a < 1, entonces f(x) = a x es decreciente, puesto que la base es una fracción positiva o decimal menor que 1. Luego si el exponente aumenta, entonces el valor de a x disminuye. Por ejemplo: Para la función y = 0,2 x Si x = 2, entonces y = 0,2 2 = 0,04 Si x = 3, entonces y = 0,2 3 = 0,08. Y así sucesivamente, su valor es cada vez más pequeño. - Si a > 1 entonces f(x) = a x es creciente, puesto que la base es un número positivo mayor que 1. Luego, si el exponente aumenta, entonces el valor de a x también aumenta.
2 Por ejemplo: Para la función y = 5 x Si x = 2, entonces y = 5 2 = 25 Si x = 3, entonces y = 5 3 = 125. Y así sucesivamente, su valor es cada vez más grande. - La base no puede ser igual a 0 porque cualquier número exponencial de base cero es igual a 1, resultando la función y = 1 x, la cual no tendría sentido, debido a que su valor es constantemente igual a 1, con lo que gráficamente es una función constante y = 1 (recta paralela al eje X en el punto y = 1). - La base no puede ser negativa porque el valor de la función será positivo si x es par y negativo si el exponente es impar. Además, si x es una fracción como ½, entonces la función no tiene imagen en los reales. Por ejemplo: Para la función y = (-3) x Si x = 2, entonces y = 9 Si x = 3, entonces su imagen es -27 Si x = ½ entonces (-3) 1/2 es igual a la raíz cuadrada de -3, cuyo valor no es real. 1.3 Propiedades de las funciones exponenciales Toda función exponencial de la forma f(x) = a x, cumple las siguientes propiedades: 1. La función aplicada al valor cero es siempre igual a 1: f (0) = a 0 = La función exponencial de 1 es siempre igual a la base: f (1) = a 1 = a. 3. La función exponencial de una suma de valores es igual al producto de la aplicación de dicha función sobre cada valor por separado. f(m + n) = a m +n = a m a n = f (m) f (n). 4. La función exponencial de una resta es igual al cociente de su aplicación al minuendo dividida por la aplicación al sustraendo: p a f (p q) = a p q = q = f (p) : f (q) a 5. La función y = e x Qué representa el número e?. Un caso particularmente interesante de función exponencial es f (x) = e x. El número e, de valor aproximado 2, , se define matemáticamente como el límite al que tiende la expresión: (1 + 1/n) n En este caso, el valor de n crece hasta aproximarse al infinito. Este número es la base elegida para los logaritmos naturales o neperianos. La función e x presenta algunas particularidades importantes que refuerzan su interés en las descripciones físicas y financieras y otras aplicaciones matemáticas.
3 2. Ecuaciones exponenciales En cursos anteriores ya se han resuelto este tipo de ecuaciones. Se llama ecuación exponencial a aquella en la que la incógnita aparece como exponente. Un ejemplo de ecuación exponencial sería a x = b. Para resolver estas ecuaciones se suelen utilizar dos métodos alternativos: - Igualación de la base: que consiste en aplicar las propiedades de las potencias para lograr que en los dos miembros de la ecuación aparezca una misma base elevada a distintos exponentes: Ax = Ay. x = y Ejemplo: 4 x+5 8 2x 12 = 1/16, aplicando las propiedades de potencias, recuerda que 4, 8 y 16 se pueden expresar en potencias de base 2 2 2(x +5) 2 3(2x 12) = 2 4 Aplicando propiedades de potencias, tendremos que 2 2(x +5) + 3 (2x 12) = 2 4 Por lo que 2 8x 26 = 2 4 Por tanto tenemos que si las potencias son iguales y sus bases son iguales, entonces los exponentes deben ser iguales también. 8x 26 = 4, por lo que se deduce que x = ( ):8 luego x = 22 : 8 x = 2,75 - Cambio de variable: consiste en sustituir todas las potencias que figuran en la ecuación por potencias de una nueva variable, convirtiendo la ecuación original en otra más fácil de resolver. 2 2x 5 2 x 14 = 0 t 2-5t 14 = 0 Luego se resuelve la ecuación de segundo grado. Como (t 7)(t + 5) = 0, entonces las posibles soluciones para t son : 7 y -5 Luego, se vuelve al cambio de variable. Esto es: 7 = 2 x o -5 = 2 x. La primera solución se identificará aplicando nociones de logaritmos y la segunda solución no es posible, pues 2 que es positivo, al elevarse a ningún valor resultará un número negativo (-5). Por otra parte, un sistema de ecuaciones se denomina exponencial cuando en alguna de sus ecuaciones la incógnita aparece como exponente. Para la resolución de sistemas de ecuaciones exponenciales se aplican también, según convenga, los métodos de igualación de la base y de cambio de variable.
4 3 Logaritmos A cuánto hay que elevar el número 2 para obtener 7?, es decir, 2 x = 7. La respuesta es un número irracional entre 2 y 3. Este número, por definición, se denomina logaritmo en base dos de siete, lo que se anota log 2 7. En la expresión log a b, a se denomina base del logaritmo y b se llama argumento, con a y b positivos y a 1. Por lo tanto, la definición de logaritmo es: log a b = n a n = b (a > 0, b > 0, a 1) La función logarítmica puede considerarse como la inversa de la función exponencial, por cuanto se cumple que: Representación gráfica de varias funciones exponenciales. La representación de la función logarítmica es creciente, pero su crecimiento se va estancando en un valor de y. La función exponencial es creciente, pero no se estanca, sino que su curva crece cada vez más. Ejemplo: El gráfico de la función F(x) = log 2 x
5 Por tanto, el cálculo de logaritmos se aplicará en cuanto se quiere conocer el exponente de una expresión. A partir de esta definición, se pueden deducir las siguientes propiedades básicas. 3.1 Propiedades de logaritmos Las siguientes igualdades son válidas solo para aquellos valores donde esté definido el logaritmo, es decir: a > 0 1. log a a = 1 se demuestra con la definición: a 1 = a 2. log a 1 = 0 puesto que a 0 = 1 3. log a a n = n se demuestra con la definición: a n = a n 4. Para demostrar esta propiedad suponemos que a b = n (con a > 0). A partir de la definición de logaritmo, lo anterior es equivalente a: log a n = b. Si reemplazamos este valor de b en la igualdad anterior, obtenemos:, que es lo que se quería demostrar. 5. log c (ab) = log c a + log c b El logaritmo de un producto es igual a la suma de los logaritmos de cada factor. 6. El logaritmo de una división es igual a la resta de los logaritmos del dividendo y del divisor. 7. log c a n = nlog c a El logaritmo de una potencia equivale al producto del exponente por el logaritmo de la base de la potencia. 8. Si log c a = log c b a = b 9. Si a = b log c a = log c b Para que se cumplan las propiedades anteriores es necesario que a > 0, b > 0 y c > 0. A continuación demostraremos solo una de estas propiedades. Demostración de propiedad (5) log c (ab) = log c a + log c b Supongamos que log c (ab) = x ; log c a = y ; log c b = z. Si demostramos que x = y + z, la propiedad (5) comprobada. Si log c (ab) = x c x = ab.
6 Si log c a = y c y = a y si log c b = z c z = b. Entonces: c y c z = ab, pero c y c z = c y + z. Por lo tanto c y + z = ab y c x = ab, de modo que: c x = c y + z x = y + z. Ejemplos: log 2 8 = log log 2 2 Lo que es correcto, ya que log 2 8 = 3 ; log 2 4 = 2 y log 2 2 = 1 y 3 = Logaritmos vulgares o de Briggs y logaritmos naturales: Cuando la base del logaritmo es 10, el logaritmo se llama logaritmo vulgar o de Briggs, y su base no se anota, (en la calculadora se reconoce como log) Los logaritmos naturales son en base de un número irracional llamado e cuyo valor aproximado es 2,7 (se reconoce en la calculadora por una tecla Ln). Este tiene gran importancia en aumentos de población, en el área comercial y en la naturaleza. log a = log 10 a A partir de esta base tenemos que: log 10 = 1 ; log 100 = 2 ; log 1000 = 3; etc. Si graficamos la función y = log x (estamos calculando logaritmos en base 10) y tenemos lo siguiente: La gráfica corresponde a una función creciente, es decir, si x > y, entonces log x > log y. Por otro lado, la curva se acerca indefinidamente al eje Y en la medida que x se acerca a 0. Por ejemplo: log 10-5 = -5; log 10-8 =-8, etc. Observa en la gráfica que cuando calculamos un logaritmo de un número comprendido entre 0 y 1 resulta un número negativo, es decir:
7 log (0,5) < 0; log (2/3) < 0, etc. Por el contrario, al calcular el logaritmo de un número mayor que 1, el resultado siempre es positivo: log (1,2) > 0 ; log (1,03) > 0, etc. Ejercicios resueltos: 1) Calcular log 4 8 Supongamos que log 4 8 = x, entonces por la definición 4 x = 8, igualando bases: 2 2x = 2 3, por lo tanto: log 4 8 = 2) Desarrollar la siguiente expresión utilizando las propiedades 5, 6 y 7 3) Expresar en un solo logaritmo la expresión: 2log a log b 3log c. En este ejercicio se solicita lo contrario que en el anterior: Primero ocupamos la propiedad 7: log a 2 log b log c 3 Ahora utilizamos la propiedad 6: Volviendo a utilizar la propiedad 6 obtenemos:
8 4) Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)? I. log (0,2) + log (0,3) < 0. II. log 3 log (0,2) < 0. III. log 3 log (0,1) < 0. Por la propiedad 5: log (0,2) + log (0,3) = log (0,2 0,3) = log (0,06) < 0 I es verdadera. Por la propiedad 6: log 3 log (0,2) = > 0 II es falsa. log 3 > 0 y log (0,1) < 0, por lo tanto: log 3 log (0,1) < 0 III es verdadera. 3.2 Aplicaciones de los logaritmos Los logaritmos tienen variadas aplicaciones en modelos de fenómenos naturales y sociales. Una de ellas es la escala Richter. Escala Richter Una escala habitualmente utilizada en la medición de la intensidad de los sismos es la escala Richter. Los grados se calculan mediante la expresión, donde A es la amplitud medida en micrómetros (1 micrómetro = 10-4 cm) y P es el período medido en segundos. Ejemplo: Cuál es la magnitud de un sismo en la escala Richter si la amplitud es 10-2 cm y su período es 1 segundo? Como 1 micrómetro = 10-4 cm, entonces 10-2 cm equivalen a 10 2 micrómetros. Entonces la cantidad de grados Richter es: ; Por lo tanto es grado 2.
9 4. Ecuaciones exponenciales Cuando no podemos igualar las bases en una ecuación exponencial aplicamos logaritmos a ambos lados de la ecuación, y después la propiedad (9) Ejemplo: Resolver la ecuación: 2 x + 1 = 3 Aplicamos logaritmo (en cualquier base) en ambos miembros. log (2 x + 1 ) = log 3 (x+1)log 2 = log 3 x log 2 + log 2 = log 3 Por tanto tenemos que: En las ecuaciones exponenciales generalmente se ocupa la base 10 (que se anota log) o logaritmo natural de base e (que se anota ln), puesto que los logaritmos en estas bases aparecen en las calculadoras científicas. e = 2, Ejemplo: Una población de bacterias crece según el modelo: P(t) = 2 3 t, donde t es la cantidad de minutos transcurridos. Cuántos minutos habrá que esperar para que el número de bacterias sea 1.000? Según el enunciado, debe cumplirse que: P(t) = 2 3 t = Aplicando logaritmo a ambos lados: log (2 3 t ) = log (1.000) log 2 + t log 3 = 3 5. Ecuaciones logarítmicas Una ecuación logarítmica se caracteriza porque la incógnita aparece en el argumento de una expresión logarítmica. Para resolverlas se trata de eliminar los logaritmos que aparezcan utilizando la propiedad (8) Ejemplo: Resolver la ecuación: log (x + 1) log (x 1) = log 2. Aplicando propiedad 6:
10 logaritmos,. Con la propiedad (8) podemos eliminar ambos por tanto x + 1= 2x 2 x = 3 Esta solución siempre se debe comprobar en la ecuación original para verificar si el valor de x satisface la igualdad, pues puede ser un número no real: Si reemplazamos el valor de x = 3 en la ecuación original, tenemos que: log (3 + 1) log (3 1) = log 4 log 2 = = log 2; por lo tanto, se afirma que x = 3 es la solución. Sitios sugeridos Si deseas ejercitación con propiedades de logaritmos y ecuaciones logarítmicas: Ejercicios de logaritmos a nivel avanzado: logaritmos.php Si deseas reforzar la gráfica de funciones logarítmicas y exponenciales en forma interactiva: garitmo_1.htm
Adivinanza o logaritmos?
Nivel:.º Medio Sector: Matemática Unidad temática: Álgebra y funciones Actualmente un alumno está cursando el Cuarto Año Medio. Tiempo atrás estuvo de cumpleaños y recibió de regalo diferentes cantidades
Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. n N, ( a 0 ) m a. m Z, n N
EXPONENCIALES Y LOGARITMOS FUNCIÓN EXPONENCIAL Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. Potencias de eponente natural: a n = a. a. a... a n N n veces Potencias
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
Divisibilidad y números primos
Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
Colegio Las Tablas Tarea de verano Matemáticas 3º ESO
Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
3. Operaciones con funciones.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................
DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:
Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela
Sistemas de numeración
Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan
Módulo 9 Sistema matemático y operaciones binarias
Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
CAPÍTULO III. FUNCIONES
CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN
Biblioteca Virtual Ejercicios Resueltos
EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar
De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.
3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación
AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES
AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán
Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones
Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces
Ecuaciones de segundo grado
3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver
2 Potencias y radicales
89 _ 09-008.qxd //08 09: Página Potencias y radicales INTRODUCCIÓN Los alumnos ya han trabajado con potencias de exponente positivo y han efectuado multiplicaciones y divisiones de potencias y potencias
EXPRESIONES ALGEBRAICAS. POLINOMIOS
EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,
ESTRUCTURAS ALGEBRAICAS 1
ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia
Límite de una función
Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1:
FUNCIONES EXPONENCIAL Y LOGARÍTMICA Por: Ing. Mario René De León García.. FUNCIÓN EXPONENCIAL Una función eponencial tiene la forma, donde a es la base de la potencia la variable es el eponente. Esta función
REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS
SUMA REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES (N) 1. Características: Axiomas de Giuseppe Peano (*): El 1 es un número natural. Si n es un número natural, entonces el sucesor (el siguiente
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder
Ecuaciones e Inecuaciones
5 Ecuaciones e Inecuaciones Objetivos En esta quincena aprenderás a: Resolver ecuaciones de primer y segundo grado. Resolver ecuaciones bicuadradas y factorizadas. Identificar y resolver inecuaciones de
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida
1. Ecuaciones no lineales
1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar
LÍMITES DE FUNCIONES. CONTINUIDAD
LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @
Funciones exponenciales y logarítmicas
Funciones exponenciales y logarítmicas - Funciones exponenciales y sus gráficas Un terremoto de 85 grados en la escala de Richter es 00 veces más potente que uno de 65, por qué?, cómo es la escala de Richter?
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
EJERCICIOS DE FUNCIONES REALES
EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa
3FUNCIONES LOGARÍTMICAS
3FUNCIONES LOGARÍTMICAS Problema 1 Si un cierto día, la temperatura es de 28, y hay mucha humedad, es frecuente escuchar que la sensación térmica es de, por ejemplo, 32. La sensación térmica depende de
2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta.
año secundario Función Lineal Se llama función lineal porque la potencia de la x es. Su gráfico es una recta. Y en general decimos que es de la forma : f(x)= a. x + b donde a y b son constantes, a recibe
La Función Exponencial y la Función Logarítmica
1 Capítulo 7 La Función Exponencial y la Función Logarítmica M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación
Raíces cuadradas y radicales
Raíces cuadradas y radicales Raíz cuadrada - la raíz cuadrada de x, donde x, es igual a c (donde c si c 2 = x. Se usa la notación para representar la raíz cuadrada principal de x. Al símbolo se le llama
Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.
2010 Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2010 INDICE: 01. DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS. 02. VALOR
Unidad IV: Cinética química
63 Unidad IV: Cinética química El objetivo de la cinética química es el estudio de las velocidades de las reacciones químicas y de los factores de los que dependen dichas velocidades. De estos factores,
Apuntes de Matemática Discreta 9. Funciones
Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y
Números Reales. MathCon c 2007-2009
Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................
LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial
LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función eponencial La función eponencial es de la forma f () = a, tal que a > 0, a El valor a se llama base de la función
Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones
Matemáticas 104, 01 Semestre II Tarea 5 Soluciones Problema 1: Una definición errónea de línea tangente a una curva es: La línea L es tangente a la curva C en el punto P si y sólamente si L pasa por C
VII. Estructuras Algebraicas
VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (
Tema 7. Límites y continuidad de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está
TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA.
TEMA: ECUACIONES CON NÚMEROS NATURALES INTRODUCCIÓN: Las ecuaciones sirven, básicamente, para resolver problemas ya sean matemáticos, de la vida diaria o de cualquier ámbito- y, en ese caso, se dice que
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
Ejercicios Resueltos del Tema 4
70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:
DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)
Ejercicios de Trigonometría
Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple
Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
Reduce expresiones algebraicas (páginas 469 473)
A NOMRE FECHA PERÍODO Reduce expresiones algebraicas (páginas 469 473) Reduce expresiones algebraicas Los expresiones 3(x 4) 3x 2 son expresiones equivalentes, porque tienen el mismo valor sin importar
Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es
Matemáticas 1 o ESO David J. Tarifa García info@esobachilleratouniversidad.com.es 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................
Ecuaciones de primer y segundo grado
Igualdad Ecuaciones de primer y segundo grado Una igualdad se compone de dos expresiones unidas por el signo igual. 2x + 3 = 5x 2 Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2.
Lección 4: Suma y resta de números racionales
GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,
f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11
1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el
Polinomios y Ecuaciones
Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números
FUNCIONES 1. DEFINICION DOMINIO Y RANGO
1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad
MODULO PRECALCULO TERCERA UNIDAD
MODULO PRECALCULO TERCERA UNIDAD Función Eponencial y Función Logarítmica 9 Alicia rió. "No sirve de nada intentarlo - dijo -; uno no puede creer cosas imposibles." - "Me atrevería a decir que no tienes
QUÉ ES UN NÚMERO DECIMAL?
QUÉ ES UN NÚMERO DECIMAL? Un número decimal representa un número que no es entero, es decir, los números decimales se utilizan para representar a los números que se encuentran entre un número entero y
(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six
Unidad 3. Interés compuesto. Objetivos. Al finalizar la unidad, el alumno:
Unidad 3 Interés compuesto Objetivos Al finalizar la unidad, el alumno: Calculará el monto producido por un cierto capital colocado a una tasa de interés compuesto convertible anualmente, semestralmente
Covarianza y coeficiente de correlación
Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también
1.3 Números racionales
1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples
Números y desigualdades
1/59 Números y desigualdades 2/59 Distintas clases de números 3/59 Números naturales Los números naturales 1,2,3,.... El conjunto de todos ellos se representa por N. 4/59 Números enteros Los números enteros...,-2,-1,0,1,2,...
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental
Integrales y ejemplos de aplicación
Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir
ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.
ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio
LÍMITES Y CONTINUIDAD
UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()
Soluciones a los problemas Olimpiada de Matemáticas Fase local Extremadura Enero de 2015
Olimpiada atemática Española RSE Soluciones a los problemas Olimpiada de atemáticas Fase local Extremadura Enero de 2015 1. lrededor de una mesa circular están sentadas seis personas. ada una lleva un
CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS
CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...
Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones
Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación
1. Números Reales 1.1 Clasificación y propiedades
1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,
Polinomios y fracciones algebraicas
UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,
SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97
SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora
Funciones polinomiales de grados 3 y 4
Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados
NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa:
NÚMERO REAL El conjunto de los números racionales se nos hace insuficiente a la hora de representar con exactitud magnitudes tan reales como la diagonal de un cuadrado cuyo lado mida 1, por ejemplo, o
UNIDAD 1. LOS NÚMEROS ENTEROS.
UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar
NÚMEROS NATURALES Y NÚMEROS ENTEROS
NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de
Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos
MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que
LÍMITES DE FUNCIONES. CONTINUIDAD
LÍMITES DE FUNCIONES. CONTINUIDAD Página 7 REFLEXIONA Y RESUELVE Visión gráfica de los ites Describe análogamente las siguientes ramas: a) f() b) f() no eiste c) f() d) f() +@ e) f() @ f) f() +@ g) f()
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones
UNIDAD I NÚMEROS REALES
UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números
Descomposición factorial de polinomios
Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de
Profr. Efraín Soto Apolinar. Función Inversa
Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.
EJERCICIOS SOBRE : DIVISIBILIDAD
1.- Múltiplo de un número. Un número es múltiplo de otro cuando lo contiene un número exacto de veces. De otra forma sería: un número es múltiplo de otro cuando la división del primero entre el segundo
Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0.
NÚMEROS COMPLEJOS. INTRO. ( I ) Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0. Si bien esto no era un problema