Función exponencial y Logaritmos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Función exponencial y Logaritmos"

Transcripción

1 Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes de crecimiento exponencial; por ejemplo, un papel que se dobla sucesivamente en 2 partes iguales. La hoja de un determinado grosor tendrá al primer doblez un grosor igual al doble del primero; y en el segundo doblez tendrá un grosor equivalente a cuatro veces el primer grosor, y luego grosor 8, 16, 32, 64, etc. En otro ejemplo práctico, vemos crecimiento exponencial en el aumento de un capital invertido a interés continuo o en el crecimiento de las poblaciones. Al contrario, vemos que las partículas radiactivas tienen una función exponencial que da cuenta la desintegración de la partícula inicial en el tiempo. 1.1 Definición de función exponencial Se llama función exponencial de base a, a aquella cuya forma genérica es f (x) = a x, siendo a un número positivo distinto de 1. Por lo tanto, en una función exponencial la variable independiente (absisa) es el exponente de la función. Por su propia definición, el dominio de toda función exponencial es el conjunto de los números reales R. 1.2 Función exponencial según el valor de la base. - Si 0 < a < 1, entonces f(x) = a x es decreciente, puesto que la base es una fracción positiva o decimal menor que 1. Luego si el exponente aumenta, entonces el valor de a x disminuye. Por ejemplo: Para la función y = 0,2 x Si x = 2, entonces y = 0,2 2 = 0,04 Si x = 3, entonces y = 0,2 3 = 0,08. Y así sucesivamente, su valor es cada vez más pequeño. - Si a > 1 entonces f(x) = a x es creciente, puesto que la base es un número positivo mayor que 1. Luego, si el exponente aumenta, entonces el valor de a x también aumenta.

2 Por ejemplo: Para la función y = 5 x Si x = 2, entonces y = 5 2 = 25 Si x = 3, entonces y = 5 3 = 125. Y así sucesivamente, su valor es cada vez más grande. - La base no puede ser igual a 0 porque cualquier número exponencial de base cero es igual a 1, resultando la función y = 1 x, la cual no tendría sentido, debido a que su valor es constantemente igual a 1, con lo que gráficamente es una función constante y = 1 (recta paralela al eje X en el punto y = 1). - La base no puede ser negativa porque el valor de la función será positivo si x es par y negativo si el exponente es impar. Además, si x es una fracción como ½, entonces la función no tiene imagen en los reales. Por ejemplo: Para la función y = (-3) x Si x = 2, entonces y = 9 Si x = 3, entonces su imagen es -27 Si x = ½ entonces (-3) 1/2 es igual a la raíz cuadrada de -3, cuyo valor no es real. 1.3 Propiedades de las funciones exponenciales Toda función exponencial de la forma f(x) = a x, cumple las siguientes propiedades: 1. La función aplicada al valor cero es siempre igual a 1: f (0) = a 0 = La función exponencial de 1 es siempre igual a la base: f (1) = a 1 = a. 3. La función exponencial de una suma de valores es igual al producto de la aplicación de dicha función sobre cada valor por separado. f(m + n) = a m +n = a m a n = f (m) f (n). 4. La función exponencial de una resta es igual al cociente de su aplicación al minuendo dividida por la aplicación al sustraendo: p a f (p q) = a p q = q = f (p) : f (q) a 5. La función y = e x Qué representa el número e?. Un caso particularmente interesante de función exponencial es f (x) = e x. El número e, de valor aproximado 2, , se define matemáticamente como el límite al que tiende la expresión: (1 + 1/n) n En este caso, el valor de n crece hasta aproximarse al infinito. Este número es la base elegida para los logaritmos naturales o neperianos. La función e x presenta algunas particularidades importantes que refuerzan su interés en las descripciones físicas y financieras y otras aplicaciones matemáticas.

3 2. Ecuaciones exponenciales En cursos anteriores ya se han resuelto este tipo de ecuaciones. Se llama ecuación exponencial a aquella en la que la incógnita aparece como exponente. Un ejemplo de ecuación exponencial sería a x = b. Para resolver estas ecuaciones se suelen utilizar dos métodos alternativos: - Igualación de la base: que consiste en aplicar las propiedades de las potencias para lograr que en los dos miembros de la ecuación aparezca una misma base elevada a distintos exponentes: Ax = Ay. x = y Ejemplo: 4 x+5 8 2x 12 = 1/16, aplicando las propiedades de potencias, recuerda que 4, 8 y 16 se pueden expresar en potencias de base 2 2 2(x +5) 2 3(2x 12) = 2 4 Aplicando propiedades de potencias, tendremos que 2 2(x +5) + 3 (2x 12) = 2 4 Por lo que 2 8x 26 = 2 4 Por tanto tenemos que si las potencias son iguales y sus bases son iguales, entonces los exponentes deben ser iguales también. 8x 26 = 4, por lo que se deduce que x = ( ):8 luego x = 22 : 8 x = 2,75 - Cambio de variable: consiste en sustituir todas las potencias que figuran en la ecuación por potencias de una nueva variable, convirtiendo la ecuación original en otra más fácil de resolver. 2 2x 5 2 x 14 = 0 t 2-5t 14 = 0 Luego se resuelve la ecuación de segundo grado. Como (t 7)(t + 5) = 0, entonces las posibles soluciones para t son : 7 y -5 Luego, se vuelve al cambio de variable. Esto es: 7 = 2 x o -5 = 2 x. La primera solución se identificará aplicando nociones de logaritmos y la segunda solución no es posible, pues 2 que es positivo, al elevarse a ningún valor resultará un número negativo (-5). Por otra parte, un sistema de ecuaciones se denomina exponencial cuando en alguna de sus ecuaciones la incógnita aparece como exponente. Para la resolución de sistemas de ecuaciones exponenciales se aplican también, según convenga, los métodos de igualación de la base y de cambio de variable.

4 3 Logaritmos A cuánto hay que elevar el número 2 para obtener 7?, es decir, 2 x = 7. La respuesta es un número irracional entre 2 y 3. Este número, por definición, se denomina logaritmo en base dos de siete, lo que se anota log 2 7. En la expresión log a b, a se denomina base del logaritmo y b se llama argumento, con a y b positivos y a 1. Por lo tanto, la definición de logaritmo es: log a b = n a n = b (a > 0, b > 0, a 1) La función logarítmica puede considerarse como la inversa de la función exponencial, por cuanto se cumple que: Representación gráfica de varias funciones exponenciales. La representación de la función logarítmica es creciente, pero su crecimiento se va estancando en un valor de y. La función exponencial es creciente, pero no se estanca, sino que su curva crece cada vez más. Ejemplo: El gráfico de la función F(x) = log 2 x

5 Por tanto, el cálculo de logaritmos se aplicará en cuanto se quiere conocer el exponente de una expresión. A partir de esta definición, se pueden deducir las siguientes propiedades básicas. 3.1 Propiedades de logaritmos Las siguientes igualdades son válidas solo para aquellos valores donde esté definido el logaritmo, es decir: a > 0 1. log a a = 1 se demuestra con la definición: a 1 = a 2. log a 1 = 0 puesto que a 0 = 1 3. log a a n = n se demuestra con la definición: a n = a n 4. Para demostrar esta propiedad suponemos que a b = n (con a > 0). A partir de la definición de logaritmo, lo anterior es equivalente a: log a n = b. Si reemplazamos este valor de b en la igualdad anterior, obtenemos:, que es lo que se quería demostrar. 5. log c (ab) = log c a + log c b El logaritmo de un producto es igual a la suma de los logaritmos de cada factor. 6. El logaritmo de una división es igual a la resta de los logaritmos del dividendo y del divisor. 7. log c a n = nlog c a El logaritmo de una potencia equivale al producto del exponente por el logaritmo de la base de la potencia. 8. Si log c a = log c b a = b 9. Si a = b log c a = log c b Para que se cumplan las propiedades anteriores es necesario que a > 0, b > 0 y c > 0. A continuación demostraremos solo una de estas propiedades. Demostración de propiedad (5) log c (ab) = log c a + log c b Supongamos que log c (ab) = x ; log c a = y ; log c b = z. Si demostramos que x = y + z, la propiedad (5) comprobada. Si log c (ab) = x c x = ab.

6 Si log c a = y c y = a y si log c b = z c z = b. Entonces: c y c z = ab, pero c y c z = c y + z. Por lo tanto c y + z = ab y c x = ab, de modo que: c x = c y + z x = y + z. Ejemplos: log 2 8 = log log 2 2 Lo que es correcto, ya que log 2 8 = 3 ; log 2 4 = 2 y log 2 2 = 1 y 3 = Logaritmos vulgares o de Briggs y logaritmos naturales: Cuando la base del logaritmo es 10, el logaritmo se llama logaritmo vulgar o de Briggs, y su base no se anota, (en la calculadora se reconoce como log) Los logaritmos naturales son en base de un número irracional llamado e cuyo valor aproximado es 2,7 (se reconoce en la calculadora por una tecla Ln). Este tiene gran importancia en aumentos de población, en el área comercial y en la naturaleza. log a = log 10 a A partir de esta base tenemos que: log 10 = 1 ; log 100 = 2 ; log 1000 = 3; etc. Si graficamos la función y = log x (estamos calculando logaritmos en base 10) y tenemos lo siguiente: La gráfica corresponde a una función creciente, es decir, si x > y, entonces log x > log y. Por otro lado, la curva se acerca indefinidamente al eje Y en la medida que x se acerca a 0. Por ejemplo: log 10-5 = -5; log 10-8 =-8, etc. Observa en la gráfica que cuando calculamos un logaritmo de un número comprendido entre 0 y 1 resulta un número negativo, es decir:

7 log (0,5) < 0; log (2/3) < 0, etc. Por el contrario, al calcular el logaritmo de un número mayor que 1, el resultado siempre es positivo: log (1,2) > 0 ; log (1,03) > 0, etc. Ejercicios resueltos: 1) Calcular log 4 8 Supongamos que log 4 8 = x, entonces por la definición 4 x = 8, igualando bases: 2 2x = 2 3, por lo tanto: log 4 8 = 2) Desarrollar la siguiente expresión utilizando las propiedades 5, 6 y 7 3) Expresar en un solo logaritmo la expresión: 2log a log b 3log c. En este ejercicio se solicita lo contrario que en el anterior: Primero ocupamos la propiedad 7: log a 2 log b log c 3 Ahora utilizamos la propiedad 6: Volviendo a utilizar la propiedad 6 obtenemos:

8 4) Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)? I. log (0,2) + log (0,3) < 0. II. log 3 log (0,2) < 0. III. log 3 log (0,1) < 0. Por la propiedad 5: log (0,2) + log (0,3) = log (0,2 0,3) = log (0,06) < 0 I es verdadera. Por la propiedad 6: log 3 log (0,2) = > 0 II es falsa. log 3 > 0 y log (0,1) < 0, por lo tanto: log 3 log (0,1) < 0 III es verdadera. 3.2 Aplicaciones de los logaritmos Los logaritmos tienen variadas aplicaciones en modelos de fenómenos naturales y sociales. Una de ellas es la escala Richter. Escala Richter Una escala habitualmente utilizada en la medición de la intensidad de los sismos es la escala Richter. Los grados se calculan mediante la expresión, donde A es la amplitud medida en micrómetros (1 micrómetro = 10-4 cm) y P es el período medido en segundos. Ejemplo: Cuál es la magnitud de un sismo en la escala Richter si la amplitud es 10-2 cm y su período es 1 segundo? Como 1 micrómetro = 10-4 cm, entonces 10-2 cm equivalen a 10 2 micrómetros. Entonces la cantidad de grados Richter es: ; Por lo tanto es grado 2.

9 4. Ecuaciones exponenciales Cuando no podemos igualar las bases en una ecuación exponencial aplicamos logaritmos a ambos lados de la ecuación, y después la propiedad (9) Ejemplo: Resolver la ecuación: 2 x + 1 = 3 Aplicamos logaritmo (en cualquier base) en ambos miembros. log (2 x + 1 ) = log 3 (x+1)log 2 = log 3 x log 2 + log 2 = log 3 Por tanto tenemos que: En las ecuaciones exponenciales generalmente se ocupa la base 10 (que se anota log) o logaritmo natural de base e (que se anota ln), puesto que los logaritmos en estas bases aparecen en las calculadoras científicas. e = 2, Ejemplo: Una población de bacterias crece según el modelo: P(t) = 2 3 t, donde t es la cantidad de minutos transcurridos. Cuántos minutos habrá que esperar para que el número de bacterias sea 1.000? Según el enunciado, debe cumplirse que: P(t) = 2 3 t = Aplicando logaritmo a ambos lados: log (2 3 t ) = log (1.000) log 2 + t log 3 = 3 5. Ecuaciones logarítmicas Una ecuación logarítmica se caracteriza porque la incógnita aparece en el argumento de una expresión logarítmica. Para resolverlas se trata de eliminar los logaritmos que aparezcan utilizando la propiedad (8) Ejemplo: Resolver la ecuación: log (x + 1) log (x 1) = log 2. Aplicando propiedad 6:

10 logaritmos,. Con la propiedad (8) podemos eliminar ambos por tanto x + 1= 2x 2 x = 3 Esta solución siempre se debe comprobar en la ecuación original para verificar si el valor de x satisface la igualdad, pues puede ser un número no real: Si reemplazamos el valor de x = 3 en la ecuación original, tenemos que: log (3 + 1) log (3 1) = log 4 log 2 = = log 2; por lo tanto, se afirma que x = 3 es la solución. Sitios sugeridos Si deseas ejercitación con propiedades de logaritmos y ecuaciones logarítmicas: Ejercicios de logaritmos a nivel avanzado: logaritmos.php Si deseas reforzar la gráfica de funciones logarítmicas y exponenciales en forma interactiva: garitmo_1.htm

Adivinanza o logaritmos?

Adivinanza o logaritmos? Nivel:.º Medio Sector: Matemática Unidad temática: Álgebra y funciones Actualmente un alumno está cursando el Cuarto Año Medio. Tiempo atrás estuvo de cumpleaños y recibió de regalo diferentes cantidades

Más detalles

Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. n N, ( a 0 ) m a. m Z, n N

Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. n N, ( a 0 ) m a. m Z, n N EXPONENCIALES Y LOGARITMOS FUNCIÓN EXPONENCIAL Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. Potencias de eponente natural: a n = a. a. a... a n N n veces Potencias

Más detalles

MODULO PRECALCULO TERCERA UNIDAD

MODULO PRECALCULO TERCERA UNIDAD MODULO PRECALCULO TERCERA UNIDAD Función Eponencial y Función Logarítmica 9 Alicia rió. "No sirve de nada intentarlo - dijo -; uno no puede creer cosas imposibles." - "Me atrevería a decir que no tienes

Más detalles

3FUNCIONES LOGARÍTMICAS

3FUNCIONES LOGARÍTMICAS 3FUNCIONES LOGARÍTMICAS Problema 1 Si un cierto día, la temperatura es de 28, y hay mucha humedad, es frecuente escuchar que la sensación térmica es de, por ejemplo, 32. La sensación térmica depende de

Más detalles

LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial

LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función eponencial La función eponencial es de la forma f () = a, tal que a > 0, a El valor a se llama base de la función

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 10 Funciones exponenciales y logarítmicas Objetivos En esta quincena aprenderás a: Conocer las características de la función de proporcionalidad inversa y los fenómenos que describen. Hallar las asíntotas

Más detalles

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es Matemáticas 1 o ESO David J. Tarifa García info@esobachilleratouniversidad.com.es 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................

Más detalles

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz Cuadernillo de Apuntes de Matemáticas I Luis Ignacio Sandoval Paéz 1 Índice Números reales 1.1 Clasificación de los números reales. 5 1.2 Propiedades. 7 1.3Interpretación geométrica de los números reales.

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES. Curso de Formación en Matemáticas

UNIVERSIDAD NACIONAL DE VILLA MERCEDES. Curso de Formación en Matemáticas UNIVERSIDAD NACIONAL DE VILLA MERCEDES Curso de Formación en Matemáticas - 06 - Autor: Lic. Esp. Fernando Javier Quiroga Villegas OBJETIVOS DEL CURSO Objetivo General: Afianzar los conocimientos adquiridos

Más detalles

La Función Exponencial y la Función Logarítmica

La Función Exponencial y la Función Logarítmica 1 Capítulo 7 La Función Exponencial y la Función Logarítmica M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas Funciones exponenciales y logarítmicas - Funciones exponenciales y sus gráficas Un terremoto de 85 grados en la escala de Richter es 00 veces más potente que uno de 65, por qué?, cómo es la escala de Richter?

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

Área Académica: Matemáticas (Cálculo Diferencial) Tema: Números reales y clasificación de funciones. Profesor(a):Mtra. Judith Ramírez Hernández.

Área Académica: Matemáticas (Cálculo Diferencial) Tema: Números reales y clasificación de funciones. Profesor(a):Mtra. Judith Ramírez Hernández. Área Académica: Matemáticas (Cálculo Diferencial) Tema: Números reales y clasificación de funciones Profesor(a):Mtra. Judith Ramírez Hernández. Periodo: Enero Junio 2012 Topic: Real Numbers and classification

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

Sumario... 5. Presentación... 7. Capítulo 1. Divisibilidad... 9

Sumario... 5. Presentación... 7. Capítulo 1. Divisibilidad... 9 ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Presentación... 7 Capítulo 1. Divisibilidad... 9 1. Múltiplos de un número... 10 2. Divisores de un número... 11 2.1. Cuándo un número es divisor de otro?... 11 2.2.

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1:

EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1: FUNCIONES EXPONENCIAL Y LOGARÍTMICA Por: Ing. Mario René De León García.. FUNCIÓN EXPONENCIAL Una función eponencial tiene la forma, donde a es la base de la potencia la variable es el eponente. Esta función

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo CÁLCULO ALGEBRAICO Dra. Patricia Kisbye Dr. David Merlo INTRODUCCIÓN Estas notas han sido elaboradas con el fin de ofrecer al ingresante a las carreras de la FaMAF herramientas elementales del cálculo

Más detalles

Ejercicios Resueltos del Tema 4

Ejercicios Resueltos del Tema 4 70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

Funciones. Capítulo 1

Funciones. Capítulo 1 Capítulo Funciones En la base de muchos modelos matemáticos se halla el concepto de función. La descripción de un fenómeno que evoluciona con respecto al tiempo se realiza generalmente mediante una función

Más detalles

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo: Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

Funciones exponenciales

Funciones exponenciales LECCIÓN CONDENSADA 5.1 Funciones exponenciales En esta lección Escribirás una fórmula recursiva para modelar un deterioro radiactivo Encontrarás una función exponencial que pasa por los puntos de una sucesión

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

modulodematematica@gmail.com https://www.facebook.com/groups/modulomat

modulodematematica@gmail.com https://www.facebook.com/groups/modulomat modulodematematica@gmail.com https://www.facebook.com/groups/modulomat Matemática Ingreso 0 UADER Facultad de Ciencias de la Gestión Estimado Estudiante: El material que presentamos a continuación es un

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

CÁLCULO DIFERENCIAL. Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas

CÁLCULO DIFERENCIAL. Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas CÁLCULO DIFERENCIAL Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas Cálculo Diferencial UNIDAD 1 2. Funciones y modelos 2.1.

Más detalles

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS II GUIA DE ESTUDIO

Más detalles

Módulo 1: Números Reales

Módulo 1: Números Reales CURSO DE NIVELACIÓN Apunte teórico - práctico Módulo : Números Reales NÚMEROS REALES Teoría de conjuntos Se define a un conjunto como una colección de elementos. Para describir qué tipo de elementos pertenecen

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Bachillerato. Matemáticas. Ciencias y tecnología

Bachillerato. Matemáticas. Ciencias y tecnología Bachillerato º Matemáticas Ciencias y tecnología Índice Unidad 0 Números reales........................................... 7. Evolución histórica................................... 8. Números reales......................................

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

Funciones elementales

Funciones elementales 10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad

Más detalles

MATEMÁTICAS CIENCIAS SOCIALES I MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS. Germán Ibáñez http://www.otrapagina.com/matematicas. 8 de septiembre de 2015

MATEMÁTICAS CIENCIAS SOCIALES I MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS. Germán Ibáñez http://www.otrapagina.com/matematicas. 8 de septiembre de 2015 MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS CIENCIAS SOCIALES I tetraedro cubo octaedro dodecaedro icosaedro 8 de septiembre de 05 Germán Ibáñez http://www.otrapagina.com/matematicas . Índice general.

Más detalles

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe Matemáticas IV matics.webs.comprofesoresdematemá ENP ticaswww.instituteofmathematics.web s.comprofesoresdematematicaswww.i

Más detalles

4.3 Función Logarítmica. Copyright Cengage Learning. All rights reserved.

4.3 Función Logarítmica. Copyright Cengage Learning. All rights reserved. 4.3 Función Logarítmica Copyright Cengage Learning. All rights reserved. Función Logarítmica La función que es inversa de la exponencial f (x) = b x es la función logarítmica. Introducimos el vocabulario

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO:

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: 2º ESO OBJETIVOS: Resolver problemas con enunciados relacionados con la

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015)

PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015) PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015) CRITERIOS E INDICADORES Se detallan a continuación los criterios de evaluación junto con sus indicadores de contenidos asociados. En negrita se indican

Más detalles

Capítulo 1 Interés Simple

Capítulo 1 Interés Simple Capítulo 1 Interés Simple 1.1 Tanto por ciento En matemáticas el tanto por ciento es una forma de expresar un número en proporción cien (de ahí el nombre por ciento ), y se denota con el símbolo %. El

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina www.faena.edu.ar info@faena.edu.ar TERCER BLOQUE MATEMATICA Está permitida la reproducción total o parcial de parte de cualquier persona o institución

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. > Función matemática El concepto de función matemática o simplemente función,

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

PROPIEDADES FUNCIONES PRINCIPALES

PROPIEDADES FUNCIONES PRINCIPALES PROPIEDADES FUNCIONES PRINCIPALES 1.- FUNCIÓN EXPONENCIAL Sea a un número real positivo no nulo distinto de 1. Se llama función exponencial real de base a, a la función: a) a 0 = 1 b) a 1 = a f: R R x

Más detalles

Sistemas de Numeración

Sistemas de Numeración UNIDAD Sistemas de Numeración Introducción a la unidad Para la mayoría de nosotros el sistema numérico base 0 aparentemente es algo natural, sin embargo si se establecen reglas de construcción basadas

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS UNIDAD 3 FUNCIONES TRIGONOMÉTRICAS Concepto clave: 1. Razones trigonométricas Si A es un ángulo interior agudo de un triángulo rectángulo y su medida es, entonces: sen longitud del cateto opuesto al A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Deseamos, pues, al alumno el mayor de los éxitos en su intento.

Deseamos, pues, al alumno el mayor de los éxitos en su intento. INTRODUCCIÓN Todo debería hacerse tan sencillo como sea posible, pero no más Albert Einstein, físico Cuanto más trabajo y practico, más suerte parezco tener Gary Player, jugador profesional de golf E studiar

Más detalles

Capítulo 6. Logaritmos y funciones logarítmicas

Capítulo 6. Logaritmos y funciones logarítmicas Capítulo 6 Logaritmos y funciones logarítmicas Así como la resta es la operación inversa a la suma y la división lo es a la multiplicación, pues son operaciones que deshacen lo que las otras hicieron,

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Introducción bloques intro Control+Intro mayúsculas y minúsculas

Introducción bloques intro Control+Intro mayúsculas y minúsculas Wiris Wiris... 1 Introducción... 2 Aritmética... 3 Álgebra... 4 Ecuaciones y Sistemas... 4 Análisis... 5 Objetos matemáticos, definición de identificadores y funciones... 7 Funciones predefinidas:... 10

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

Trigonometría Hiperbólica

Trigonometría Hiperbólica Trigonometría Hiperbólica Carlos Enrique Pino G R N u (0, b M R(x, y b F ( c, 0 V 0 V F (c, 0 b L M u (0, b N L Un gran descubrimiento resuelve un gran problema, pero en la solución de cualquier problema

Más detalles

Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2010 Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2010 INDICE: 01. DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS. 02. VALOR

Más detalles

c) ( 1 punto ). Hallar el dominio de definición de la función ( ). Hallar el conjunto de puntos en los que la función tiene derivada.

c) ( 1 punto ). Hallar el dominio de definición de la función ( ). Hallar el conjunto de puntos en los que la función tiene derivada. Materiales producidos en el curso: Curso realizado por Escuelas Católicas del 7 de noviembre al 19 de diciembre de 2011 Título: Wiris para Matemáticas de ESO y Bachilleratos. Uso de Pizarra Digital y Proyector

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

MATEMÁTICAS CIENCIAS NATURALEZA I MATEMÁTICAS. e πi +1=0 MATEMÁTICAS MATEMÁTICAS. Germán Ibáñez http://www.otrapagina.

MATEMÁTICAS CIENCIAS NATURALEZA I MATEMÁTICAS. e πi +1=0 MATEMÁTICAS MATEMÁTICAS. Germán Ibáñez http://www.otrapagina. MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS CIENCIAS NATURALEZA I e πi +=0 icosaedro octaedro cubo tetraedro de julio de 0 Germán Ibáñez http://www.otrapagina.com/matematicas dodecaedro . Índice general.

Más detalles

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA CARACAS, MARZO DE 2013 ESTUDIO DEL SISTEMA DECIMAL CONTENIDO Base del sistema decimal Nomenclatura Ordenes Subordenes

Más detalles

1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y

1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y UNIDAD I. FUNCIONES POLINOMIALES Conceptos clave: Sean X y Y dos conjuntos no vacíos. 1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y

Más detalles

TÍTULO: ARITMETICA TEORICO PRACTICA: CON 7008 EJERCICIOS Y PROBLEMAS

TÍTULO: ARITMETICA TEORICO PRACTICA: CON 7008 EJERCICIOS Y PROBLEMAS TÍTULO: ARITMETICA TEORICO PRACTICA: CON 7008 EJERCICIOS Y PROBLEMAS Disponibilidad La naturaleza. Cuerpos y fenómenos naturales 3 Volumen de los cuerpos 3 Limite de los cuerpos. Superficie 4 Trayecto

Más detalles

Ecuaciones e Inecuaciones

Ecuaciones e Inecuaciones 5 Ecuaciones e Inecuaciones Objetivos En esta quincena aprenderás a: Resolver ecuaciones de primer y segundo grado. Resolver ecuaciones bicuadradas y factorizadas. Identificar y resolver inecuaciones de

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás Problemas de 2 o Bachillerato ciencias sociales) Isaac Musat Hervás 27 de mayo de 2007 2 Índice General 1 Problemas de Álgebra 5 1.1 Matrices, Exámenes de Ciencias Sociales............ 5 1.2 Sistemas de

Más detalles

La imaginación es más importante que el conocimiento. Albert Einstein. Unidad 6. Suma y resta d e monomios y polinomios. Objetivos

La imaginación es más importante que el conocimiento. Albert Einstein. Unidad 6. Suma y resta d e monomios y polinomios. Objetivos La imaginación es más importante que el conocimiento. Albert Einstein Unidad 6 Suma y resta d e monomios y polinomios Objetivos mat emát ic as 1 Introducción C uando estábamos en primaria la maestra nos

Más detalles

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica.

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. Tema 1 Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. 1.1. Un esbozo de qué es el Cálculo: paradojas y principales problemas planteados. Los orígenes del Cálculo se

Más detalles

3. Funciones reales de una variable real. Límites. Continuidad 1

3. Funciones reales de una variable real. Límites. Continuidad 1 3. Funciones reales de una variable real. Límites. Continuidad 1 Una función real de variable real es una aplicación f : D R, donde D es un subconjunto de R denominado dominio de f. La función f hace corresponder

Más detalles

TEMA II: ÁLGEBRA DE CONMUTACIÓN

TEMA II: ÁLGEBRA DE CONMUTACIÓN TEMA II: ÁLGEBRA DE CONMUTACIÓN En este capítulo veremos los métodos matemáticos que se disponen para las operaciones relacionadas con los circuitos digitales, así como las funciones más básicas de la

Más detalles

Repaso de funciones elementales, límites y continuidad

Repaso de funciones elementales, límites y continuidad Tema 3 Repaso de funciones elementales, ites y continuidad 3.1. Funciones. Definiciones básicas. Operaciones con funciones 3.1.1. Definiciones Una función real de (una) variable real es una aplicación

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

EJERCICIOS DE FUNCIONES REALES

EJERCICIOS DE FUNCIONES REALES EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa

Más detalles

b1ct Propuesta Actividades Recuperación Matemáticas

b1ct Propuesta Actividades Recuperación Matemáticas b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado 3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver

Más detalles