UN ESTUDIO ACERCA DE LA CONSTRUCCIÓN DEL CONCEPTO DE FUNCIÓN, VISUALIZACIÓN. EN ALUMNOS DE UN CURSO DE CÁLCULO I.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UN ESTUDIO ACERCA DE LA CONSTRUCCIÓN DEL CONCEPTO DE FUNCIÓN, VISUALIZACIÓN. EN ALUMNOS DE UN CURSO DE CÁLCULO I."

Transcripción

1 UN ESTUDIO ACERCA DE LA CONSTRUCCIÓN DEL CONCEPTO DE FUNCIÓN, VISUALIZACIÓN. EN ALUMNOS DE UN CURSO DE CÁLCULO I. 1

2 UNIVERSIDAD PEDAGÓGICA NACIONAL FRANCISCO MORAZÁN VICERRECTORIA DE INVESTIGACIÓN Y POSTGRADO DIRECCIÓN DE POSTGRADO UN ESTUDIO ACERCA DE LA CONSTRUCCCIÓN DEL CONCEPTO DE FUNCIÓN, VISUALIZACIÓN. EN ALUMNOS DE UN CURSO DE CÁLCULO I Tesis para obtener el título de Máster en Matemática Educativa Tesista Licenciada: MELBA ILENIA ZÚNIGA LÓPEZ Asesor de Tesis Dr. FERNANDO ANTONIO HITT ESPINOSA Tegucigalpa, M.D.C., Mayo,

3 RECTORA MSc. Lea Azucena Cruz Cruz VICERRECTOR ACADÉMICO MSc. David Orlando Marín VICERRECTOR DE INVESTIGACIÓN Y POSTGRADO Dr. Truman Bitelio Membreño VICERRECTOR DE EDUCACIÓN A DISTANCIA MSc. Gustavo Cerrato VICERRECTOR ADMINISTRATIVO MSc. Hermes Alduvín Díaz SECRETARIA GENERAL MSc. Iris Milagro Erazo Tábora DIRECTORA DE POSTGRADO Dra. Jenny Margoth Zelaya Tegucigalpa, Mayo,

4 Mi agradecimiento a Dios y a la Virgen María por su protección, provisión y compañía incondicional. A autoridades de la U.P.N.F.M., director y alumnos de la UNICAH- Choluteca, compañeros de generación, catedráticos, amigos. 4

5 Lo dedico a A mi madre por su apoyo, por no cansarse de esperar. A mis hermanos, quienes a pesar de todo, son mis admiradores. A la memoria de mi padre, por su amor eterno y admiración, no importa cuánto tiempo pase, siempre te recordaré con amor, papá. 5

6 Mi especial reconocimiento, gratitud y admiración Al Doctor Fernando Antonio Hitt Espinosa, quien con mucha gentileza y escamoteando tiempo a sus múltiples compromisos académicos, proporcionó su colaboración, orientación, conocimientos, cada momento, resultando para algunos inexplicable. De igual manera a los integrantes de mi terna Ivy Green Arrechavala, Marco Antonio Santillan, Jose Adalid Gutierrez, Y les digo, que sin ellos, sin su apoyo, sin su amor, sin su amistad, me hubiese sido más difícil lograrlo. Melba Ilenia Zúniga López 6

7 CONTENIDO páginas INTRODUCCION.8-10 CAPITULO 1: Problema de investigación 1.1 Presentación Justificación Objetivos de la Investigación Preguntas de Investigación..23 CAPITULO 2: Marco Teórico 2.1 Enfoque Constructivista de la Enseñanza Algo de Historia acerca del Concepto de Función Concepto de Función. Definición. Aspectos Cognitivos Visualización Matemática Representaciones Semióticas CAPITULO 3: Metodología de Investigación 3.1 Tipo de Investigación Población y Muestra Metodología Instrumentos de Investigación CAPITULO 4: Análisis e Interpretación de Resultados 4.1 Análisis e Interpretación de Resultados CAPITULO 5: Conclusiones 5.1 Conclusiones REFERENCIAS BIBLIOGRAFICAS ANEXOS Ejercicio diagnóstico Actividades de Aprendizaje 7

8 INTRODUCCION La mirada del poeta proyecta en lo visible formas de objetos desconocidos, y su palabra dá a las nadas inasibles un lugar y un nombre. Le songe d une Nuit d été, V, 1. Este proyecto de investigación surge a partir de sugeridas líneas de investigación entre las que se mencionan: historia de las ideas matemáticas, obstáculos epistemológicos, ambientes computacionales, técnicas y herramientas didácticas, estudios acerca de dificultades en el aprendizaje del álgebra, la geometría, el cálculo, resolución de problemas, sistemas de representaciones y visualización, entre otras. Para la realización de esta propuesta, se tiene como sustento los marcos teóricos de sistemas de representación semiótica y de visualización; y para ello se ha adoptado principalmente, las ideas sobre significados y experimentos referentes a sistemas de representación semiótica y de visualización expuestos por Hitt ( ) y Duval (1993, 1995, 1998); particularmente. Sabemos que el concepto de función es de importancia fundamental en la enseñanza de las matemáticas, pues aparece en el pensum de secundaria y de los cursos de matemática I, precálculo, cálculo, por mencionar algunos, lo que es validado por Eisenberg (1992, p.174), quien expone: la noción de funciones desarrolla un sentido en los estudiantes que debe ser el principal objetivo de los currículos de secundaria y bachillerato. (citado por Hitt, 1998) Por medio de este estudio, se intenta mostrar las dificultades que presentan los estudiantes en la construcción del concepto matemático como es el de función, así como también las capacidades y debilidades en cuanto a tareas de interpretación, articulación de representaciones y de visualización, ya que en su enseñanza se ha tendido a sobrevalorar los procedimientos analíticos y de algoritmización (acercamiento procedural de la enseñanza), dejando de lado los argumentos visuales que son de apoyo en el aprendizaje significativo (acercamiento conceptual de la enseñanza), de igual manera se limita a un solo registro de representación; para lo 8

9 cual se diseñaron actividades que involucran dichas tareas que nos permiten explorar estas dificultades, capacidades y debilidades. Una de las características que ha llevado a dicho estudio es el hecho de que las representaciones (verbal, algebraica, gráfica, tabular) son sistemas simbólicos muy diferentes que se articulan de tal forma en cuanto a construir y definir conjuntamente el concepto matemático de función. Hacer un análisis de las preguntas planteadas, permite proponer este estudio que conlleve a mostrar errores cometidos por alumnos del curso de Cálculo I, que muestran una construcción deficiente del concepto de función. En general nuestra investigación, intenta elucidar sobre los procesos de visualización que realizan los estudiantes frente a una tarea dada en relación al concepto de función. Partiendo de lo anterior, surgen interrogantes acerca de De qué naturaleza son los procesos de visualización de los alumnos con respecto del concepto de función? En forma específica, Qué dificultades presentan los alumnos en las tareas de tratamiento y de conversión entre representaciones respecto a funciones? Haciendo mención de algunas. La presente tesis se estructura en 5 capítulos: problema de investigación, marco teórico, metodología de investigación, análisis e interpretación de resultados y conclusiones. El capítulo 1 El problema de investigación, presenta la manera en que se concibe el problema de investigación, ideas de cómo surge, en qué consiste la propuesta de estudio, qué se pretende con su realización y por qué se considera necesario llevar a cabo el estudio en mención. Así también se dan a conocer los objetivos que se persiguen y las preguntas sugeridas para encontrar respuesta a través de la realización de dicha investigación. El capítulo 2 Marco Teórico, resume las principales referencias teóricas del trabajo de investigación; de tal manera que considerándose en nuestro sistema educativo el enfoque constructivista como modelo de enseñanza, primeramente se presenta un extracto referente al enfoque en mención, seguidamente se expone acerca del 9

10 concepto en cuestión, algo de historia que conlleva a su definición, y aspectos acerca de su adquisición como conocimiento matemático significativo; y debido a que el tema de estudio está enfocado hacia la visualización, se ha creído conveniente y sobre todo necesario, hablar sobre esta teoría del pensamiento. De este modo, aquí encontraremos algunos puntos de vista sobre la visualización como un proceso del pensamiento matemático, revisando algunas posturas de teóricos sobre este menester, para después acercarnos y estudiar la teoría de semiosis, esto porque las representaciones semióticas están fuertemente ligadas con la visualización. El capítulo 3 Metodología de investigación, describe los aspectos de carácter metodológico del trabajo de investigación, cada una de las tareas que se han de realizar durante el proceso de investigación. De igual manera se explican los instrumentos aplicados para la recolección de datos que se utilizan en el proceso de investigación. En el capítulo 4 Análisis e interpretación de resultados, se muestran los datos generados en el proceso. Para este análisis se toma como punto de partida el conjunto de respuestas de los estudiantes a distintas tareas incluidas en las actividades asignadas. En el capítulo 5 Conclusiones, se da una interpretación de los resultados obtenidos de la investigación, en relación con los objetivos propuestos y del contexto en que se desarrolla en correspondencia con el marco de referencia. Termina listando todas las referencias bibliográficas utilizadas para el desarrollo de la investigación y, posteriormente aparecen los anexos que son de utilidad para el entendimiento de los datos, las ideas y resultados de este trabajo. 10

11 CAPITULO 1 11

12 PROBLEMA DE INVESTIGACIÓN 12

13 1.1 Presentación El presente es un estudio sobre el aprendizaje de diferentes aspectos relacionados con el concepto de función, realizada con alumnos del curso de Cálculo I de la Universidad Católica de Honduras, Campus Dios Espíritu Santo, de la ciudad de Choluteca; cuya finalidad principal es aportar al desarrollo del pensamiento matemático en el alumnado, en concreto sobre los razonamientos que utilizan y las estrategias que aplican los estudiantes para resolver cuestiones relacionadas con la construcción del concepto de función, visualización y la conversión de sus diferentes representaciones. Como lo señala Dreyfus (1990), uno de los campos de investigación actual se centra en el estudio de las dificultades que presentan los alumnos en procesos ligados a la visualización, tanto a los que se refieren a la interpretación que se hace a través de un gráfico por ejemplo, así como también de los distintos subconceptos ligados al concepto de función. (citado por Hitt, 2003) Tomamos entre otras, como referencias significativas, Hitt (1994, 1998, 2003, 2005, 2008); Duval (1993, 1995, 1998); De Guzmán (1996), Leinhardt (1990); Cuesta (2007); Santos y Agüero (2002); donde se revisan de manera exhaustiva las investigaciones sobre funciones centradas en visualización, representaciones semióticas, construcción de conceptos. Consideramos necesario entonces el preguntarnos y encontrar respuesta a: Por qué debemos desarrollar habilidades en nuestros estudiantes sobre la visualización matemática? Cómo induce, cómo genera el profesor la construcción del concepto de función en sus alumnos? Más aún Qué importancia tienen las diferentes representaciones en la adquisición de este concepto? Y, Qué habilidades poseen los alumnos para comprender dicho concepto? La visualización ha estado generalmente considerada sólo como un soporte que ayuda a la intuición y formación del concepto en el aprendizaje matemático, pero 13

14 desde hace pocos años, muchos matemáticos han reconocido la importancia del razonamiento visual no sólo en el descubrimiento, sino también en la descripción y justificación de resultados. Pues, la visualización también juega un papel importante en el desarrollo de las estructuras cognitivas del alumno y un papel esencial en el pensamiento matemático. Eisenberg y Dreyfus (1990) (citados por Hitt, 2003) nos han mostrado que existe una resistencia por parte de estudiantes y profesores a visualizar en matemáticas. Existen muchas investigaciones que nos muestran de manera contundente que los estudiantes de diferentes niveles educativos tienen una gran resistencia a utilizar diferentes representaciones que podrían ayudarlos tanto en la construcción de conocimiento matemático como en la resolución de problemas. Y, Qué debemos entender por construcción, entonces? Al respecto Leinhardt (1990) dice que: entendemos por construcción, aquella acción en la que el alumno debe generar una cosa nueva. Hay que tener en cuenta que, mientras una interpretación no requiere ninguna construcción, una construcción se apoya a menudo en algún tipo de interpretación (acción en la que el alumno obtiene significado o información a través de un lenguaje determinado). El estudio del concepto de función, su enseñanza y aprendizaje está propuesto en el currículo de nivel de secundaria y sigue siendo desarrollado en el nivel superior ocupando un lugar importante en la enseñanza, por lo que consideramos no debería presentar ningún obstáculo para su aprendizaje, para su comprensión. Sin embargo, experimentaciones han evidenciado que no se plantean situaciones didácticas orientadas a la construcción paso a paso de los numerosos conceptos relacionados con las funciones y al manejo simultáneo de los distintos lenguajes de representación de una función, sino lo que se hace generalmente es proporcionar al alumno una serie de pasos o procedimientos que permitan resolver ejercicios y problemas estandarizados. Siendo precisos, la representación de funciones todavía se reduce al trazado de la gráfica de una función dada en una expresión algebraica, representación que se hace siguiendo unos pasos previamente determinados (punto por punto, puntos de intersección, asíntotas, etc.) utilizando técnicas relativas a algoritmizar el paso del lenguaje algebraico a gráfico. 14

15 Si bien es cierto, en investigaciones sobre la enseñanza y aprendizaje de las matemáticas al estudiar un objeto matemático, se ha puesto en primer plano la incorporación de manera sistemática de diversas representaciones, pero tales estudios no han enfatizado en la operación de pasar de una representación a otra; a lo que Duval (1998) en su teoría sobre registros de representación semiótica llama a esa operación conversión, la cual involucra un cambio de registro, es una actividad cognitiva fundamentalmente necesaria para lograr una aprehensión conceptual de los objetos matemáticos. No podemos decir que esta operación de conversión no haya sido considerada en la enseñanza pero, en la particularidad del concepto de función se ha centrado como hemos mencionado en párrafos anteriores solamente en la conversión del registro algebraico al gráfico, es mas sólo en esa dirección, limitando de esta manera a lo que Duval define como tratamiento, siendo esto la operación de transformar una representación en otra dentro de un mismo registro. Por lo anterior, una de las intenciones en este estudio, en relación al concepto de función, es el promover la conversión del registro gráfico al registro algebraico, al registro verbal, siendo cada uno de estos en un momento un registro de partida y el otro un registro de llegada. Podemos considerar que el uso por los estudiantes de tratamientos propios de estos registros favorecerá no sólo una aprehensión perceptual de las funciones, sino también una aprensión operatoria y conceptual, siendo tales actividades un medio para promover un aprendizaje significativo en el estudiante. Se puede decir entonces que, esta investigación se fundamenta en procurar situaciones que den cuerpo a los contenidos propiamente matemáticos, en el tema que nos ocupa, lo cual consiste en la utilización del lenguaje natural, algebraico, tabular, gráfico, como elementos primordiales para lograr un conocimiento o aprehensión significativa del concepto de función y, siempre que sea posible utilizar más de un lenguaje a la vez y, hacer el paso de un lenguaje a otro, procurando en los alumnos tareas de interpretación, de conversión y de construcción del concepto, siendo esta la finalidad concreta y esperada. Lo anterior permite explorar qué dificultades afrontan los alumnos en cuanto a la construcción del concepto de función, puesto que dicho concepto es fundamental en el aprendizaje de estudios matemáticos posteriores, como ya se ha mencionado. Un 15

16 alumno que no ha desarrollado habilidades visuales ligadas a la construcción de conceptos, y en particular el que promueve este estudio, presentará grandes dificultades en el entendimiento, es mas podemos afirmar no podrá lograr entender cálculo, exponiendo esto como un claro ejemplo. Diversas experimentaciones realizadas por investigadores en matemática educativa y nuestra experiencia docente, nos permite confirmar que los estudiantes presentan mayor dificultad al pasar del registro gráfico al algebraico, al respecto Duval dice: Esta conversión exige que se discriminen las unidades significantes de cada registro, es decir, es necesario identificar bien en el registro gráfico las variables visuales pertinentes con sus diferentes valores y, en la escritura algebraica de una relación, las diferentes oposiciones paradigmáticas que dan significación, y no solamente un objeto, a los símbolos utilizados.(duval, 1998) No sólo es importante entender las dificultades para manipular una de las representaciones, también lo es el análisis de las tareas de conversión entre representaciones que debemos proponer a nuestros estudiantes. Es por ello que exhortamos a los profesores de matemáticas para incorporar, promover y desarrollar el proceso de visualización en el aula con los estudiantes. 1.2 Justificación Refiriéndonos al concepto de función no nos cabe duda que es de importancia fundamental en la enseñanza de las matemáticas, es muy utilizado en la enseñanza media y superior, ya que es un concepto básico para cursos siguientes; por lo que profesores y alumnos deben saber que es indispensable su comprensión para el aprendizaje de conceptos más avanzados como en el caso del cálculo. Pero diferentes investigaciones muestran las dificultades que presenta para los alumnos su comprensión, implica pues, un motivo más para realizar dicho estudio que nos proporcione una alternativa para su aprendizaje. Investigaciones recientes que intentan explicar los fenómenos ligados al aprendizaje de las matemáticas han mostrado lo complejo que puede ser la adquisición de conocimientos. Las metodologías de investigación para analizar la construcción de conceptos matemáticos cada vez son más finas, y los resultados de investigación nos muestran que, en general, debemos abordar esta problemática desde varios puntos de vista. Uno, de corte general, que tiene que ver con la adquisición de conocimiento y 16

17 consideraciones teóricas sobre la construcción de conceptos matemáticos; y otro, que tiene que ver directamente con la complejidad intrínseca del concepto matemático en cuestión. (Hitt, 2003, p.214) Desde una perspectiva teórica, Duval señala que: Estamos en presencia de lo que se podría llamar la paradoja cognitiva del pensamiento matemático: por un lado la aprehensión de los objetos matemáticos no puede ser otra cosa que una aprehensión conceptual y, por otro lado, solamente por medio de las representaciones semióticas es posible una actividad sobre los objetos matemáticos. (Duval, 1998, p.175) De nuevo la interrogante: Por qué debemos desarrollar habilidades en nuestros estudiantes sobre la visualización matemática? Supongamos que proponemos a nuestros estudiantes que resuelvan la siguiente ecuación (1) : Nuestra experiencia nos indica que en general este tipo de ejercicios es difícil para los estudiantes de enseñanza media y en un buen porcentaje para los de universidad, Por qué?; como ya se ha mencionado antes, los estudiantes están acostumbrados a trabajar en el sistema algebraico por lo que son propensos a cometer errores que dificultan sus procesos de resolución. Un ejemplo de actuación sería transformar la expresión, en la expresión ( x 1) 2 = ( x +1) 2 y obtener que, llegando a que y, de aquí inferir resultados contradictorios. Una gráfica como la de la figura (1) seguramente les plantearía la necesidad de revisar su proceso algebraico: FIGURA 1 1 Ejemplo tomado de Hitt,

18 Hasta ahora nos hemos referido a la dificultad en los estudiantes, pero a continuación presentaremos un ejemplo claro de experimentación educativa, (en donde la visualización es un elemento primordial para el aprendizaje) que nos muestra dificultades que tienen los profesores, veamos: En una experimentación (2) con una muestra de 9 profesores de enseñanza media, se les solicitó que diseñaran una clase del tema que ellos quisieran, sin utilizar notas o libros. Uno de los 9, que participaron en esa experimentación, seleccionó el tema de función lineal. He aquí lo que presentó: Propuesta del profesor Interpretación (transcripción fiel) Que el alumno determine la representación algebraica del siguiente problema: La edad del padre de Juan es el doble de la edad de este dentro de 5 años y= edad del padre de Juan; (variable dependiente) x= edad de Juan; (variable independiente) Modelo algebraico logrando que el alumno indique esto; tan solo una de sus compañeras enunció dicho problema, con lo que ellos mismos determinaron que la edad del padre estaba en función de la edad del hijo. Estableciendo la representación algebraica del problema, podremos asignarle a Juan una serie de edades de la siguiente forma: Si Juan no ha nacido Cuál es la edad de su padre? Así que para cuando Juan tiene, 10, 15, 20 años Cuál será la edad del padre? Para cuando Juan tiene 10 años la edad de su padre es de 25 años. El enunciado tal como se presenta parece más cercano a una interpretación algebraica como, que difiere de la proporcionada por el profesor. Pero el punto más importante es que en realidad el profesor está planteando una ecuación y no una función. Tendrá claro el profesor la diferencia entre ecuación y función? Por la manera que el profesor presenta su ejemplo, pareciera que está proporcionando un ejemplo que efectivamente él desarrolló en el aula. Para cuando Juan tiene 15 años la edad de su padre será de 35 años Para cuando Juan cumpla 20 años mayor de edad, la edad de su padre será de 45 años. Por medio del ejemplo anterior lo podremos interpretar gráficamente por medio de parejas ordenadas, donde: Obteniendo los siguientes puntos y denotándolos por: Si Juan tiene un año, el padre tendrá 6 años! El 2 Ejemplo tomado de Hitt, 2005, págs

19 Elaborando una gráfica en el sistema cartesiano, de la forma: 50 profesor ha proporcionado un ejemplo irreal carente de lógica Obteniendo el siguiente diagrama sagital: Regla de Correspondencia El profesor pasa de caso discreto al continuo sin explicación alguna. D cd x De tal forma que la gráfica obtenida corresponde a una gráfica de una línea Recta a la cual se le llamará Función lineal, de la misma forma se observará que para cada valor de le corresponde al menos una, con lo que se le puede inducir que corresponde a una función inyectiva; los valores de D (dominio) van de uno menor a uno mayor de tal forma que decimos que la función es creciente, y como para cada valor que le asignemos a, existe un valor para, con lo cual la definimos como continua para Podremos dejar que el alumno encuentre y grafique:, continua. - La analogía de grados Centígrados a grados Fahrenheit, Graficándola y enunciando una serie de características de este ejemplo. - Un móvil desarrolla una velocidad de cinco veces su distancia recorrida, menos cuatro metros en un tiempo determinado, etcétera. Qué significado le podemos dar a las edades negativas? El profesor regresa a una representación discreta sin explicar el por qué de ello. El profesor se contradice con la definición de función: para cada elemento del dominio le corresponde uno y solo un elemento del codominio Su definición de continuidad la considera equivalente a que la función esté definida en cada punto. Ambigüedad en el enunciado 19

20 Al parecer este profesor no se percata de las contradicciones lógicas en las que continuamente se encontraba, ( un padre que a la edad de 6 años tenga un hijo de 1!) en resumen: producto de la enseñanza, tendremos alumnos que frente a una contradicción, no generaran un conflicto cognitivo (reconocimiento de que algo anda mal) y su desempeño será bajo en la resolución de problemas. (Hitt, 2005, p. 85) Los 2 ejemplos dados anteriormente nos permiten ver claramente que en efecto si existen dificultades en la comprensión del concepto de función, lo cual genera mayores conflictos en el entendimiento del cálculo, a lo que Hitt (1996) argumenta: La dificultad que tienen los alumnos y algunos profesores de enseñanza media para desarrollar un entendimiento profundo del concepto de función es que generalmente se restringen a una manipulación algebraica que produce una limitación en su comprensión. Los obstáculos para operar con la visualización por parte de los estudiantes al momento de estudiar algún concepto matemático, y en particular el de función, muestran la importancia de desarrollar la habilidad visual. Y, si tomamos en consideración los lineamientos teóricos de Duval (1993, 1995,1998), podemos ver que, para la construcción de conceptos matemáticos no es suficiente trabajar las actividades dentro de un solo sistema de representación, sino también realizar tareas de conversión de una representación a otra, es decir, la construcción es explicada a través de los registros de representación procurando la articulación entre las representaciones de esos registros, siendo estas las que propiciarán la construcción de conceptos matemáticos. Dicho de otra manera, debemos comprender que es absolutamente necesario contar con actividades de conversión de por lo menos dos registros de representación para que las representaciones en juego, proporcionen un soporte a la construcción del concepto en cuestión. Siendo así, el concepto de función es presto a ello, pues entran en juego el registro de representación de lengua natural, el de las expresiones algebraicas, tabulares, gráficas. Pero las investigaciones en educación matemática nos hacen saber que en general la representación algebraica es la preferida por los profesores. 20

21 En relación al concepto que nos involucra para el estudio, y muy particularmente refiriéndose a funciones lineales Duval (citado por Hitt, 2003), introduce la noción de variable visual y nos convence de la habilidad que inconscientemente hemos desarrollado sobre las variables visuales para analizar una gráfica y poder determinar su correspondiente expresión algebraica. Es decir, un estudiante que está en proceso de construcción de un concepto como el de recta y su representación algebraica, tendrá muchos problemas de aprendizaje si el profesor solamente solicita tareas de conversión de una expresión algebraica a su correspondiente gráfica. Que además, este proceso de graficar punto a punto causará un obstáculo para cuando se quiera leer una gráfica para encontrar su correspondiente expresión algebraica. Ya que, para este proceso inverso, es necesario que el alumno haya desarrollado la habilidad de una visión global del comportamiento de las rectas en su forma gráfica que tiene que ver precisamente con el carácter de las variables visuales de las que señala Duval (1988). Como bien lo señalan Eisenberg y Dreyfus (1991) que, aunque existen muchos partidarios de los beneficios que se pueden obtener de la visualización de los conceptos matemáticos, muchos estudiantes son renuentes a aceptarla, prefieren el trabajo algorítmico más que el pensamiento visual, aducen, que el pensamiento visual requiere de poner en juego procesos cognitivos superiores a los que demanda el pensamiento algorítmico. (citados por Hitt, 2003) Lo anterior nos sugiere la necesidad de buscar valorar la enseñanza y aprendizaje de las matemáticas, específicamente el concepto de función, a través de la conversión de representaciones de los registros algebraico, verbal, tabular, gráfico; proponiendo actividades que se puedan realizar con los alumnos, en las cuales manifiesten habilidades en el desarrollo de tareas que conlleven a visualizar y realizar las diferentes representaciones. Además, el uso de diferentes representaciones puede aclarar diferentes aspectos de un concepto o de sus relaciones con otros conceptos, modelar o interpretar fenómenos físicos, sociales y matemáticos. Por todo, nuestro interés específico se sitúa en la necesidad de realizar un estudio acerca del grado de visualización del concepto de función y sus diferentes representaciones, que tienen los alumnos del curso de Cálculo I de la Universidad Católica de Honduras, Campus Dios Espíritu Santo, de la ciudad de Choluteca, para 21

22 de esta manera contar con un argumento teórico que permita posteriormente generar propuestas didácticas, que conlleven a un proceso de enseñanza y aprendizaje de las matemáticas con adquisición de conocimientos significativos. 1.3 Objetivos de la Investigación El objetivo principal de este trabajo de investigación, es conocer cómo los estudiantes del curso de Cálculo I de la Universidad Católica de Honduras, Campus Dios Espíritu Santo, visualizan el concepto de función y su capacidad en los procesos de conversión en sus diferentes representaciones. Los objetivos específicos que persigue esta investigación son: Explorar y realizar un análisis acerca de las dificultades de los alumnos en cuanto a tareas de interpretación, de conversión y de construcción asociadas con funciones y sus representaciones verbal, algebraica, tabular, gráfica. Explorar y analizar las razones estructurales de los problemas de comprensión de los alumnos, sus capacidades de razonamiento, de análisis y de visualización. 1.4 Preguntas de Investigación Qué dificultades presentan los alumnos de nivel superior sobre las tareas de interpretación, de conversión y de construcción asociadas con funciones y sus diferentes representaciones? Cuáles son las capacidades y debilidades que manifiestan los alumnos del nivel superior en cuanto a la comprensión, razonamiento, análisis y visualización respecto a funciones y sus representaciones? 22

23 CAPITULO 2 23

24 MARCO TEÓRICO 24

25 2. 1 Enfoque Constructivista. El tener conciencia del proceso educativo y de una dualidad que compete al mismo, por un lado la necesidad de explicitar una teoría científica que lo argumente y por otro una práctica que tome forma clara y precisa de las ideas, se ha dado hasta hace poco. De lo que resulta interesante saber cómo aprende el ser humano, de manera particular, cómo se logra el aprendizaje en nuestros alumnos. Desde el punto de vista constructivista el aprendizaje no tiene nada que ver con memorizar, automatizar, repetir, sino más bien aprender consiste en poner en juego o desarrollar las competencias que lo han hecho posible desde sus inicios como son: deducir, inferir, conjeturar, descubrir, resolver, argumentar, etc. En matemática educativa contamos con aportaciones teóricas que intentan explicar la construcción del conocimiento matemático desde posturas didácticas, cognitivas, sociales, lingüístico o antropológico entre otras. Los teóricos argumentan que debemos conocer como se aprende para de ahí derivar estrategias que propicien el aprendizaje. Ausubel (2002) dice: El potencial cognitivo humano a diferencia de un ordenador no puede manejar con mucha eficacia información que se enlaza con él de manera literal. Considera que, la condición más importante para que el aprendizaje sea significativo es que pueda relacionarse, de modo no arbitrario y sustancial, con lo que el alumno ya sabe. Esto implica que nunca se construye a partir de cero, sino sobre la base del saber que se ha construido hasta el momento y de las estructuras mentales alcanzadas. Así mismo, como lo menciona Catsigeras y Curione (2005): paradójicamente la mayoría de las dificultades en el aprendizaje de los contenidos del curso de Cálculo se encuentra en aquellos contenidos de la asignatura que son revisión de los últimos años de enseñanza secundaria. (p.1) 25

SOFTWARE EDUCATIVO PARA EL APRENDIZAJE EXPERIMENTAL DE LAS MATEMÁTICAS. Eugenio Jacobo Hernández Valdelamar. jack_hv@yahoo.com

SOFTWARE EDUCATIVO PARA EL APRENDIZAJE EXPERIMENTAL DE LAS MATEMÁTICAS. Eugenio Jacobo Hernández Valdelamar. jack_hv@yahoo.com SOFTWARE EDUCATIVO PARA EL APRENDIZAJE EXPERIMENTAL DE LAS MATEMÁTICAS Eugenio Jacobo Hernández Valdelamar jack_hv@yahoo.com Fundación Arturo Rosenblueth Tecnología Educativa Galileo Insurgentes Sur 670-3.

Más detalles

INTERPRETACIÓN DE DOMINIO Y RECORRIDO DE UNA FUNCIÓN UTILIZANDO DISTINTOS REGISTROS DE REPRESENTACIÓN

INTERPRETACIÓN DE DOMINIO Y RECORRIDO DE UNA FUNCIÓN UTILIZANDO DISTINTOS REGISTROS DE REPRESENTACIÓN CB 41 INTERPRETACIÓN DE DOMINIO Y RECORRIDO DE UNA FUNCIÓN UTILIZANDO DISTINTOS REGISTROS DE REPRESENTACIÓN Graciela ECHEVARRÍA, Karina OLGUÍN, Juan RENAUDO, Cristina COSCI, Gladys MAY Facultad de Ingeniería

Más detalles

COMPETENCIAS DISCIPLINARES BÁSICAS DEL SISTEMA NACIONAL DE BACHILLERATO

COMPETENCIAS DISCIPLINARES BÁSICAS DEL SISTEMA NACIONAL DE BACHILLERATO COMPETENCIAS DISCIPLINARES BÁSICAS DEL SISTEMA NACIONAL DE BACHILLERATO Junio de 2008 Presentación El documento Competencias Genéricas que Expresan el Perfil del Egresado de la EMS incluye las competencias

Más detalles

Revista digit@l Eduinnova ISSN

Revista digit@l Eduinnova ISSN MATEMÁTICAS EN EDUCACIÓN PRIMARIA AUTORA: Inmaculada Fernández Fernández DNI: 48937600V ESPECIALIDAD: EDUCACIÓN PRIMARIA 1. INTRODUCCIÓN El área de matemáticas se imparte en todos los cursos de Educación

Más detalles

A ÁLISIS DE LOS DISTI TOS REGISTROS DE REPRESE TACIÓ DE DOMI IO DE FU CIO ES DE U A VARIABLE

A ÁLISIS DE LOS DISTI TOS REGISTROS DE REPRESE TACIÓ DE DOMI IO DE FU CIO ES DE U A VARIABLE CB 03 A ÁLISIS DE LOS DISTI TOS REGISTROS DE REPRESE TACIÓ DE DOMI IO DE FU CIO ES DE U A VARIABLE Cristina COSCI, Gladys MAY, Gabriel HIDALGO, Javier ESPERA ZA, Sara ALA IZ, Roberto SIMU OVICH Facultad

Más detalles

Carrera: ACF-0901 3-2 - 5

Carrera: ACF-0901 3-2 - 5 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: (Créditos) SATCA 1 Cálculo Diferencial Todas las Carreras ACF-0901 3-2 - 5 2.- PRESENTACIÓN Caracterización de la asignatura.

Más detalles

Capítulo 3. La propuesta: Secuencia de actividades didácticas

Capítulo 3. La propuesta: Secuencia de actividades didácticas Capítulo 3 La propuesta: Secuencia de actividades didácticas En este capítulo se presenta la secuencia de actividades didácticas, en primer término los objetivos, tanto generales como específicos, posteriormente

Más detalles

Desafíos Matemáticos LÍNEA DE TRABAJO EDUCATIVO

Desafíos Matemáticos LÍNEA DE TRABAJO EDUCATIVO Desafíos Matemáticos LÍNEA DE TRABAJO EDUCATIVO ORIENTACIONES PARA EL TRABAJO EN EL AULA ESCUELAS DE TIEMPO COMPLETO CICLO ESCOLAR 2014-2015 SUBSECRETARÍA DE EDUCACIÓN BÁSICA El alumno aprende adaptándose

Más detalles

CATEGORIAS Cursos, herramientas y recursos basados en la Web y metodologías de utilización de las TIC s en el contexto educativo.

CATEGORIAS Cursos, herramientas y recursos basados en la Web y metodologías de utilización de las TIC s en el contexto educativo. UNA EXPERIENCIA DE DESARROLLO UTILIZANDO TECNOLOGÍAS DE INFORMACIÓN Y COMUNICACIÓN: Sitio Web para la Enseñanza y el Aprendizaje del tema Límites y Continuidad Máster Enrique Vílchez Quesada Escuela de

Más detalles

PROGRAMA DE DOCTORADO EN DIDÁCTICA DE LAS CIENCIAS EXPERIMENTALES Y LA MATEMÁTICA FACULTAD DE FORMACIÓN DEL PROFESORADO TESIS DOCTORAL

PROGRAMA DE DOCTORADO EN DIDÁCTICA DE LAS CIENCIAS EXPERIMENTALES Y LA MATEMÁTICA FACULTAD DE FORMACIÓN DEL PROFESORADO TESIS DOCTORAL PROGRAMA DE DOCTORADO EN DIDÁCTICA DE LAS CIENCIAS EXPERIMENTALES Y LA MATEMÁTICA FACULTAD DE FORMACIÓN DEL PROFESORADO TESIS DOCTORAL CONTRIBUCIÓN AL ESTUDIO DEL APRENDIZAJE DE LAS CIENCIAS EXPERIMENTALES

Más detalles

Funciones y gráficas (1)

Funciones y gráficas (1) Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes

Más detalles

Asignatura (E): Jornada de Formación Permanente: Proyecto de Trabajo Especial de Grado. ESTRUCTURA DEL PROYECTO DE TEG.

Asignatura (E): Jornada de Formación Permanente: Proyecto de Trabajo Especial de Grado. ESTRUCTURA DEL PROYECTO DE TEG. Portada (Ver anexo J) * Página de Presentación (Ver anexo H) * Dedicatoria (opcional) * Agradecimiento (opcional) * Índice General (Ver anexo K) * Lista de Cuadros (Ver anexo F) * Lista de Gráficos (Ver

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

DISEÑO CURRICULAR EN COLOMBIA. EL CASO DE LAS MATEMÁTICAS

DISEÑO CURRICULAR EN COLOMBIA. EL CASO DE LAS MATEMÁTICAS DISEÑO CURRICULAR EN COLOMBIA. EL CASO DE LAS MATEMÁTICAS Pedro Gómez 100514DisenoCurricularColombiav2 Este documento pretende describir las condiciones que regulan el proceso de diseño curricular en los

Más detalles

GEOGEBRA Y DOMINIO DE FUNCIONES EN MATEMÁTICAS

GEOGEBRA Y DOMINIO DE FUNCIONES EN MATEMÁTICAS GEOGEBRA Y DOMINIO DE FUNCIONES EN MATEMÁTICAS AUTORÍA RAFAEL GONZÁLEZ BÁEZ TEMÁTICA MATEMÁTICAS ETAPA ESO Y BACHILLERATO Resumen. Las nuevas tecnologías son un requisito indispensable a tratar en el aula;

Más detalles

Licenciatura en Educación Secundaria

Licenciatura en Educación Secundaria Licenciatura en Educación Secundaria Campo de formación específica Especialidad: Lengua Extranjera (Inglés) Programa para la Transformación y el Fortalecimiento Académicos de las Escuelas Normales Septiembre

Más detalles

Instituto Tecnológico de Roque Guía para el Examen de Admisión

Instituto Tecnológico de Roque Guía para el Examen de Admisión PRESENTACIÓN La presente guía se elaboró con el propósito de proporcionarle un conjunto de elementos que serán necesarios para sustentar con éxito el examen de admisión, para ingresar al Instituto Tecnológico

Más detalles

TIMSS 11.2 DESCRIPCIÓN DE LO EVALUADO EN LOS DOMINIOS DE CONTENIDO MATEMÁTICA Números Incluye la comprensión del proceso de contar, de las maneras de representar los números, de las relaciones entre éstos

Más detalles

ORIENTACIONES PARA LA PRUEBA DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD

ORIENTACIONES PARA LA PRUEBA DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD ORIENTACIONES PARA LA PRUEBA DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD MODALIDAD CIENTÍFICO-TÉCNICO 1. NOMBRE DE LA MATERIA: Matemáticas II 2. NOMBRE DEL COORDINADOR: Miguel Delgado Pineda (mdelgado@mat.uned.es,

Más detalles

Qué es el sentido numérico?

Qué es el sentido numérico? 2 Qué es el sentido numérico? Sentido numérico 46 Materiales para Apoyar la Práctica Educativa 2. Qué es el sentido numérico? La expresión sentido numérico aparece por primera vez en la bibliografía especializada

Más detalles

FACULTAD DE INGENIERÍA FORESTAL EXCELENCIA ACADÉMICA QUE CONTRIBUYE AL DESARROLLO DE LAS CIENCIAS FORESTALES

FACULTAD DE INGENIERÍA FORESTAL EXCELENCIA ACADÉMICA QUE CONTRIBUYE AL DESARROLLO DE LAS CIENCIAS FORESTALES IDENTIFICACIÓN DE LA ASIGNATURA Nombre: Matemáticas Fundamentales Código: 0701479 Área Específica: Ciencias Básicas Semestre de Carrera: Primero JUSTIFICACIÓN El estudio de las matemáticas es parte insustituible

Más detalles

Orientaciones para la planificación escolar 2010

Orientaciones para la planificación escolar 2010 Presentación Orientaciones para la planificación escolar 2010 El documento que se presenta a continuación proporciona orientaciones y sugerencias para llevar a cabo la importante labor de planificación

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

20/11/2013. Conferencia de Bruno D'Amore Univ. de los Andes 16 de noviembre de 2013. Bruno D Amore

20/11/2013. Conferencia de Bruno D'Amore Univ. de los Andes 16 de noviembre de 2013. Bruno D Amore Bruno D Amore PhD Mathematics Education PhD Honoris Causa Universidad de Chipre NRD Universidad de Bologna MESCUD Universidad Distrital de Bogotá GRADEM, Universidad de Barcelona, España Sitios oficiales:

Más detalles

Mauricio Contreras IES Benicalap Valencia

Mauricio Contreras IES Benicalap Valencia Mauricio Contreras IES Benicalap Valencia Principios Describen las características particulares de una educación matemática de calidad Igualdad Currículo Enseñanza Aprendizaje Evaluación Tecnología La

Más detalles

La Orientación Educativa ante la reprobación en el bachillerato.

La Orientación Educativa ante la reprobación en el bachillerato. La Orientación Educativa ante la reprobación en el bachillerato. Introducción. El presente ensayo nace de la inquietud de crear una propuesta sobre el análisis del proceso de Orientación Educativa; investigar

Más detalles

Conocimiento profesional del profesor de matemáticas y oposiciones.

Conocimiento profesional del profesor de matemáticas y oposiciones. Conocimiento profesional del profesor de matemáticas y oposiciones. Pablo Flores Martínez, Antonio Moreno Verdejo, José María Sánchez Molina (SAEM THALES, Granada) Resumen: Parece cada vez mas evidente

Más detalles

CURSO BASICO. Orientación: Todas las Orientaciones Asignatura: Matemática 2 horas semanales 64 horas totales

CURSO BASICO. Orientación: Todas las Orientaciones Asignatura: Matemática 2 horas semanales 64 horas totales 1 CONSEJO DE EDUCACION TECNICO PROFESIONAL Programa Planeamiento Educativo Área Diseño y Desarrollo Curricular CURSO BASICO Orientación: Todas las Orientaciones Asignatura: Matemática 2 horas semanales

Más detalles

1.- DATOS DE LA ASIGNATURA

1.- DATOS DE LA ASIGNATURA 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura : Estructuras y Organización de Datos Ingeniería en Tecnologías de la Carrera : Información y Comunicaciones Clave de la asignatura : TID-1012 SATCA 1

Más detalles

Desarrollar y aplicar estrategias para resolver problemas Determinar si un gráfico es lineal dibujando puntos en una situación dada

Desarrollar y aplicar estrategias para resolver problemas Determinar si un gráfico es lineal dibujando puntos en una situación dada MANEJO DE DATOS Analizar gráficos o diagramas de situaciones dadas para identificar información específica Recoger datos, dibujar los datos usando escalas apropiadas y demostrar una comprensión de las

Más detalles

GEOMETRÍA PLANA TFM 2013 DIFICULTADES Y ERRORES MANIFESTADOS POR ESTUDIANTES DE 1º DE E.S.O. DURANTE EL APRENDIZAJE DE GEOMETRÍA PLANA

GEOMETRÍA PLANA TFM 2013 DIFICULTADES Y ERRORES MANIFESTADOS POR ESTUDIANTES DE 1º DE E.S.O. DURANTE EL APRENDIZAJE DE GEOMETRÍA PLANA GEOMETRÍA PLANA María Pérez Prados DIFICULTADES Y ERRORES MANIFESTADOS POR ESTUDIANTES DE 1º DE E.S.O. DURANTE EL APRENDIZAJE DE GEOMETRÍA PLANA TFM 2013 Ámbito MATEMÁTICAS MÁSTER UNIVERSITARIO EN FORMACIÓN

Más detalles

EL PROCESO DE INVESTIGACIÓN. UN EJEMPLO

EL PROCESO DE INVESTIGACIÓN. UN EJEMPLO CAPÍTULO 6 EL PROCESO DE INVESTIGACIÓN. UN EJEMPLO ENRIQUE CASTRO ENCARNACIÓN CASTRO ecastro@ugr.es encastro@platon.ugr.es Universidad de Granada La realización de una investigación conlleva recorrer una

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL EJÉRCITO

ESCUELA SUPERIOR POLITÉCNICA DEL EJÉRCITO ESCUELA SUPERIOR POLITÉCNICA DEL EJÉRCITO PROGRAMA DE ASIGNATURA DE CONTENIDOS DE APRECIACION DEL CINE Y TEATRO ASIGNATURA/MODULO: APRECIACION DEL CINE Y TEATRO NIVEL: CRÉDITOS: 2 DEPARTAMENTO: CARRERAS:

Más detalles

HORACIO ITZCOVICH. Fragmento de la Introducción al libro de Editorial Libros del Zorzal(2005) Iniciación al estudio didáctico de la Geometría

HORACIO ITZCOVICH. Fragmento de la Introducción al libro de Editorial Libros del Zorzal(2005) Iniciación al estudio didáctico de la Geometría Introducción Es reconocido por quienes tienen un vínculo con la enseñanza de la matemática, el hecho de que el trabajo geométrico ha ido perdiendo espacio y sentido, tanto en los colegios como en la formación

Más detalles

Epistemología y la Educación Moderna Página - 1

Epistemología y la Educación Moderna Página - 1 La educación moderna está enfrentando un problema filosófico. El método científico que ha dominado el pensamiento educativo en el último siglo lo ha dejado sin un fundamento moral. De hecho, el énfasis

Más detalles

PARA LA ENSEÑANZA DEL ESPAÑOL COMO LENGUA EXTRANJERA NOS PLANTEAMOS:

PARA LA ENSEÑANZA DEL ESPAÑOL COMO LENGUA EXTRANJERA NOS PLANTEAMOS: LA FORMACIÓN DE PROFESORES EN ELE: UN DESAFÍO QUE ASUMEN LA UNIVERSIDAD DEL CENTRO EDUCATIVO LATINOAMERICANO Y EL INSTITUTO SUPERIOR PARQUE DE ESPAÑA, EN ROSARIO Mercedes Bertola de Urgorri Coordinadora

Más detalles

Presentación de la asignatura

Presentación de la asignatura UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIOS NIVEL MEDIO SUPERIOR PLANEACIÓN DIDÁCTICA BACHILLERATO GENERAL CUATRIMESTRAL Enfoque Educativo Basado en el Desarrollo de Competencias ASIGNATURA CÁLCULO

Más detalles

LA EVALUACIÓN DEL APRENDIZAJE EN LA EDUCACIÓN A DISTANCIA Y SEMIPRESENCIAL PARA LA FORMACIÓN DE MAESTROS

LA EVALUACIÓN DEL APRENDIZAJE EN LA EDUCACIÓN A DISTANCIA Y SEMIPRESENCIAL PARA LA FORMACIÓN DE MAESTROS LA EVALUACIÓN DEL APRENDIZAJE EN LA EDUCACIÓN A DISTANCIA Y SEMIPRESENCIAL PARA LA FORMACIÓN DE MAESTROS Olga Lidia Pérez González, María de los Angeles Legañoa y Nirian Nieto Universidad de Camaguey,

Más detalles

Reseñas/Book Reviews. Izaskun Elorza Amorós. Salamanca: Ediciones Universidad de Salamanca, 2005. 548 págs. ISBN: 84-7800-506-4.

Reseñas/Book Reviews. Izaskun Elorza Amorós. Salamanca: Ediciones Universidad de Salamanca, 2005. 548 págs. ISBN: 84-7800-506-4. Reseñas/Book Reviews Aspectos de la didáctica del Inglés para Fines Específicos. La traducción especializada como método de evaluación formativa y de autoevaluación Izaskun Elorza Amorós. Salamanca: Ediciones

Más detalles

Material didáctico de apoyo al trabajo del docente para el tratamiento del cálculo en los alumnos.

Material didáctico de apoyo al trabajo del docente para el tratamiento del cálculo en los alumnos. Material didáctico de apoyo al trabajo del docente para el tratamiento del cálculo en los alumnos. Alberto Moreira Fontes Yordanis Valdés Llanes Introducción. Muchos han sido los esfuerzos de los docentes

Más detalles

LA RESOLUCIÓN DE PROBLEMAS MATEMÁTICOS EN EDUCACIÓN PRIMARIA

LA RESOLUCIÓN DE PROBLEMAS MATEMÁTICOS EN EDUCACIÓN PRIMARIA LA RESOLUCIÓN DE PROBLEMAS MATEMÁTICOS EN EDUCACIÓN PRIMARIA AUTORÍA NATIVIDAD DEL PILAR CANTERO CASTILLO TEMÁTICA MATEMÁTICAS, RESOLUCIÓN DE PROBLEMAS ETAPA EDUCACIÓN PRIMARIA Resumen Dentro del área

Más detalles

Reflexiones en torno al Currículo para el Profesor de Matemáticas de Secundaria.

Reflexiones en torno al Currículo para el Profesor de Matemáticas de Secundaria. Reflexiones en torno al Currículo para el Profesor de Matemáticas de Secundaria. Prof. Luis Rico Departamento de Didáctica de la Matemática Universidad de Granada Logroño, enero 1997 Presentación dei problema:

Más detalles

1.- DATOS DE LA ASIGNATURA. Ingeniería Forestal. Clave de la asignatura: SATCA: 2-3-5 2.- PRESENTACIÓN. Caracterización de la asignatura.

1.- DATOS DE LA ASIGNATURA. Ingeniería Forestal. Clave de la asignatura: SATCA: 2-3-5 2.- PRESENTACIÓN. Caracterización de la asignatura. 1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Carrera: Clave de la asignatura: Investigación de Operaciones. Ingeniería Forestal. FOD-1023 SATCA: 2-3-5 2.- PRESENTACIÓN. Caracterización de la asignatura.

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES. INTRODUCCIÓN A LOS LÍMITES. Definición intuitiva de límite.. DEFINICIÓN RIGUROSA DE LÍMITE. Límites reales.. Propiedades de los límites.. Estrategias para calcular límites. - Límites

Más detalles

DISEÑO ( D.U.Nº 1213-2007 )

DISEÑO ( D.U.Nº 1213-2007 ) C a t á l o g o 2007.2008 DISEÑO ( D.U.Nº 1213-2007 ) 2007.2008 Facultad de Arquitectura y Diseño Sede Santiago, Campus Casona de Las Condes Fernández Concha 700, Las Condes www.unab.cl DECANO Alberto

Más detalles

TEXTOS CIENTÍFICOS EN SECUNDARIA

TEXTOS CIENTÍFICOS EN SECUNDARIA TEXTOS CIENTÍFICOS EN SECUNDARIA AUTORÍA MÓNICA DE LA LUZ MOYA REBOLO TEMÁTICA ANÁLISIS E INTERPRETACIÓN DE TEXTOS CIENTÍFICOS ETAPA ESO Resumen Cuando los profesores llevamos textos científicos al aula

Más detalles

236 páginas ISBN: 84-7584-522-3. Reseñado por Liliana Bergesio FHyCS-UNJu (Jujuy - Argentina) Junio 2, 2005

236 páginas ISBN: 84-7584-522-3. Reseñado por Liliana Bergesio FHyCS-UNJu (Jujuy - Argentina) Junio 2, 2005 González Maura, Viviana (2004) La Orientación Profesional Y Currículum Universitario. Una Estrategia Educativa Para El Desarrollo Profesional Y Responsable. Barcelona: Alertes Psicopedagogía. 236 páginas

Más detalles

Competencias docentes asociadas a los procesos de aprendizaje de las matemáticas

Competencias docentes asociadas a los procesos de aprendizaje de las matemáticas Instituto INSTITUTO Pedagógico PEDAGÓGICO DE de FORMACIÓN PROFESIONAL Competencias docentes asociadas a los procesos de aprendizaje de las matemáticas Coordinador: Dr. Sergio Raúl García Mtz. PRESENTACIÓN

Más detalles

La importancia del mundo animal en Educación Primaria

La importancia del mundo animal en Educación Primaria La importancia del mundo animal en Educación Primaria Patricia Morales Romero 28841255-z JUSTIFICACIÓN La elección de la unidad didáctica los animales surgió ya que con los niños con los que trabaje estaban

Más detalles

Identificación de diferentes representaciones de funciones

Identificación de diferentes representaciones de funciones Grado 0 Matematicas - Unidad Reconozcamos otras características de la función Tema Identificación de diferentes representaciones de funciones Nombre: Curso: El concepto de función es una de los más importante

Más detalles

COORDINACIÓN DE LOS DIFERENTES REGISTROS DE REPRESENTACIÓN EN EL ESTUDIO DE LA CIRCUNFERENCIA QUE PASA POR TRES PUNTOS: ACTIVIDADES DIDÁCTICAS

COORDINACIÓN DE LOS DIFERENTES REGISTROS DE REPRESENTACIÓN EN EL ESTUDIO DE LA CIRCUNFERENCIA QUE PASA POR TRES PUNTOS: ACTIVIDADES DIDÁCTICAS Capítulo 2. Propuestas para la enseñanza de las matemáticas COORDINACIÓN DE LOS DIFERENTES REGISTROS DE REPRESENTACIÓN EN EL ESTUDIO DE LA CIRCUNFERENCIA QUE PASA POR TRES PUNTOS: ACTIVIDADES DIDÁCTICAS

Más detalles

- Participación activa en las actividades grupales. - Colaboración con sus iguales en el juego y la experimentación. - Iniciativa por aprender.

- Participación activa en las actividades grupales. - Colaboración con sus iguales en el juego y la experimentación. - Iniciativa por aprender. PROGRAMACIÓN DEL PROYECTO DE MAGNETISMO OBJETIVOS POR ÁREAS CONOCIMIENTO DE SÍ MISMO Y AUTONOMÍA PERSONAL 1) Desarrollar la capacidad de reflexión, investigación y pensamiento. 2) Iniciativa por aprender.

Más detalles

Cómo trabajar y evaluar niños con necesidades educativas especiales, integrados al sistema escolar regular?

Cómo trabajar y evaluar niños con necesidades educativas especiales, integrados al sistema escolar regular? Cómo trabajar y evaluar niños con necesidades educativas especiales, integrados al sistema escolar regular? Análisis y reflexión acerca de las estrategias para contribuir al proceso de atención de esta

Más detalles

Secretaría de Desarrollo Institucional

Secretaría de Desarrollo Institucional Universidad Nacional Autónoma de México Secretaría de Desarrollo Institucional Dirección General de Evaluación Educativa APRENDIZAJE AUTÓNOMO ESTRATEGIAS PARA BACHILLERATO Manual para el alumno Gilda Rojas

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Carrera: Gastronomía. GSH-1017 1-3-4

Carrera: Gastronomía. GSH-1017 1-3-4 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Higiene en el Manejo de Alimentos y Bebidas. Carrera: Gastronomía. Clave de la asignatura: (Créditos) SATCA 1 GSH-1017 1-3-4 2.- PRESENTACIÓN Caracterización

Más detalles

TÉCNICAS PARA EL APRENDIZAJE

TÉCNICAS PARA EL APRENDIZAJE TÉCNICAS PARA EL APRENDIZAJE Aprendizaje Colaborativo Más que una técnica, se considera una filosofía de interacción y una forma personal de trabajo. Características Es posible organizar un curso completo

Más detalles

Lineamientos para el diseño de programas de Cursos y Talleres de Formación Humanista Modalidad presencial y en línea

Lineamientos para el diseño de programas de Cursos y Talleres de Formación Humanista Modalidad presencial y en línea Lineamientos para el diseño de programas de Cursos y Talleres de Formación Humanista Modalidad presencial y en línea I. INTRODUCCIÓN Para implementar los procesos de enseñanza y aprendizaje, se debe determinar

Más detalles

Límites. Definición de derivada.

Límites. Definición de derivada. Capítulo 4 Límites. Definición de derivada. 4.1. Límites e indeterminaciones Hemos visto en el capítulo anterior que para resolver el problema de la recta tangente tenemos que enfrentarnos a expresiones

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Investigación de Operaciones. Carrera: Ingeniería en Sistemas Computacionales

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Investigación de Operaciones. Carrera: Ingeniería en Sistemas Computacionales 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: (Créditos) SATCA 1 Investigación de Operaciones SCC-1013 2-2 - 4 Ingeniería en Sistemas Computacionales 2.- PRESENTACIÓN

Más detalles

Título: Propuesta de dimensiones e indicadores para evaluar el aprendizaje de los

Título: Propuesta de dimensiones e indicadores para evaluar el aprendizaje de los Título: Propuesta de dimensiones e indicadores para evaluar el aprendizaje de los estudiantes, en cursos de postgrado a distancia. Palabras Claves: evaluación, aprendizaje, Educación a distancia, estudiantes,

Más detalles

ESTUDIO DEL DOMINIO DEL LENGUAJE ALGEBRAICO QUE PREVALECE ENTRE ALUMNOS DE NUEVO INGRESO, UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA

ESTUDIO DEL DOMINIO DEL LENGUAJE ALGEBRAICO QUE PREVALECE ENTRE ALUMNOS DE NUEVO INGRESO, UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA Mosaicos Matemáticos No. 11 Diciembre, 3. Nivel Superior ESTUDIO DEL DOMINIO DEL LENGUAJE ALGEBRAICO QUE PREVALECE ENTRE ALUMNOS DE NUEVO INGRESO, UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA INSTITUTO TECNOLÓGICO

Más detalles

UNIVERSIDAD AUTÓNOMA DE YUCATÁN

UNIVERSIDAD AUTÓNOMA DE YUCATÁN UNIVERSIDAD AUTÓNOMA DE YUCATÁN DIRECCIÓN GENERAL DE DESARROLLO ACADÉMICO SUBDIRECCIÓN DE BACHILLERATO Escuelas Preparatorias Uno y Dos PROGRAMA DE CURSO Y UNIDAD FÍSICA 1 UNIVERSIDAD AUTÓNOMA DE YUCATÁN

Más detalles

DOCTORADO EN MATEMÀTICA

DOCTORADO EN MATEMÀTICA CONSEJO SUPERIOR UNIVERSITARIO CSUCA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA ANTIGUA GUATEMALA JUNIO 2012 DOCTORADO EN MATEMÀTICA Para las universidades de la Región Centroamericana y el Caribe Antigua

Más detalles

Guía para la elaboración de la Planeación didáctica argumentada

Guía para la elaboración de la Planeación didáctica argumentada Evaluación del desempeño Ciclo Escolar 2015 2016 para la elaboración de la Planeación didáctica argumentada Docente. Educación Preescolar para la elaboración de la Planeación didáctica argumentada Docente

Más detalles

Guía para la elaboración de la Planeación didáctica argumentada

Guía para la elaboración de la Planeación didáctica argumentada Evaluación del desempeño Ciclo Escolar 2015 2016 para la elaboración de la Planeación didáctica argumentada Docente. Educación Primaria para la elaboración de la Planeación didáctica argumentada Docente

Más detalles

GENÉTICA MENDELIANA: UN MODELO DIDÁCTICO DESARROLLADO CON LA HOJA DE CÁLCULO

GENÉTICA MENDELIANA: UN MODELO DIDÁCTICO DESARROLLADO CON LA HOJA DE CÁLCULO Informática Educativa Vol. 9, No. 2, 1996 UNIANDES - LIDIE, Colombia pp. 145-150 GENÉTICA MENDELIANA: UN MODELO DIDÁCTICO DESARROLLADO CON LA HOJA DE CÁLCULO Jorge MONTOYA R Propósito RESUMEN Utilizando

Más detalles

Tema 8 : La Comunicación en Ingeniería

Tema 8 : La Comunicación en Ingeniería Universidad Nacional del Nordeste Año: 2002. Cátedra: Fundamentos de Ingeniería. Ing. José Luis Alunni Tema 8 : La Comunicación en Ingeniería 1 Universidad Nacional del Nordeste Año: 2002. Cátedra: Fundamentos

Más detalles

UNIVERSIDAD DE COSTA RICA. MA0101 Matemática de Ingreso CARTA AL ESTUDIANTE

UNIVERSIDAD DE COSTA RICA. MA0101 Matemática de Ingreso CARTA AL ESTUDIANTE UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS BÁSICAS ESCUELA DE MATEMÁTICA DEPARTAMENTO DE ENSEÑANZA DE LA MATEMÁTICA MA0101 Matemática de Ingreso I AÑO I CICLO DEL PLAN DE ESTUDIOS DE LA CARRERA BACH.

Más detalles

TEMA II PROCESO DE DISEÑO

TEMA II PROCESO DE DISEÑO TEMA II PROCESO DE DISEÑO El diseño como proceso. Problemas. Definición. Sub-problemas. Solución del problema. Objetivos. Dificultades del diseño. Gestión de proyecto y Proceso de concepción del diseño.

Más detalles

PROGRAMA DE CURSO (FORMACION COMPLEMENTARIA)

PROGRAMA DE CURSO (FORMACION COMPLEMENTARIA) PROGRAMA DE CURSO (FORMACION COMPLEMENTARIA) 1. Datos de identificación CENTRO DE EDUCACIÓN MEDIA BACHILLERATO GENERAL CURRICULUM POR COMPETENCIAS 2011 Departamento: Ciencias Sociales, Económicas e Historia

Más detalles

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7 Página 1 de 7 1 CRITERIOS DE EVALUACIÓN 1.1 SECUENCIA POR CURSOS DE LOS CRITERIOS DE EVALUACION PRIMER CURSO 1. Utilizar números naturales y enteros y fracciones y decimales sencillos, sus operaciones

Más detalles

La situación de las enseñanzas científicas en la Educación Secundaria Comisión de Educación Cultura y Deporte. Senado

La situación de las enseñanzas científicas en la Educación Secundaria Comisión de Educación Cultura y Deporte. Senado La situación de las enseñanzas científicas en la Educación Secundaria Comisión de Educación Cultura y Deporte. Senado Sesión 4 (14 de Marzo de 2002): La formación del profesorado Presentación realizada

Más detalles

Carrera: GED-0904 2-3 - 5

Carrera: GED-0904 2-3 - 5 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: (Créditos) SATCA 1 Contabilidad Orientada a los Negocios Ingeniería en Gestión Empresarial GED-0904 2-3 - 5 2.- PRESENTACIÓN

Más detalles

Gastronomía. Carrera: GSC-1020 2-2-4

Gastronomía. Carrera: GSC-1020 2-2-4 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: (Créditos) SATCA 1 Matemáticas para Gastronomía Gastronomía GSC-1020 2-2-4 2.- PRESENTACIÓN Caracterización de la asignatura.

Más detalles

CAPÍTULO III PROPUESTA DE ENSEÑANZA 3.1. PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACIÓN

CAPÍTULO III PROPUESTA DE ENSEÑANZA 3.1. PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACIÓN CAPÍTULO III PROPUESTA DE ENSEÑANZA 3.1. PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACIÓN Los métodos de enseñanza de la física requieren una revisión profunda a todos los niveles, ya que los altos índices de

Más detalles

UN PROYECTO AUDIOVISUAL SOBRE EL EQUILIBRIO QUÍMICO PARA EL MÁSTER EN FORMACIÓN DEL PROFESORADO DE EDUCACIÓN SECUNDARIA

UN PROYECTO AUDIOVISUAL SOBRE EL EQUILIBRIO QUÍMICO PARA EL MÁSTER EN FORMACIÓN DEL PROFESORADO DE EDUCACIÓN SECUNDARIA IX CONGRESO INTERNACIONAL SOBRE INVESTIGACIÓN EN DIDÁCTICA DE LAS CIENCIAS Girona, 9-12 de septiembre de 2013 COMUNICACIÓN UN PROYECTO AUDIOVISUAL SOBRE EL EQUILIBRIO QUÍMICO PARA EL MÁSTER EN FORMACIÓN

Más detalles

PROGRAMA FORMACIÓN PROFESIONAL DE DOCENTES Y DIRECTIVOS PROGRAMA DE FORMACIÓN VIRTUAL A DOCENTES Y DIRECTIVOS

PROGRAMA FORMACIÓN PROFESIONAL DE DOCENTES Y DIRECTIVOS PROGRAMA DE FORMACIÓN VIRTUAL A DOCENTES Y DIRECTIVOS PROGRAMA FORMACIÓN PROFESIONAL DE DOCENTES Y DIRECTIVOS PROGRAMA DE FORMACIÓN VIRTUAL A DOCENTES Y DIRECTIVOS Diseños curriculares y plan de estudios Curso Virtuales: Liderazgo y gestión académica, Prácticas

Más detalles

LAS NUEVAS HABILIDADES Y COMPETENCIAS DEL BIBLIOTECARIO

LAS NUEVAS HABILIDADES Y COMPETENCIAS DEL BIBLIOTECARIO LAS NUEVAS HABILIDADES Y COMPETENCIAS DEL BIBLIOTECARIO Dra. Patricia Ramos Fandiño Dra. Beatriz Rodríguez Sierra INTRODUCCIÓN: Los últimos 20 años han sido de trascendencia para el desarrollo de las ciencias

Más detalles

Grado en Maestro de Educación Infantil. E.U. de Magisterio de Zamora. Universidad de Salamanca. Competencias

Grado en Maestro de Educación Infantil. E.U. de Magisterio de Zamora. Universidad de Salamanca. Competencias Grado en Maestro de Educación Infantil. E.U. de Magisterio de Zamora. Universidad de Salamanca. Competencias El Plan de Estudios de Grado de Maestro de Educación Infantil tiene en cuenta que la actividad

Más detalles

CUADERNOS DE ESTUDIO II

CUADERNOS DE ESTUDIO II Administración Nacional de Educación Pública Consejo Directivo Central CUADERNOS DE ESTUDIO II Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP CUADERNOS DE ESTUDIO II Propuesta para

Más detalles

Taxonomía de los objetivos de la educación La clasificación de las metas educacionales Manuales I y II

Taxonomía de los objetivos de la educación La clasificación de las metas educacionales Manuales I y II Taxonomía de los objetivos de la educación La clasificación de las metas educacionales Manuales I y II Benjamin S. Bloom y colaboradores LIBRERÍA EL ATENEO EDITORIAL Octava edición Este material se utiliza

Más detalles

El uso de las redes sociales para el desarrollo de competencias en educación. básica

El uso de las redes sociales para el desarrollo de competencias en educación. básica El uso de las redes sociales para el desarrollo de competencias en educación básica Evelia Canales Arias Instituto Latinoamericano de la Comunicación Educativa - Red Escolar ecanales@ilce.edu.mx Resumen:

Más detalles

BASES TEÓRICAS DEL CURRÍCULO DE MATEMÁTICAS EN EDUCACIÓN SECUNDARIA

BASES TEÓRICAS DEL CURRÍCULO DE MATEMÁTICAS EN EDUCACIÓN SECUNDARIA BASES TEÓRICAS DEL CURRÍCULO DE MATEMÁTICAS EN EDUCACIÓN SECUNDARIA Madrid: Editorial Síntesis. (1997) Capítulo V: Investigación, Diseño y Desarrollo Curricular. Rico, L.; Castro, E.; Castro, E.; Coriat,

Más detalles

REDISEÑO CURRICULAR FACSO 2014. Documento base para el ajuste y rediseño curricular. Facultad de Ciencias Sociales (FACSO) Documento de Trabajo n 2

REDISEÑO CURRICULAR FACSO 2014. Documento base para el ajuste y rediseño curricular. Facultad de Ciencias Sociales (FACSO) Documento de Trabajo n 2 REDISEÑO CURRICULAR FACSO 2014 Documento base para el ajuste y rediseño curricular. Facultad de Ciencias Sociales (FACSO) Documento de Trabajo n 2 21 de Julio de 2014 Documento de base para el ajuste y

Más detalles

CAPÍTULO 4 CONCLUSIONES

CAPÍTULO 4 CONCLUSIONES CAPÍTULO 4 CONCLUSIONES 4.1 DIFICULTADES DE APRENDIZAJE La sección está dedicada a describir y analizar las dificultades de aprendizaje detectadas durante el diseño y la exploración de las actividades.

Más detalles

El museo de Historia Natural, un espacio para la enseñanza de las Ciencias.

El museo de Historia Natural, un espacio para la enseñanza de las Ciencias. El museo de Historia Natural, un espacio para la enseñanza de las Ciencias. Morales, Diana Valbuena, Édgar Amórtegui, Elás Universidad Pedagogica Nacional Introducción En la enseñanza de las ciencias con

Más detalles

I. DATOS DE IDENTIFICACIÓN. 10. Requisitos para cursar la asignatura: Recomendada_Introducción a las Matemáticas

I. DATOS DE IDENTIFICACIÓN. 10. Requisitos para cursar la asignatura: Recomendada_Introducción a las Matemáticas UNIVERSIDAD AUTONOMA DE BAJA CALIFORNIA COORDINACIÓN DE FORMACIÓN BÁSICA COORDINACIÓN DE FORMACIÓN PROFESIONAL Y VINCULACIÓN PROGRAMA DE UNIDAD DE APRENDIZAJE POR COMPETENCIAS I. DATOS DE IDENTIFICACIÓN

Más detalles

PDF created with pdffactory Pro trial version www.pdffactory.com

PDF created with pdffactory Pro trial version www.pdffactory.com Universidad de Los Andes Facultad de Humanidades y Educación Escuela de Educación Departamento de Educación Física Cátedra Didáctica de la Educación Física RESUMEN DE LA TAXONOMIA DE LOS OBJETIVOS DE LA

Más detalles

VARIABLES, FUNCIONES Y CAMBIOS. EXPLORACIÓN DE

VARIABLES, FUNCIONES Y CAMBIOS. EXPLORACIÓN DE VARIABLES, FUNCIONES Y CAMBIOS. EXPLORACIÓN DE LAS NOCIONES QUE MANEJAN ALUMNOS DE UNA ESCUELA SECUNDARIA Marcela Hecklein, Adriana Engler, Silvia Vrancken y Daniela Müller Facultad de Ciencias Agrarias.

Más detalles

Los alumnos y sus diferentes posibilidades de aprender matemática. Los docentes y su responsabilidad

Los alumnos y sus diferentes posibilidades de aprender matemática. Los docentes y su responsabilidad Novembre, Andrea Los alumnos y sus diferentes posibilidades de aprender matemática. Los docentes y su responsabilidad II Jornadas de Enseñanza e Investigación Educativa en el campo de las Ciencias Exactas

Más detalles

OBJETIVOS de aprendizaje

OBJETIVOS de aprendizaje Profesorado en Relaciones del Trabajo Materia: Didáctica Especial y Residencia Cátedra: Dra. Vega OBJETIVOS de aprendizaje Ficha de Cátedra 2015 Prof. Carreras, Liliana Prof. Cortés, Margarita Prof. Marzioli,

Más detalles

Programa de estudio. 6. Área de conocimiento. 7. Academia(s) PSICOLÓGICA, FILOSÓFICA Y PSICOLÓGICA, FILOSÓFICA Y SOCIAL

Programa de estudio. 6. Área de conocimiento. 7. Academia(s) PSICOLÓGICA, FILOSÓFICA Y PSICOLÓGICA, FILOSÓFICA Y SOCIAL Datos generales 0. Área Académica HUMANIDADES Programa de estudio 1. Programa educativo PEDAGOGÍA 2. Facultad 3. Código PEDAGOGÍA SISTEMA DE ENSEÑANZA ABIERTA 4. Nombre de la experiencia educativa FUNDAMENTOS

Más detalles

Un modelo pedagógico responde a una idea o concepción de la educación, y en la UNAC se constituye en el sustento o soporte de toda la acción

Un modelo pedagógico responde a una idea o concepción de la educación, y en la UNAC se constituye en el sustento o soporte de toda la acción Un modelo pedagógico responde a una idea o concepción de la educación, y en la UNAC se constituye en el sustento o soporte de toda la acción educativa concebida en el Modelo Educativo Institucional y enriquecido

Más detalles

Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág. 204. 2.Representación gráfica...pág. 211. 3.Propiedades generales...pág.

Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág. 204. 2.Representación gráfica...pág. 211. 3.Propiedades generales...pág. 11 Funciones. Objetivos En esta quincena aprenderás a: Comprender, distinguir y valorar el concepto de función Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional Distinguir los

Más detalles

TODA GRÁFICA DE LINEA RECTA ES FUNCIÓN LINEAL? Míller Ángel Martínez Muñoz y Pompilio Sánchez Artunduaga Universidad de la Amazonia

TODA GRÁFICA DE LINEA RECTA ES FUNCIÓN LINEAL? Míller Ángel Martínez Muñoz y Pompilio Sánchez Artunduaga Universidad de la Amazonia TODA GRÁFICA DE LINEA RECTA ES FUNCIÓN LINEAL? Míller Ángel Martínez Muñoz y Pompilio Sánchez Artunduaga Universidad de la Amazonia Retomando la evolución histórica del concepto de función, se pretende

Más detalles

CAPÍTULO 4. RESULTADOS DEL ANÁLISIS MACRO:

CAPÍTULO 4. RESULTADOS DEL ANÁLISIS MACRO: CAPÍTULO 4. RESULTADOS DEL ANÁLISIS MACRO: Restricciones institucionales 4.0. A manera de introducción De acuerdo con Espinoza (1998), toda problemática didáctica posee un carácter institucional. Como

Más detalles

3.1 la investigación acción para la innovación. 3.1.2 La investigación educativa

3.1 la investigación acción para la innovación. 3.1.2 La investigación educativa 3.1 la investigación acción para la innovación En la práctica educativa, abordar procesos de investigación demanda de parte de los docentes conocer los fundamentos, las metodologías que permitan al educador

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles