Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética"

Transcripción

1 A) Interacción Magnética sobre cargas puntuales. 1.- Determina la fuerza que actúa sobre un electrón situado en un campo de inducción magnética B = k T cuando su velocidad v = i m/s. Datos: q e = 1, C 2.- Un electrón se acelera por la acción de una diferencia de potencial de 100 v y luego penetra en una región en la que existe un campo magnético uniforme de 2 T perpendicular a la trayectoria del electrón. Calcula la velocidad del electrón a la entrada del campo magnético. Halla el radio de la trayectoria que recorre el electrón en el interior del campo magnético y el periodo del movimiento. 3.- Un electrón con una energía cinética J penetra en un campo magnético uniforme de B = T perpendicular a su dirección: a) Con qué velocidad penetra el electrón en el interior del campo? b) A qué fuerza está sometido el electrón dentro del campo? c) Cuánto vale el radio de la trayectoria que describe? d) Cuántas vueltas describe el electrón en 0,1 s? Datos: m e = 9, kg; q e = 1, C 4.- Se introduce una partícula cargada en un campo magnético uniforme en dirección perpendicular al mismo, y se ve sometida a una fuerza que la hace describir una trayectoria determinada. De qué trayectoria se trata? Qué fuerza es la que se origina? Razona. 5.- Puede ser cero la fuerza magnética sobre una partícula cargada que se mueve en el interior de un campo magnético? Puede ser cero la fuerza eléctrica sobre una partícula cargada que se mueve en el interior de un campo eléctrico? Razona la respuesta. 6.- Una partícula con carga q y velocidad v penetra en un campo magnético perpendicular a la dirección de movimiento. a) Analice el trabajo realizado por la fuerza magnética y la variación de energía cinética de la partícula. b) Repita el apartado anterior en el caso de que la partícula se mueva en dirección paralela al campo y explique las diferencias entre ambos casos. 7.- Un protón entra en un campo magnético uniforme, B, con una determinada velocidad, v. Describa el tipo de movimiento que efectuará dentro del campo si: a) Los vectores v y B son paralelos. b) Los vectores v y B son perpendiculares. 8.- Una partícula con velocidad constante v, masa m y carga q entra en una región donde existe un campo magnético uniforme B, perpendicular a su velocidad. Realiza un dibujo de la trayectoria que seguirá la partícula. Cómo se ve afectada la trayectoria si en las mismas condiciones cambiamos únicamente el signo de la carga? 9.- Un electrón penetra dentro de un campo magnético uniforme, de intensidad 0,001 T, perpendicular a su velocidad. Si el radio de la trayectoria que describe el electrón es de 5 cm, halle: a) La velocidad. Sol: 8, m/s

2 b) El periodo del movimiento de la órbita que describe. Sol: 3, s Datos: masa del electrón: 9, kg; carga del electrón: 1, C Un protón penetra perpendicularmente en una región donde existe un campo magnético uniforme de valor 10 3 T y describe una trayectoria circular de 10 cm de radio. Realiza un esquema de la situación y calcula: a) La fuerza que ejerce el campo magnético sobre el protón e indica su dirección y sentido ayudándote de un diagrama. b) La energía cinética del protón. Sol: 7, J c) El número de vueltas que da el protón en 10 segundos. Sol: 1, vueltas Datos: q p = 1, C; m p = 1, kg La figura representa una región en la que existe un campo magnético uniforme B, cuyas líneas de campo son perpendiculares al plano del papel y saliendo hacia fuera del mismo. Si entran sucesivamente tres partículas con la misma velocidad v, y describe cada una de ellas la trayectoria que se muestra en la figura (cada partícula está numerada): a) Cuál es el signo de la carga de cada una de las partículas? Sol: Partícula 3 +; partícula 1 - ; partícula 2 sin carga b) En cuál de ellas es mayor el valor absoluto de la relación carga-masa (q/m)? Sol: partícula Un protón inicialmente en reposo se acelera bajo una diferencia de potencial de 10 5 voltios. A continuación entra en un campo magnético uniforme, perpendicular a la velocidad, y describe una trayectoria circular de 0,3 m de radio. Calcular el valor de la intensidad del campo magnético. Si se duplica el valor de esta intensidad, cuál será el radio de la trayectoria? Sol: 0,15 T; 0,15 m Datos: carga del protón = 1, C; masa del protón, m p = 1, kg En una región del espacio existe un campo magnético uniforme en el sentido negativo del eje Z. Indica, con ayuda de un esquema, la dirección y el sentido de la fuerza magnética en los siguientes casos: a) una partícula β (-1) que se mueve en el sentido positivo del eje X. b) una partícula α (He 2+ ) que se mueve en el sentido positivo del eje Z Un electrón y un protón describen trayectorias circulares en un campo magnético B con la misma velocidad lineal v. Cuál será la relación entre sus velocidades angulares? Datos: m e = 9, Kg. ; m p = 1, Kg.

3 15.- Un electrón se acelera desde el reposo por la acción de una diferencia de potencial de 10 4 V, para ser sometido posteriormente a un campo magnético uniforme de 0,4 T perpendicular a la trayectoria del electrón y entrante en el plano del papel. Determina: a) La velocidad del electrón al entrar en el campo magnético. b) El radio de la trayectoria seguida por el electrón dentro del ampo magnético. c) El período del movimiento circular del electrón. Datos: m e = 9, Kg.; q e = 1, C 16.- Un protón se mueve en una órbita circular de radio 0,65 m perpendicular a un campo magnético uniforme de 0,75 T. Calcula: a) La velocidad del protón. b) La fuerza que actúa sobre el protón. c) El tiempo que tarda el protón en recorrer dicha órbita. Datos: m p = 1, Kg.; q e = 1, C 17.- Dos isótopos de masas 19, Kg y 21, Kg respectivamente con la misma carga de ionización, son acelerados hasta que adquieren una velocidad constante de 6, m/s. Se les hace atravesar una región de campo magnético uniforme de 0,85 T cuyas líneas de campo son perpendiculares a la velocidad de las partículas. a) Determinar la relación entre los radios de las trayectorias que describe cada isótopo. b) Si han sido ionizados una sola vez, determina la separación entre los dos isótopos cuando han descrito una semicircunferencia. Datos: q e = 1, C 18.- Un electrón que se mueve a una velocidad de 10 6 m/s describe una órbita circular en el seno de un campo magnético uniforme de valor 0,1 T cuya dirección es perpendicular a la velocidad. Determina: a) El valor del radio de la órbita que describe el electrón. b) El número de vueltas que da el electrón en 0,001 segundo. Datos: m e = 9, Kg. ; q e = 1, C 19.- Un protón y una partícula α, previamente acelerados desde el reposo mediante diferencias de potencial distintas, penetran en una zona del espacio donde existe un campo magnético uniforme B perpendicular a sus velocidades. Ambas partículas describen trayectorias circulares con el mismo radio. Sabiendo que la velocidad del protón es v p = 10 7 m/s, se pide: a) Cociente de las velocidades (v α / v p ) de las partículas. b) Diferencia de potencial con la que se ha acelerado cada tipo de partícula Datos: q p = 1, C ; m p = 1, kg ; m α = 6, kg 20.- Un electrón penetra por la izquierda con una velocidad de 5000 m/s paralelamente al plano del papel. Perpendicular a su dirección y hacia dentro del papel existe un campo magnético constante de 0,8 T. a) Dibuja la trayectoria seguida por el electrón.

4 b) Calcula la fuerza que actúa sobre dicho electrón. c) Cuál es el radio de la órbita? Datos: m e = 9, Kg.; q e = 1, C 21.- Indica en qué dirección se desviarán las partículas que penetran en los siguientes campos magnéticos. El recuadro grande representa el campo magnético, y la flecha azul, la dirección y sentido de la velocidad de la partícula cargada En una región del espacio, donde existe un campo magnético uniforme, se observa la existencia de un electrón y un protón que tienen trayectorias circulares con el mismo radio. Serán también iguales los módulos de sus velocidades lineales? Recorrerán sus trayectorias con el mismo sentido de giro? Razona tus respuestas. Datos: q protón = 1, C; q electrón = 1, C; m protón = 1, kg; m electrón = 9, kg Un núcleo de 16 O, de carga +8 y masa m = 2, kg, penetra horizontalmente desde la izquierda con una velocidad de 5, m/s en un campo magnético uniforme de 0,04 T perpendicular a su dirección y hacia dentro del papel. Determina: a) La expresión vectorial de la fuerza que ejerce el campo magnético sobre el núcleo en el instante en que este penetra en el campo magnético. Sol: 2, j N b) El radio de la trayectoria que describe. Sol: 25,9 cm c) El periodo de revolución. e = 1, C. Sol: 3, s

5 B) Interacción magnética entre hilos conductores. 1.- Por dos conductores rectilíneos y de gran longitud, dispuestos paralelamente, circulan corrientes eléctricas de la misma intensidad y sentido. a) Dibuje un esquema, indicando la dirección y el sentido del campo magnético debido a cada corriente y del campo magnético total en el punto medio de un segmento que una a los dos conductores y coméntelo. b) Razone cómo cambiaría la situación al duplicar una de las intensidades y cambiar su sentido. 2.- Supón dos hilos metálicos largos, rectilíneos y paralelos, perpendiculares al plano del papel y separados 60 mm por los que circulan corrientes de 9 y 15 A, respectivamente, en el mismo sentido: a) Dibuja en un esquema el campo magnético resultante en el punto medio de la línea que une ambos conductores y calcula su valor. b) En la región entre los conductores, a qué distancia del hilo por el que circula la corriente de 9 A será nulo el campo magnético? Dato: 0 = Sol: x= 22,5 mm. 3.- Por dos hilos rectos, paralelos, muy largos y con 10 cm de separación, circulan dos corrientes del mismo sentido, una de 5 A y la otra de 2 A: a) Determina la posición de los puntos en los que se anula el campo magnético. Sol: x = 7,14 cm. b) En un esquema en el cuál las corrientes sean perpendiculares al papel y hacia dentro, indica la dirección del campo magnético en los puntos de la línea que pasa por los conductores. Dato: 0 = Un alambre recto horizontal transporta una corriente de 6,5 A en el sentido positivo del eje X, en un lugar donde existe un campo magnético uniforme de valor B =1,35 T en la dirección positiva del eje Y: a) Calcula la fuerza magnética que actúa sobre un metro de éste alambre. Sol: 8,775 N b) Si la masa de ese trozo de alambre es de 50 g, qué corriente debe transportar para quedar suspendido de forma que su peso sea compensado por la fuerza magnética? Sol: I = 0,36 A 5.- Dos conductores rectilíneos, indefinidos y paralelos, perpendiculares al plano XY, pasan por los puntos A (80, 0) y B (0, 60) según indica la figura, estando las coordenadas expresadas en centímetros. Las corrientes circulan por ambos conductores en el mismo sentido, hacia fuera del plano del papel, siendo el valor de la corriente I 1 de 6 A. Sabiendo que I 2 > I 1 y que el valor del campo magnético en el punto P, punto medio de la recta que une ambos conductores, es de B = T, determine: a) El valor de la corriente I 2. Sol: 9 A b) El módulo, la dirección y el sentido del campo magnético en el origen de coordenadas O, utilizando el valor de I 2 obtenido anteriormente. Sol: 3, T Datos: permeabilidad magnética del vacío, μ 0 = 4π 10 7 N/A 2.

6 6.- Sean dos conductores rectilíneos paralelos por los que circulan corrientes eléctricas de igual intensidad y sentido. a) Explique qué fuerzas se ejercen entre sí ambos conductores. b) Represente gráficamente la situación en la que las fuerzas son repulsivas, dibujando el campo magnético y la fuerza sobre cada conductor. 7.- Dos conductores rectilíneos, paralelos y de gran longitud, están separados por una distancia de 10 cm. Por cada uno de ellos circula una corriente eléctrica en sentidos opuestos, como se indica en la figura, de valores I 1 = 8 A e I 2 = 6 A. a) Determina la expresión vectorial del campo magnético en el punto P situado entre los dos conductores a 4 cm del primero. Sol: T b) Determina la fuerza que por unidad de longitud ejerce el primer conductor sobre el segundo. Para ello haz un dibujo en el que figuren la fuerza y los vectores cuyo producto vectorial te permiten determinar la dirección y sentido de dicha fuerza. La fuerza es atractiva o repulsiva? Dato: μ 0 = 4π 10 7 T m/a. 8.- Se tienen dos hilos conductores rectos, paralelos e indefinidos, separados una distancia d. Por el conductor 1 circula una intensidad I 1 = 2 A hacia arriba (ver figura). a) Qué intensidad I 2, y en qué sentido, debe circular por el conductor 2 para que se anule el campo magnético en el punto P 2? Sol: 1 A b) La distancia que separa los conductores es d = 20 cm. Calcula el campo magnético en los puntos P 1 y P 2 cuando I 2 = I 1 = 2 A (hacia arriba) μ 0 = 4π 10 7 N/A 2. Sol: En P 1 es nulo. En P 2 es T

7 C) Inducción electromagnética: Ley de Faraday - Lenz 1.- Una bobina de sección circular gira alrededor de uno de sus diámetros en un campo magnético uniforme de dirección perpendicular al eje de giro. Sabiendo que el valor máximo de la fuerza electromotriz inducida es de 50 V cuando la frecuencia es de 60 Hz, determina el valor máximo de la fuerza electromotriz inducida: a) si la frecuencia es de 180 Hz y la bobina se encuentra en presencia del mismo campo magnético. b) si la frecuencia es de 120 Hz y el valor del campo magnético en que se encuentra la bobina se duplica. 2.- Un solenoide de 200 vueltas y de sección circular de diámetro 8 cm está situado en un campo magnético uniforme, de valor 0,5 T, cuya dirección forma un ángulo de 60º con el eje del solenoide. Si en un tiempo de 100 ms disminuye el valor del campo magnético uniformemente a cero, determina: a) El flujo magnético que atraviesa inicialmente el solenoide. b) La fuerza electromotriz inducida en dicho solenoide. 3.- Una espira cuadrada de 10 cm de lado situada en el plano X, se traslada con una velocidad constante de 1 m/s, en dirección perpendicular a las líneas de fuerza de un campo magnético uniforme B de 2 T, como se indica en la figura. Determina la fuerza electromotriz inducida en la espira cuando esta sale del campo magnético. Sol: FEM = 0,2 v 4.- Una espira cuadrada de 5 cm de lado situada en el plano XY, se desplaza con velocidad v = 2 i cm/s, penetrando en el instante t =0 en una región del espacio donde hay un campo magnético uniforme B = k mt, según indica en la figura:

8 a) Determina la FEM inducida y represéntala gráficamente en función del tiempo. Sol: FEM = V b) Calcula la intensidad de la corriente en la espira si su resistencia es de 10. Haz un esquema indicando el sentido de la corriente. Sol: I = A 5.- Una espira metálica circular, de 1 cm de radio y resistencia 10-2, gira en torno a un eje diametral con una velocidad angular de 2 rad/s en una región donde hay un campo magnético uniforme de 0,5 T dirigido según el sentido positivo del eje Z. Si el eje de giro de la espira tiene la dirección del eje x y en el instante t =0 la espira se encuentra situada en el plano XY, determina: a) La expresión de la FEM inducida en la espira en función del tiempo. Sol: 9, sen (6,28 t) V b) El valor máximo de la intensidad de la corriente que recorre la espira. Sol: I = 9, A 6.- Una espira circular de 20 cm de radio está situada perpendicularmente a un campo magnético de inducción 0,01T. a) Cuánto vale el flujo que lo atraviesa? Sol: Wb. b) Supón que la espira está situada paralelamente al campo magnético; cuánto vale ahora el flujo? Sol: Un solenoide de 5 cm de longitud está formado por 200 espiras. Calcula el campo magnético en el eje del solenoide cuando le llega una corriente de 0,5 A en los casos siguientes: a) En el eje del solenoide hay aire. Sol: 2, T b) En el eje del solenoide se introduce un núcleo de hierro dulce cuya permeabilidad relativa es Dato: μ 0 = 4π 10 7 N A En un campo magnético uniforme de 1,5 T se introduce una bobina de 50 espiras de 4 cm de diámetro. Determina el flujo que la atraviesa si: a) El campo tiene la dirección del eje de la bobina. Sol: 9, Wb b) El campo forma un ángulo de 30 con el eje de la bobina. Sol: 8, Wb c) El campo forma un ángulo de 30 con la superficie de la primera espira de la bobina. Sol: 4, Wb

9 9.- Una espira cuadrada se desplaza hacia una zona donde hay un campo magnético uniforme perpendicular al plano de la espira, como se indica en la figura. a) Deduzca de forma razonada el sentido de la corriente inducida en la espira cuando la espira está entrando en la zona del campo magnético. b) Supongamos que la espira anterior sigue con su movimiento. Indica cuál es el sentido de la corriente inducida cuando está completamente introducida en el campo magnético y cuando sale por la derecha hasta que está completamente fuera del campo Un anillo conductor se coloca perpendicularmente a un campo magnético uniforme B. En qué caso será mayor la fuerza electromotriz inducida en el anillo? a) Si B disminuye linealmente con el tiempo, pasando de 0,5 T a 0 T en 1 ms. b) Si B aumenta linealmente con el tiempo, pasando de 1 T a 1,2 T en 1 ms. Sol: a) 11.- La espira cuadrada de la figura, de 20 cm de lado, es atravesada por un campo magnético uniforme B = 2 T, que entra desde arriba en dirección perpendicular al plano del papel. Si disminuimos el campo de forma uniforme hasta B = 0 en un tiempo de 1 minuto, cuál es la fuerza electromotriz inducida y el sentido de la misma? Sol: 1, V 12.- Una espira conductora de 10 cm de radio se encuentra en una región del espacio donde existe un campo magnético de dirección paralela a la del eje de la espira y de módulo variable según la expresión B = 5 sen 314 t (mt). Calcular la expresión de la fem inducida en la espira. Sol: 4, cos (314 t) v 13.- Una espira metálica circular, de 1 cm de radio y resistencia 10-2 Ω, gira en torno a un eje diametral con una velocidad angular de 2 rad/s en una región donde hay un campo magnético uniforme de 0,5 T dirigido según el sentido positivo del eje Z. Si el eje de giro de la espira tiene la dirección del eje X y en el instante t = 0 la espira se encuentra situada en el plano XY, determine: a) La expresión de la fem inducida en la espira en función del tiempo.

10 Sol: 9, sen (2πt) v b) El valor máximo de la intensidad de la corriente que recorre la espira. Sol: 9, A 14.- Una bobina circular de 4 cm de radio y 30 vueltas se sitúa en un campo magnético dirigido perpendicularmente al plano de la bobina cuyo módulo en función del tiempo es B(t) = 0,01 t + 0,04 t 2, donde t está en segundos y B, en teslas. Determina: a) El flujo magnético en la bobina en función del tiempo. Sol: 1, t + 6, t 2 Wb b) La fuerza electromotriz inducida en el instante t = 5,00 s. Sol: -62 mv 15.- La figura muestra un hilo conductor rectilíneo y una espira conductora. Por el hilo circula una corriente continua. Justifica si se inducirá corriente en la espira en los siguientes casos: a) La espira se mueve hacia la derecha. b) La espira se mueve hacia arriba paralelamente al hilo. c) La espira se encuentra en reposo a) Explique el fenómeno de inducción electromagnética y enuncie la ley de Faraday-Henry. b) Una espira circular se encuentra situada perpendicularmente a un campo magnético uniforme. Razone qué fuerza electromotriz se induce en la espira, al girar con velocidad angular constante en torno a un eje, en los siguientes casos: i. El eje es un diámetro de la espira. ii. El eje pasa por el centro de la espira y es perpendicular a su plano.

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES 1.- Un conductor rectilíneo indefinido transporta una corriente de 10 A en el sentido positivo del eje Z. Un protón que se mueve a 2 105 m/s, se encuentra a 50

Más detalles

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el FUERZAS SOBRE CORRIENTES 1. Un conductor de 40 cm de largo, con una intensidad de 5 A, forma un ángulo de 30 o con un campo magnético de 0,5 T. Qué fuerza actúa sobre él?. R: 0,5 N 2. Se tiene un conductor

Más detalles

Magnetismo e Inducción electromagnética. PAEG

Magnetismo e Inducción electromagnética. PAEG 1. Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se inducirá

Más detalles

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO http://www.juntadeandalucia.es/averroes/copernico/fisica.htm Ronda de las Huertas. Écija. e-mail: emc2@tiscali.es ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO 1. Una carga eléctrica, q = 3,2.10-19 C,

Más detalles

PROBLEMAS DE INDUCCIÓN MAGNÉTICA

PROBLEMAS DE INDUCCIÓN MAGNÉTICA PROBLEMAS DE INDUCCIÓN MAGNÉTICA 1.- Una varilla conductora, de 20 cm de longitud se desliza paralelamente a sí misma con una velocidad de 0,4 m/s, sobre un conductor en forma de U y de 8 Ω de resistencia.el

Más detalles

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com CAMPO Y FUERZA MAGNÉTICA 1- a) Explique las características de la fuerza sobre una partícula cargada que se mueve en un campo magnético uniforme. Varía la energía cinética de la partícula? b) Una partícula

Más detalles

Magnetismo e inducción electromagnética. Ejercicios PAEG

Magnetismo e inducción electromagnética. Ejercicios PAEG 1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se

Más detalles

La fem inducida es F 0 0 0,251

La fem inducida es F 0 0 0,251 Campo Magnético 01. El flujo magnético que atraviesa una espira es t -t en el intervalo [0, ]. Representa el flujo y la fem inducida en función del tiempo, determinando el instante en que alcanzan sus

Más detalles

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO C9. 1 Aceleramos iones de los isótopos C-12, C-13 y C-14 con una d.d.p. de 100 kv y los hacemos llegar a un espectrógrafo de masas perpendicularmente a la

Más detalles

Campo Magnético 1.- Academia, Librería, Informática Diego

Campo Magnético 1.- Academia, Librería, Informática Diego Campo Magnético 1.- brújula que se orienta según la dirección N S del campo magnético terrestre, que supondremos aproximadamente horizontal. En paralelo a la brújula y a una distancia d = 5 cm por encima

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios.

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios. PROBLEMAS DE CAMPO MAGNÉTICO 1. Las líneas de campo gravitatorio y eléctrico pueden empezar o acabar en masas o cargas, sin embargo, no ocurre lo mismo con las líneas de campo magnético que son líneas

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C.

LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. Giancoli AL DESARROLLAR LOS CUESTIONARIOS, TENER EN CUENTA LOS PROCESOS

Más detalles

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo 1. El módulo de la intensidad del campo gravitatorio en la superficie de un planeta de masa M y de radio R es g. Cuál será

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández Fuerza de Lorentz: Efecto del campo magnético sobre una carga 1. (48-S09) Son verdaderas o falsas las siguientes afirmaciones? Razone su respuesta. a) La fuerza ejercida por un campo magnético sobre una

Más detalles

Electrotecnia. Problemas del tema 6. Inducción electromagnética

Electrotecnia. Problemas del tema 6. Inducción electromagnética Problema.- Un cuadro de 400 cm de sección y con 0 espiras, se encuentra situado en la dirección normal a un campo magnético de 0.4 T y gira hasta situarse paralelamente al campo, transcurriendo 0.5 s.

Más detalles

Capítulo 18. Biomagnetismo

Capítulo 18. Biomagnetismo Capítulo 18 Biomagnetismo 1 Fuerza magnética sobre una carga La fuerza que un campo magnético B ejerce sobre una partícula con velocidad v y carga Q es: F = Q v B El campo magnético se mide en teslas,

Más detalles

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral:

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral: P.A.U. MADRID JUNIO 2005 Cuestión 1.- El nivel de intensidad sonora de la sirena de un barco es de 60 db a 10 m de distancia. Suponiendo que la sirena es un foco emisor puntual, calcule: a) El nivel de

Más detalles

Magnetismo e Inducción electromagnética. PAEG

Magnetismo e Inducción electromagnética. PAEG 1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se

Más detalles

ELECTROMAGNETISMO Profesor: Juan T. Valverde

ELECTROMAGNETISMO Profesor: Juan T. Valverde CAMPO MAGNÉTICO 1.- Considere un átomo de hidrógeno con el electrón girando alrededor del núcleo en una órbita circular de radio igual a 5,29.10-11 m. Despreciamos la interacción gravitatoria. Calcule:

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en

Más detalles

CUESTIONES ELECTROMAGNETISMO Profesor: Juan T. Valverde

CUESTIONES ELECTROMAGNETISMO Profesor: Juan T. Valverde 1.- Cómo son las líneas de fuerza del campo eléctrico producido por un hilo rectilíneo, infinito y uniformemente cargado? (Junio 2000) En cada punto el campo, sería perpendicular al cable pues cada elemento

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón?

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón? ANEXO 1. FÍSICA. 1- Compara la fuerza eléctrica y la fuerza gravitacional entre: a- Dos electrones. b- Un protón y un electrón. Carga del electrón: e = 1,6x10-19 C Masa del protón: 1,67x10-27 Kg Masa del

Más detalles

Departamento de Física y Química. PAU Física. Modelo 2010/2011.

Departamento de Física y Química. PAU Física. Modelo 2010/2011. 1 PAU Física. Modelo 2010/2011. OPCIÓN A Cuestión 1.- Un cuerpo de masa 250 g unido a un muelle realiza un movimiento armónico simple con una recuencia de 5 Hz Si la energía total de este sistema elástico

Más detalles

III A - CAMPO ELÉCTRICO

III A - CAMPO ELÉCTRICO 1.- Una carga puntual de 4 µc se encuentra localizada en el origen de coordenadas y otra, de 2 µc en el punto (0,4) m. Suponiendo que se encuentren en el vacío, calcula la intensidad de campo eléctrico

Más detalles

/Ejercicios de Campo Eléctrico

/Ejercicios de Campo Eléctrico /Ejercicios de Campo Eléctrico 1-Determine la fuerza total actuante sobre q2 en el sistema de la figura. q 1 = 12 µ C q 2 = 2.0 µ C q 3 = 12 µ C a= 8,0 cm b= 6,0 cm 2-Determine la fuerza total actuante

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C) Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo

Más detalles

Campo Magnético. Cuestiones y problemas de las PAU-Andalucía

Campo Magnético. Cuestiones y problemas de las PAU-Andalucía Campo Magnético. Cuestiones y problemas de las PAU-Andalucía Cuestiones 1. a) (12) Fuerza magnética sobre una carga en movimiento; ley de Lorentz. b) Si la fuerza magnética sobre una partícula cargada

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

s sufre, por ese campo magnético, una fuerza

s sufre, por ese campo magnético, una fuerza Problemas de Campo Magnético. 1. En el sistema de referencia ( O; i, j, k ) un hilo conductor colocado en la dirección del eje OY, tiene una intensidad de 10 A en el sentido positivo de dicho eje. Si hay

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 10 junio 2015

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 10 junio 2015 2015-Junio A. Pregunta 3.- Una varilla conductora desliza sin rozamiento con una velocidad de 0,2 m s -1 sobre unos raíles también conductores separados 2 cm, tal y como se indica en la figura. El sistema

Más detalles

Electrostática. Procedimientos

Electrostática. Procedimientos Electrostática. Procedimientos 1. Calcula a qué distancia tendrían que situarse un electrón y un protón de manera que su fuerza de atracción eléctrica igualase al peso del protón. 0,12 m 2. Recuerdas la

Más detalles

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actiidades del final de la unidad 1. El extremo A de un imán recto, A, repele al extremo C de otro imán recto, CD. Si suspendemos el imán CD mediante un hilo, su extremo D apunta hacia el sur geográfico.

Más detalles

Guía N 4: Campo Magnético, Ley de Ampere y Faraday e Inductancia

Guía N 4: Campo Magnético, Ley de Ampere y Faraday e Inductancia Física II Electromagnetismo-Física B C/014 Guía N 4: Problema 1. Un electrón se mueve en un campo magnético B con una velocidad: experimenta una fuerza de 5 5 v (4 10 i 7.1 10 j) [ m / s] F (.7 10 13i

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 4: ELECTROMAGNETISMO F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ;

Más detalles

Índice. Introducción Campo magnético Efectos del campo magnético sobre. Fuentes del campo magnético

Índice. Introducción Campo magnético Efectos del campo magnético sobre. Fuentes del campo magnético Campo magnético. Índice Introducción Campo magnético Efectos del campo magnético sobre Carga puntual móvil (Fuerza de Lorentz) Conductor rectilíneo Espira de corriente Fuentes del campo magnético Carga

Más detalles

(97-R) a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta.

(97-R) a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta. Campo electromagnético Cuestiones (96-E) a) Fuerza magnética sobre una carga en movimiento. b) En qué dirección se debe mover una carga en un campo magnético para que no se ejerza fuerza sobre ella? (97-E)

Más detalles

Bolilla 10: Magnetismo

Bolilla 10: Magnetismo Bolilla 10: Magnetismo 1 Bolilla 10: Magnetismo La fuerza magnética es una de las fuerzas fundamentales de la naturaleza. Si bien algunos efectos magnéticos simples fueron observados y descriptos desde

Más detalles

BLOQUE I - CUESTIONES Opción A Calcula el cociente entre la energía potencial y la energía cinética de un satélite en orbita circular.

BLOQUE I - CUESTIONES Opción A Calcula el cociente entre la energía potencial y la energía cinética de un satélite en orbita circular. El alumno realizará una opción de cada uno de los bloques La puntuación máxima de cada problema es de puntos, y la de cada cuestión es de 1,5 puntos. LOQUE I - CUESTIONES Calcula el cociente entre la energía

Más detalles

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre:

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: 1. (2 puntos) 1.1 En las siguientes afirmaciones, indica verdadero (V) o falso (F) según corresponda. A. La

Más detalles

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato EL CAMPO ELÉCTRICO Física de 2º de Bachillerato Los efectos eléctricos y magnéticos son producidos por la misma propiedad de la materia: la carga. Interacción electrostática: Ley de Coulomb Concepto de

Más detalles

4. Campo magnético. Fuerza de Lorentz. Teorema de Ampère. Inducción electromagnética. Corrientes de Foucault. Energía en un campo magnético.

4. Campo magnético. Fuerza de Lorentz. Teorema de Ampère. Inducción electromagnética. Corrientes de Foucault. Energía en un campo magnético. 4. Campo magnético. Fuerza de Lorentz. Teorema de Ampère. Inducción electromagnética. Corrientes de Foucault. Energía en un campo magnético. 64. Una sola espira circular de radio 8,5 cm ha de producir

Más detalles

Unidad 9. Fuerza magnética y Campo Magnético

Unidad 9. Fuerza magnética y Campo Magnético Unidad 9. Fuerza magnética y Campo Magnético Física 2 Basado en Bauer/Westfall 2011, Resnick 1995 y Ohanian/Markert, 2009 El alambre recto conduce una corriente I grande, y hace que las pequeñas partículas

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 4: ELECTROMAGNETISMO F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ;

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

UNIDAD 8. Actividades de final de unidad. Ejercicios básicos

UNIDAD 8. Actividades de final de unidad. Ejercicios básicos UNDAD 8 Actividades de final de unidad Ejercicios básicos 1. Realiza las siguientes actividades: a) ndica gráficamente y justifica el sentido de la corriente inducida en una espira rectangular, si se aleja

Más detalles

TEMA 3.- Campo eléctrico

TEMA 3.- Campo eléctrico Cuestiones y problemas resueltos de Física º Bachillerato Curso 013-014 TEMA 3.- Campo eléctrico CUESTIONES 1.- a) Una partícula cargada negativamente pasa de un punto A, cuyo potencial es V A, a otro

Más detalles

32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto

32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto 2. Conductores y dieléctricos. Capacidad, condensadores. Energía electrostática. 24. Cargamos un condensador de 100 pf hasta que adquiere una ddp de 50 V. En ese momento desconectamos la batería. Conectamos

Más detalles

3. Determina el valor del campo eléctrico en el punto B del esquema de la siguiente figura:

3. Determina el valor del campo eléctrico en el punto B del esquema de la siguiente figura: ampo eléctrico 1 Se tienen dos cargas eléctricas puntuales, una de 3 µ y la otra de - 3 µ, separadas una distancia de 0 cm alcula la intensidad del campo eléctrico y el potencial eléctrico en los siguientes

Más detalles

Módulo 1: Electrostática Fuerza eléctrica

Módulo 1: Electrostática Fuerza eléctrica Módulo 1: Electrostática Fuerza eléctrica 1 Cargas eléctricas y fuerzas Hay dos tipos de cargas cargas positivas y cargas negativas REPELEN REPELEN ATRAEN Fuerzas del mismo signo se repelen, mientras que

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

UNIDAD 4. CAMPO MAGNÉTICO

UNIDAD 4. CAMPO MAGNÉTICO UNIDAD 4. CAMPO MAGNÉTICO P.IV- 1. Un protón se mueve con una velocidad de 3 10 7 m/s a través de un campo magnético de 1.2 T. Si la fuerza que experimenta es de 2 10 12 N, qué ángulo formaba su velocidad

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

ÓPTICA FÍSICA MODELO 2016

ÓPTICA FÍSICA MODELO 2016 ÓPTICA FÍSICA MODELO 2016 1- Un foco luminoso puntual está situado en el fondo de un recipiente lleno de agua cubierta por una capa de aceite. Determine: a) El valor del ángulo límite entre los medios

Más detalles

CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo.

CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo. 1. A qué altura sobre la superficie de la Tierra colocaremos un satélite para que su órbita sea geoestacionaria sobre el un punto del Ecuador? RT = 6370 Km (R h= 36000 Km) 2. La Luna en su movimiento uniforme

Más detalles

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97. RELACION DE PROBLEMAS DE GEOMETRIA Problemas propuestos para la prueba de acceso del curso 996/97. º. - Explica cómo se puede hallar el área de un triángulo, a partir de sus coordenadas, en el espacio

Más detalles

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador.

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador. UD6 FUERZAS Y MOVIMIENTO EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si cambia de posición con respecto al sistema de referencia; en caso contrario, está en reposo. Sistema de referencia

Más detalles

Ejercicios Física PAU Comunidad de Madrid 2000-2016. Enunciados enrique@fiquipedia.es. Revisado 23 septiembre 2015.

Ejercicios Física PAU Comunidad de Madrid 2000-2016. Enunciados enrique@fiquipedia.es. Revisado 23 septiembre 2015. 2016-Modelo B. Pregunta 4.- Un foco luminoso puntual está situado en el fondo de un recipiente lleno de agua cubierta por una capa de aceite.determine: a) El valor del ángulo límite entre los medios aceite

Más detalles

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

TEMA 4.- Campo magnético

TEMA 4.- Campo magnético TEMA 4.- Campo magnético CUESTIONES 31.- a) Dos conductores rectos y paralelos están separados 10 cm. Por ellos circulan, respectivamente, corrientes de 10 A y 20 A en el mismo sentido. Determine a qué

Más detalles

PROBLEMAS FÍSICA MODERNA

PROBLEMAS FÍSICA MODERNA PROBLEMAS FÍSICA MODERNA 1.- (Jun 2014) Sobre un cierto metal cuya función de trabajo (trabajo de extracción) es 1,3eV incide un haz de luz cuya longitud de onda es 662nm. Calcule: a) La energía cinética

Más detalles

Campo magnético creado por cargas puntuales móviles.

Campo magnético creado por cargas puntuales móviles. Introducción Volvamos ahora considerar los orígenes del campo magnético B. Las primeras fuentes conocidas del magnetismo fueron los imanes permanentes. Un mes después de que Oersted anunciarse su descubrimiento

Más detalles

Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas

Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas 2.ESTÁTICA La palabra estática se deriva del griego statikós que significa inmóvil. En virtud de que la dinámica estudia la causa que originan la causa del reposo o movimiento de los cuerpos, tenemos que

Más detalles

2 (6370 + 22322) 10 = 2.09 10 J

2 (6370 + 22322) 10 = 2.09 10 J OPCIÓN A 1. La Agencia Espacial Europea lanzó el pasado 27 de Marzo dos satélites del Sistema de Navegación Galileo. Dichos satélites de masa 1,5 toneladas cada uno, orbitan ya a 22 322 km sobre la superficie

Más detalles

PROBLEMAS FÍSICA MODERNA

PROBLEMAS FÍSICA MODERNA PROBLEMAS FÍSICA MODERNA 1.- (Sept 2012) El periodo de semidesintegración de un isótopo radiactivo es de 1840 años. Si inicialmente se tiene una muestra de 30g de material radiactivo, a) Determine qué

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

CAMPO GRAVITATORIO. CUESTIONES Y PROBLEMAS.

CAMPO GRAVITATORIO. CUESTIONES Y PROBLEMAS. CAMPO GRAVITATORIO. CUESTIONES Y PROBLEMAS. E4A.S2013 Un satélite artificial de 1200 kg se eleva a una distancia de 500 km de la superficie de la Tierra y se le da un impulso mediante cohetes propulsores

Más detalles

La inducción electromagnética

La inducción electromagnética 5 La inducción electromagnética PRESENTACIÓN 171 5 La inducción electromagnética OBJETIOS CONTENIDOS Conceptos Procedimientos, destrezas y habilidades Actitudes 17 PROGRAMACIÓN DE AULA EDUCACIÓN EN ALORES

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

GUIA DE ESTUDIO TEMA: DINAMICA

GUIA DE ESTUDIO TEMA: DINAMICA GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba

Más detalles

E L E C T R I C I D A D. Acción de un Campo Magnético sobre una Corriente. Acción de un Campo Magnético sobre una Corriente

E L E C T R I C I D A D. Acción de un Campo Magnético sobre una Corriente. Acción de un Campo Magnético sobre una Corriente E L E C T R I C I D A D Acción de un Campo Magnético sobre una Corriente Acción de un Campo Magnético sobre una Corriente E L E C T R I C I D A D Una partícula cargada que se mueve en presencia de un campo

Más detalles

1. V F La fem inducida en un circuito es proporcional al flujo magnético que atraviesa el circuito.

1. V F La fem inducida en un circuito es proporcional al flujo magnético que atraviesa el circuito. Eng. Tèc. Telecom. So i Imatge TEORIA TEST (30 %) 16-gener-2006 PERM: 2 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto;

Más detalles

Magnetismo. Slide 1 / 49. Slide 2 / 49. Slide 3 / 49. Materiales Magnéticos. Imanes

Magnetismo. Slide 1 / 49. Slide 2 / 49. Slide 3 / 49. Materiales Magnéticos. Imanes Slide 1 / 49 Magnetismo Materiales Magnéticos Slide 2 / 49 Muy pocos materiales exhiben un fuerte magnetismo. stos materiales se llaman ferromagnéticos. Los ejemplos incluyen hierro, cobalto, níquel y

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

CUESTIONARIO 1 DE FISICA 3

CUESTIONARIO 1 DE FISICA 3 CUESTIONARIO 1 DE FISICA 3 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de carga eléctrica y porqué se llaman así? 2.- Menciona los procedimientos para obtener

Más detalles

PAÍS VASCO / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

PAÍS VASCO / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO POBLEMA BLOQUE A Elegir un bloque de problemas y dos cuestiones. La energía de extracción de l cesio e q,9 ev. a) Hallar la frecuencia umbral y la longitud de onda umbral del efecto fotoelécrico. b) Hallar

Más detalles

Campo Eléctrico. Ejercicios PAEG

Campo Eléctrico. Ejercicios PAEG 1. Dos cargas puntuales q 1 =+2 10-9 C y q 2 = -25 10-9 C se encuentran situadas en los vértices del triángulo rectángulo de la figura: a) La intensidad del campo eléctrico en el vértice A b) El potencial

Más detalles

ELECTROMAGNETISMO 8.1. LOS IMANES 8.2. LA EXPERIENCIA DE OERSTED

ELECTROMAGNETISMO 8.1. LOS IMANES 8.2. LA EXPERIENCIA DE OERSTED 8 ELECTROMAGNETSMO 8.1. LOS MANES 1. En la actualidad vivimos rodeados de imanes. Cita tres lugares, al menos, donde existan imanes. El uso de imanes es muy frecuente en aparatos de uso cotidiano. Cualquier

Más detalles

III A - CAMPO ELÉCTRICO

III A - CAMPO ELÉCTRICO 1.- Una carga puntual de 4 µc se encuentra localizada en el origen de coordenadas y otra, de 2 µc en el punto (0,4) m. Suponiendo que se encuentren en el vacío, calcula la intensidad de campo eléctrico

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA INDUCCIÓN

INTERACCIÓN ELECTROMAGNÉTICA INDUCCIÓN INTERCCIÓN ELECTROMGNÉTIC INDUCCIÓN IES La Magdalena. vilés. sturias En el tema dedicado al electromagnetismo se ha visto que una corriente eléctrica crea un campo magnético. Podríamos preguntarnos si

Más detalles

P. A. U. FÍSICA Madrid Junio 2002. Un planeta esférico tiene un radio de 3000 Km y la aceleración de la gravedad en su superficie es 6 m/s 2.

P. A. U. FÍSICA Madrid Junio 2002. Un planeta esférico tiene un radio de 3000 Km y la aceleración de la gravedad en su superficie es 6 m/s 2. P. A. U. FÍSICA Madrid Junio 2002 Cuestión 1.- Un planeta esférico tiene un radio de 3000 Km y la aceleración de la gravedad en su superficie es 6 m/s 2. a) Cuál es su densidad media? b) Cuál es la velocidad

Más detalles

UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICO

UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICO UNIDAD 4. CAMPOS GRAVITATORIO Y ELÉCTRICO u r 2 P.IV- 1. Dado el campo vectorial Fr k r u r, donde k es una constante y es el vector unitario en la dirección y sentido del desplazamiento, calcular la circulación

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Movimiento Circular Movimiento Armónico

Movimiento Circular Movimiento Armónico REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año GUIA # 9 /10 PARTE ( I ) Movimiento

Más detalles

TRABAJO POTENCIA - ENERGÍA

TRABAJO POTENCIA - ENERGÍA PROGRM DE VERNO DE NIVELCIÓN CDÉMIC 15 TRJO POTENCI - ENERGÍ 1. Un sujeto jala un bloque con una fuerza de 7 N., como se muestra, y lo desplaza 6 m. Qué trabajo realizó el sujeto? (m = 1 kg) a) 1 J b)

Más detalles

Los fenómenos magnéticos se observaron por primera vez al menos hace 2,500 años

Los fenómenos magnéticos se observaron por primera vez al menos hace 2,500 años Campo Magnético Los fenómenos magnéticos se observaron por primera vez al menos hace 2,500 años Campo Magnético Campo Magnético Campo Magnético Campo Magnético Campo Magnético Campo Magnético Campo Magnético

Más detalles

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

Ejercicios resueltos de Campo Eléctrico

Ejercicios resueltos de Campo Eléctrico Ejercicios resueltos de Campo Eléctrico. Hallar la intensidad del campo eléctrico, en el aire, a una distancia de 30 cm de la carga q 5x C. 500 [N/C] q 5x C r 0,3 m kq kq x x5x E E 500 r r 0,3. Hallar

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 8 diciembre 2014

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 8 diciembre 2014 Ejercicios Física PAU Comunidad de Madrid -1. Enunciados enrique@fiquipedia.es evisado 8 diciembre 14 1-Modelo B. Pregunta 3.- Dos hilos conductores A y B, rectilíneos, indefinidos y paralelos se encuentran

Más detalles