DERIVADAS DE UNA FUNCIÓN DE DOS VARIABLES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DERIVADAS DE UNA FUNCIÓN DE DOS VARIABLES"

Transcripción

1 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Deriada respec de un ecr Deriadas direccinales Deriadas parciales Sea =( una unción deinida en un subcnjun DR sea =(D Si querems esudiar la ariación de en el pun del plan aín euclíde R n queda más remedi que elegir una dirección en para medirla Sea u un ecr del plan ecrial euclíde R : ( hu ( Cuand eisa sea ini el lím se denmina deriada de en el h h pun respec del ecr u Si además u =1 ennces el límie anerir se denmina deriada direccinal de en en la dirección del ecr u Se designa pr ( u Si u =(1= i se denmina simplemene deriada parcial de respec de la ariable Se designa ( bien ( Es decir: ( h(1 ( ( ( = ( = lím lím h h h h ( h Análgamene si u =(1= j se denmina deriada parcial de respec de la ariable Se designa ( bien ( Es decir: ( + h(1 ( = ( = lím h h ( = lím h ( + h h ( Unidad Dcene de Maemáicas 1

2 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Gradiene de una unción en un pun Si esán deinidas las deriadas parciales de una unción =( en un pun =(D se denmina ecr gradiene de en el pun simplemene gradiene de en se designa ( al ecr ( = ( ( (i ( j Deriadas parciales de rden superir Sea la unción =( Si eisen las deriadas parciales en d su dmini al mens en una pare de él pueden deinirse las uncines dnde eisan cm uncines de e Se bienen así cuar deriadas parciales de segund rden que designarems: bien bien bien bien Terema de las deriadas mias de Schwar Si la unción =( sus deriadas parciales esán deinidas sn cninuas en un enrn de un pun ( ennces se eriica que: ( ( Las reglas de la cadena 1 Sea una unción =( que iene deriadas parciales cninuas en ( ( sean ds uncines dierenciables en Ennces la unción cmpuesa ( ( ( es dierenciable en se eriica que: Unidad Dcene de Maemáicas

3 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES d d d d d d d d d d ( ( Supngams ahra una unción =( que iene deriadas parciales cninuas en ( sean ds uncines (u (u La unción cmpuesa (u (u es una unción de u en ls puns dnde esá deinida eriicándse además que si e ienen deriadas parciales cninuas respec de u ennces eisen las deriadas parciales de respec de u que ienen dadas pr las epresines: u u u De manera análga se pdrían deinir las reglas de la cadena para uncines de res más ariables Aplicación de la 1ª regla de la cadena al cálcul de deriadas direccinales Sea una supericie =( deinida en un subcnjun DR ( D u u u i u j al que u querems calcular la u 1 1 Dad un ecr uniari 1 deriada direccinal de la supericie en el pun en la dirección de u La reca aín deerminada pr u iene cm ecuacines paraméricas Aplicand la 1ª regla de la cadena u u 1 ( u d = d d d a que u1 u d d d d d d u 1 u ( u 1 u Recrdems que la aplicación crreca de la regla de la cadena ns eige que eisan las deriadas parciales sean cninuas en el pun Unidad Dcene de Maemáicas 3

4 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Ejercici: Hallar la deriada direccinal de la unción (= 3 en =(1 en la dirección del ecr i j Slución: ( u = ( u 1 u En primer lugar hallams las crdenadas de un ecr uniari en la dirección de que será u i j u1 u r r lad (1 3 1 =( u =(41 = 16 8 Lueg ( u = ( u Deriación de uncines implícias Algunas supericies del espaci de res dimensines se pueden represenar mediane ecuacines caresianas de la rma (= Se dice que dicha ecuación es una ecuación implícia de la supericie A eces es psible despejar de la ecuación anerir una de las ariables en unción de las ras ds beniéndse una arias ecuacines de la rma =( per en general es n siempre es psible Ejempls: 1-La ecuación implícia: 1 describe un elipside Despejand ems que el elipside ambién iene deinid pr las ecuacines eplícias La supericie descria pr la ecuación implícia e 4 n se puede represenar pr una arias ecuacines eplícias En (= cnsiderams la ariable dependiene de las ariables e Es decir =(: ( G( Si DR G G es el dmini de ennces en D: Unidad Dcene de Maemáicas 4

5 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Aplicand la segunda regla de la cadena a la unción implícia se biene: d d d d Ejercici: Cnsiderand =( hallar el gradiene del hiperblide = en (1 Slución: ( = ( ( Ahra bien (= = lueg ( = 1 5 lan angene a una supericie en un pun Sea =( la ecuación de una supericie S deinida en un subcnjun DR ( D Designams pr =( pr ( el pun crrespndiene en la supericie S Cuand eisa el plan angene a la supericie S en el pun cniene a das las recas angenes a la supericie pr dich pun En paricular cniene a las recas angenes en las direccines de ls ejes e respeciamene cuas ecuacines sn: Unidad Dcene de Maemáicas 5

6 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Unidad Dcene de Maemáicas 6 ( r ( r La ecuación caresiana del plan angene puede escribirse en rma eplícia : =a+b+c Cm ( =a +b +c c= -a -b lueg =a+b+ -a -b - =a(- +b(- Ahra bien ha de eriicarse que las recas angenes r r esén cnenidas en el plan lueg: ( b b b a ( r ( a a b a ( r Susiuend en se biene: (I Ora rma para la ecuación del plan angene Si escribims la supericie S en rma implícia (=-(= ennces aplicand la deriación de uncines en rma implícia : susiuend en la ecuación del plan angene se biene: X (II

7 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Unidad Dcene de Maemáicas 7 Terema Si ( es un pun de la supericie S deinida pr la unción =( las deriadas parciales eisen sn cninuas en ( ennces eise el plan angene a la supericie S en el pun ( siend su ecuación de la rma (I ó (II Reca nrmal a una supericie Si ( es un pun de la supericie S deinida pr la unción =( dnde eise el plan angene ennces eise la reca nrmal a S en ( es la reca perpendicular al plan angene pr Sus ecuacines paraméricas sn: (1 bien Ejercici Hallar la ecuación del plan angene a la supericie +3- =4 en el pun (1- Slución: Sea (= ennces: (= plan angene lueg su ecuación es: ( X = 4(-+4(-1+4(+= ++=1 Aprimación lineal Dierencial de una unción de ds ariables Si una unción =( es cninua iene deriadas parciales cninuas en un pun ( de su dmini ennces la supericie iene un plan angene en ( dnde =( de ecuación:

8 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES En las primidades de ( la supericie el plan esán próims una al r pr an pdems uiliar ls alres del plan para aprimar ls de la unción Es decir: ( ( Designems pr T( ( (ecuación del plan angene El plan angene T( a a desempeñar para las uncines de ds ariables el mism papel que juega la reca angene cm aprimación para las uncines de una sla ariable; permiiend esimar en muchs cass de manera sencilla alres de en puns ( próims a ( A cninuación la preguna que debems hacerns es Cuál sería la eaciud de esa aprimación? Sin demsrar admiirems el erema del alr medi para uncines de ds ariables que dice que si iene deriadas parciales cninuas en un enrn E del pun ( ennces: ( ( 1 siend 1 ininiésims en ( en ( ( es un ininiésim 1 ( 1 siend el errr cmeid T( Se eriica que si eisen las deriadas parciales de segund rden de la unción sn = cninuas en el enrn E M má ( E ennces 1 M Unidad Dcene de Maemáicas 8

9 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES La aprimación lineal de una unción de ds ariables ns sugiere cóm eender el cncep de dierencial a las mencinadas uncines de ds ariables: Sea ( un pun de un enrn E del pun ( Si ennces ( ( T( ( = ( ( Deinición Se dice que la unción =( es dierenciable en el pun ( si sl si su incremen al en dich pun (al pasar del pun a se puede escribir en la rma : ( ( O( ( ( O( siend O( un ininiésim de rden mar que es decir: O( lím ( ( ( lím Unidad Dcene de Maemáicas 9

10 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Cndición necesaria de dierenciabilidad ara que sea dierenciable en un pun ( es necesari que eisan las deriadas parciales de en dich pun Ahra bien éngase en cuena que puede que eisan las deriadas parciales en per que la unción n sea dierenciable en dich pun Es decir puede currir que : ( ( ( lím Cndición suiciene de dierenciabilidad Si eisen las deriadas parciales de =( en un enrn del pun ( sn cninuas en el pun ennces es dierenciable en Deinición Se llama dierencial al simplemene dierencial de una unción =( se designa d bien d a la epresión NOTA: d d d d d Cuand usams la dierencial para aprimar el incremen de la unción en un pun Se designa d ( d ( ( ennces (dd= rpsición 1 Teniend en cuena que ( ( la epresión ( se puede escribir: ( ( ( O( ( Si diidims pr enems: O( ( ( ( Llamand u si h hu ( u ecr uniari en la dirección de Unidad Dcene de Maemáicas 1

11 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Cuand O( h ( ( lím ( hu ( = lím h h de en en la dirección u r an: '( u ( ' ( u que es la deriada direccinal Si es dierenciable en el pun ( ennces es cninua en En eec si en ( hacems que ( ( lím ( ( sea cual sea el ecr Ejercicis: R 1 Hallar la dierencial al para =cs-cs Slución: d d d =(cs+send+(-sen-csd= (cs+send-(sen+csd Dada la unción (= se pide: a Calcular (1 (151 hallar b Usar la dierencial al d para bener una aprimación de Slución: a(1= (151= (15 ( Lueg = (151- (1=9854 b d d d = d d Susiuend (=(1 d ennces d= (5 ( d Unidad Dcene de Maemáicas 11

Ejercicios de Diferenciabilidad

Ejercicios de Diferenciabilidad Ejercicis de Dierenciabilidad ) a) Obtener un valr aprimad de (-,05) + (,0). b) Calcular aprimadamente sen (,6) e /,57 (ejercici 0 capítul, []) 0.0 teniend en cuenta la aprimación ) El larg el anch de

Más detalles

FUNCIONES VECTORIALES DE UNA VARIABLE REAL

FUNCIONES VECTORIALES DE UNA VARIABLE REAL FUNCIONES VECTORIALES DE UNA VARIABLE REAL [Versión preliminar] Prf. Isabel Arraia Z. Cálcul III - Funcines vecriales de una variable real 1 Una función vecrial es cualquier función que iene n cm imagen

Más detalles

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables)

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables) Funciones de varias variables. PROBLEMAS RESUELTOS 1 (coninuidad, derivabilidad y diferenciabilidad de funciones de varias variables) PROBLEMA 1 Esudiar la coninuidad de la función: xy ( xy, ) (,) x +

Más detalles

VECTORES PRODUCTO ESCALAR. Ejercicio nº 1.- Ejercicio nº 2.- b) Son linealmente independientes los tres vectores anteriores? Forman una base de 3?

VECTORES PRODUCTO ESCALAR. Ejercicio nº 1.- Ejercicio nº 2.- b) Son linealmente independientes los tres vectores anteriores? Forman una base de 3? VECTORES Ejercici nº.- Cnsiderams la base de frmada pr ls ectres a( ) b( ) c( ). a) Halla las crdenadas de ( 4 7 4) respect de la base anterir. b) Expresa si es psibleel ectr c cm cmbinación lineal de

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

Tema 4B. Inecuaciones

Tema 4B. Inecuaciones 1 Tema 4B. Inecuacines 1. Intrducción Una inecuación es una desigualdad en la que aparecen númers y letras ligads mediante las peracines algebraicas. Ls signs de desigualdad sn: , Las inecuacines

Más detalles

CINEMATICA DE UNA PARTICULA

CINEMATICA DE UNA PARTICULA FIS - CAP. 3. 3.. Cinemáica CINEMATICA DE UNA PARTICULA La cinemáica es una pare de la mecánica, que esudia el mimien de ls cuerps sin cnsiderar las causas que l riginan, la palabra cinema signiica mimien.

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES Unidad didáctica 7. Funcines reales de variable real Autras: Glria Jarne, Esperanza Minguillón, Trinidad Zabal REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES CRECIMIENTO Y DECRECIMIENTO Dada una función real

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

FUNCIONES REALES DE VARIAS VARIABLES REALES

FUNCIONES REALES DE VARIAS VARIABLES REALES FUNCIONES REALES DE VARIAS VARIABLES REALES [Versión preliminar] Pr. Isabel Arratia Z. En esta unidad estudiarems uncines cn dmini cn valres en el cnjunt de ls númers reales. Ejempls de tales uncines sn

Más detalles

DERIVADA DE UNA FUNCIÓN REAL

DERIVADA DE UNA FUNCIÓN REAL Unidad didáctica 7 Funcines reales de variable real Autras: Glria Jarne, Esperanza Minguillón, Trinidad Zabal DERIVADA DE UNA FUNCIÓN REAL CONCEPTOS BÁSICOS Dada una función real y f( ) y un punt D en

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

Para indicar que 2 es menor que 3, podemos escribir, para indicar que es mayor o igual que 4, escribimos.

Para indicar que 2 es menor que 3, podemos escribir, para indicar que es mayor o igual que 4, escribimos. DESIGUALDADES LINEALES Las desigualdades sn enunciads que indican que ds cantidades ns n iguales, y las pdems identificar pr el us de un más de ls siguientes símbls de desigualdad: Para indicar que 2 es

Más detalles

Puntos, rectas y planos en el espacio

Puntos, rectas y planos en el espacio Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. La eca coa a los es planos coodenados

Más detalles

INDUCTANCIA. Cuando en una bobina la corriente varía con el tiempo se crea una Fem.:

INDUCTANCIA. Cuando en una bobina la corriente varía con el tiempo se crea una Fem.: NDCTANCA Andrés Gnzález hp://www.mdigial.k Auinducancia Cuand en una bbina la crriene varía cn el iemp se crea una Fem.: d () Dnde es un inducr y cuy valr se deermina a parir de la gemería de la bbina:

Más detalles

o o 2 1 2 2 24 α = + α = + α = α =

o o 2 1 2 2 24 α = + α = + α = α = Tema 7 Trignmetría Matemáticas 4º ESO 1 TEMA 7 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO 1 a) Pasa a radianes ls siguientes ánguls: 10 y 70 b) Pasa a grads ls ánguls: 7π rad 6 y,5 rad π 7π

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica . Inroducción a las Ondas. Ondas en cuerdas 3. Ondas sonoras acúsica Modulo II: Ondas. Ejemplos deinición de onda. Función de onda iajera.3 Ondas armónicas.4 Ecuación de ondas elocidad de propagación Bibliograía:

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

Resolver. 2. Inecuaciones de segundo grado. La expresión ax bx c puede ser mayor, menor o igual que 0. Esto es, podemos plantearnos: 2

Resolver. 2. Inecuaciones de segundo grado. La expresión ax bx c puede ser mayor, menor o igual que 0. Esto es, podemos plantearnos: 2 1 Inecuacines Una inecuación es una desigualdad en la que aparecen númers y letras ligads mediante las peracines algebraicas. Ls signs de desigualdad sn: , Las inecuacines se clasifican pr su grad

Más detalles

b) Para el caso en el que a = 1 y b = 4, hállese la ecuación de la recta tangente a la gráfica de f en x = 3. Solución.

b) Para el caso en el que a = 1 y b = 4, hállese la ecuación de la recta tangente a la gráfica de f en x = 3. Solución. Mdel. Prblema B.- (Caliicación máima: punts) a + si Sea + b si > b) Para el cas en el que a y b, hállese la ecuación de la recta tangente a la gráica de en. + si b. + si > La ecuación de la recta tangente

Más detalles

SISTEMAS DISCRETOS. 1. Qué son?

SISTEMAS DISCRETOS. 1. Qué son? SISTEMAS DISCRETOS. Qué sn? Sn sisemas que rabajan cn das muesreads Ess sisemas sn cnrlads pr cmpuadr Ls cnrladres se desarrllan en cmpuadres. Ejempl de das muesreads Prces Reenr Muesreadr D/A Cmpuadr

Más detalles

Perceptrón Adaline. ( Desarrollado en el entorno Eclipse en el lenguaje JAVA ) Jose Alberto Benítez Andrades 71454586A

Perceptrón Adaline. ( Desarrollado en el entorno Eclipse en el lenguaje JAVA ) Jose Alberto Benítez Andrades 71454586A Perceptrón Adaline ( Desarrllad en el entrn Eclipse en el lenguaje JAVA ) Jse Albert Benítez Andrades 71454586A Redes Neurnales y Algritms Genétics Universidad de León Manual de usuari PerAda JABA 2.0

Más detalles

OBJETIVOS DEL TEMA. Tema 4. Comparadores y Generadores de Onda. Comparadores de ventana. Comparadores

OBJETIVOS DEL TEMA. Tema 4. Comparadores y Generadores de Onda. Comparadores de ventana. Comparadores ema 4. mparadres y Generadres de nda JE DE EM nrducción Eapas cmparadras básicas cn mparadr de niel inersr mparadr de niel n inersr mparadres de enana mparadr de niel inersr cn hiséresis mparadr de niel

Más detalles

OPERACIONES CON MATRICES

OPERACIONES CON MATRICES OPERACIONES CON MATRICES ESCRITURA DE MATICES (MTRW) OPERACIONES BÁSICAS CON MATRICES APLICACIONES AL ÁLGEBRA LINEAL (MATEMÁTICAS I) Rang de una matriz Determinante de una matriz Autvalres y autvectres

Más detalles

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales.

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales. Solución y crierios de corrección. Examen de mayores de años.. Maemáicas aplicadas a las ciencias sociales. BLOQUE A En un cenro de ocio hay salas de cine: A, B y. A una deerminada sesión han acudido personas.

Más detalles

5. Planos y rectas en el espacio

5. Planos y rectas en el espacio 5. Planos recas en el espacio ACTIVIDADES INICIALES 5.I Calcula el valor de los siguienes deerminanes a) 5 b) 5 4 c) d) 5.II Esudia la compaibilidad de los siguienes sisemas resuélvelos en los casos en

Más detalles

TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES

TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES Tema 47. Generación de curvas por envolvenes. TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES. Inroducción. Una curva o supericie es envolvene de un conjuno de curvas o supericies si es angene en cada puno

Más detalles

Tema 5: Diferenciabilidad: Aplicaciones

Tema 5: Diferenciabilidad: Aplicaciones Prof. Susana López 1 UniversidadAuónomadeMadrid Tema 5: Diferenciabilidad: Aplicaciones 1 Funciones compuesas y Regla de la cadena Recordemos que la regla de la cadena para funciones de una sola variable

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,

Más detalles

SISTEMAS DE NIVEL DE LÍQUIDO

SISTEMAS DE NIVEL DE LÍQUIDO ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIEÍA SISTEMAS DE NIVEL DE LÍQUIDO Un sisema de nivel de líquid (sisema hidráulic), se describe mediane ecuacines diferenciales lineales n lineales, en dependencia

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

CAPITULO 6: Análisis de circuitos con elementos dinámicos. 6.1 Inductores. Fig. 1 Fig. 2. di/dt. + v - Red Eléctrica

CAPITULO 6: Análisis de circuitos con elementos dinámicos. 6.1 Inductores. Fig. 1 Fig. 2. di/dt. + v - Red Eléctrica CAPITUO 6: Análisis de circuis cn elemens dinámics. En ese capíul esudiarems ls elemens almacenadres de energía (bbinas y cndensadres) y su cmpramien cuand se prducen aperuras cierres de inerrupres en

Más detalles

FUNCIONES INTRODUCCIÓN

FUNCIONES INTRODUCCIÓN FUNCIONES INTRODUCCIÓN Contenidos Concepto unción Graica de una unción Dominio y Recorrido de una unción Clasiicación de la unciones Función Inversa Paridad de las Funciones Operaciones con unciones Ejemplos

Más detalles

7 ECUACIONES DIFERENCIALES DE LOS CIRCUITOS Y SU SOLUCIÓN

7 ECUACIONES DIFERENCIALES DE LOS CIRCUITOS Y SU SOLUCIÓN 7 EUAIONES DIFEENIALES DE LOS IUITOS Y SU SOLUIÓN 7 EUAIONES DIFEENIALES DE LOS IUITOS Y SU SOLUIÓN...9 7. INTODUIÓN....40 7.. SOLUIÓN NATUAL Ó DE ESTADO TANSITOIO:...4 7.. SOLUIÓN FOZADA:...44 7. INTEPETAIÓN

Más detalles

CAPITULO 7.FUNCIONES DE VARIAS VARIABLES Campo de definición de una función de varias variables.

CAPITULO 7.FUNCIONES DE VARIAS VARIABLES Campo de definición de una función de varias variables. CAPITULO 7.FUNCIONES DE VARIAS VARIABLES Deinición Sean E F dos conjunos inios o ininios de cualquier nauralea. Una aplicaron del conjuno E en el conjuno F es una le o proceso mediane el cual se hace corresponder

Más detalles

Práctica 12 (10/05/2016)

Práctica 12 (10/05/2016) Ecuacines Diferenciales Curs 15 16 Prácticas Matlab Cálcul II Objetivs Práctica 1 (10/05/016) Representar las isclinas de una ed de primer rden cm ap para trazar un camp de direccines. Representar el camp

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 7. Funciones reales de variable real

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 7. Funciones reales de variable real Unidad didáctica 7. Funcines reales de variable real Autras: Glria Jarne, Esperanza Minguillón, Trinidad Zabal DOMINIO Se llama dmini de definición de f al cnjunt de númers reales para ls cuales eiste

Más detalles

Determinantes MATEMÁTICAS II 1

Determinantes MATEMÁTICAS II 1 Determinantes MATEMÁTICAS II 1 1 DEFINICIÓN DE DETERMINANTE Cnsiderams el cuerp de ls númers reales R y el cnjunt de matrices cuadradas sbre R, M n (R). Vams a asciar a cada matriz cuadrada un númer real,

Más detalles

Cálculo del presupuesto de potencia para enlace inalámbrico punto a punto.

Cálculo del presupuesto de potencia para enlace inalámbrico punto a punto. Telecmunicacines 2010 Cálcul del presupuest de ptencia para enlace inalámbric punt a punt. Descripción del escenari y requerimients del enlace: Se desea establecer un enlace punt a punt, en el cual la

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

La función que transforma grados centígrados en grados Fahrenheit, o viceversa,

La función que transforma grados centígrados en grados Fahrenheit, o viceversa, Funcines elementales Curs 06/7 Ejercici. Fahrenheit es una escala de temperatura termdinámica, dnde el punt de cngelación del agua es a 3 grads Fahrenheit ( F) y el punt de ebullición a F (a una presión

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

Laboratorio de Física 1 (ByG) Guía 2: Mediciones indirectas y diferencias significativas.

Laboratorio de Física 1 (ByG) Guía 2: Mediciones indirectas y diferencias significativas. Labratri de Física 1 yg Guía : Medicines indirectas y diferencias significativas. 1. Objetivs Tratamient de incertezas en medicines de magnitudes que se btienen en frma indirecta. Criteri para cmparar

Más detalles

Limites y continuidad

Limites y continuidad Bla entrn de un punt Limites cntinuidad Sea P ( ) un punt del plan R Se denmina bla entrn de centr P radi al cnjunt de punts P del plan cua distancia al punt P es inferir a Se designa pr E(P ) bien B(P

Más detalles

PRÁCTICA 5: REDES LOCALES

PRÁCTICA 5: REDES LOCALES PRÁCTICA 5: REDES LOCALES Ejercici 0 Cmpleta en tu cuadern la tería del Tema 2, manteniend tus prpis estils y frmat. Cmpleta ls cncepts LAN, MAN y WAN enumerand sus características principales. Explica

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

= = f=440 Hz, v=143 m/s A=0.75 mm. b) Las posiciones de los nodos están en x=0,λ/2,2λ/2 :

= = f=440 Hz, v=143 m/s A=0.75 mm. b) Las posiciones de los nodos están en x=0,λ/2,2λ/2 : 15.7 Una de las cuerdas de una guiarra esá en el eje cuando esá en equilibrio. El eremo 0 el puene de la guiarra esá fijo. Una onda senoidal incidene iaja por la cuerda en dirección a 143 m/s con ampliud

Más detalles

Tema 7 Trigonometría Matemáticas 4º ESO 12

Tema 7 Trigonometría Matemáticas 4º ESO 12 Tema 7 Trignmetría Matemáticas 4º ESO Lueg: sen 0 sen 60 sen 0 cs 0 cs 60 cs 0 PROBLEMAS tg 0 tg 60 tg 0 EJERCICIO 8 : El ángul que frma el suel cn la recta que une el etrem de la smbra de un árbl cn la

Más detalles

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA (Apuntes en revisión para orientar el aprendizaje) DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA f( t) f: ; t a, b y g() t De la regla de la cadena dy dy dt d dt d En donde dt se puede calcular

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 8 Insiuo de Física Faculad de Ineniería UdelaR CÓMO GANAR UN PARTIDO DE FÚTBOL SABIENDO FÍSICA Nahuel Barrios, Juan Pablo Gadea, Valenina Groposo, Luciana Marínez. INTRODUCCIÓN

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido.

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido. EJERCICIOS FUNCIONES 4º OPCIÓN B 1 De las siguienes funciones decir cuál de ellas son funciones, en ese caso indica el dominio el recorrido. a) b) c) Aplicando el es de la línea verical se observa que

Más detalles

Para ordenar números decimales debemos tener en cuenta la siguiente imagen:

Para ordenar números decimales debemos tener en cuenta la siguiente imagen: TEMA 2 - NÚMEROS DECIMALES 1. ORDENAR NÚMEROS DECIMALES Para rdenar númers decimales debems tener en cuenta la siguiente imagen: L que vams a hacer es cmparar primer la parte entera cifra a cifra a ver

Más detalles

03) Rapidez de Cambio. 0302) Rapidez de Cambio

03) Rapidez de Cambio. 0302) Rapidez de Cambio Página 3) Rapidez de Cambio 3) Rapidez de Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Ocubre 7 Ocubre 7 Página A) Rapidez media de cambio Considere una canidad física (), como la mosrada

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

Matemáticas II para Alumnos de Bachillerato

Matemáticas II para Alumnos de Bachillerato Matemáticas II para Alumnos de Bachillerato ESTRUCTURA DE LOS EXÁMENES El examen constará de dos opciones (A y B) con cuatro cuestiones cada una. El alumno deberá elegir una opción (A o B) y resolver las

Más detalles

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO.

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. UNIVERSIDAD AUTONOMA SAN FRANCISCO CURSO DE DINÁMICA Docene: Álvarez Solís María del Carmen. Fecha: 10 Oc - 2017 TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. La cinemáica de cuerpos rígidos esudia las

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

5. AMPLIFICADOR OPERACIONAL

5. AMPLIFICADOR OPERACIONAL 5. MPLIFICDO OPECIONL 5.. INTODUCCIÓN Figura 5- En la actualidad la mayría de prcess en la dustria en nuestrs hgares están cntrlads pr dispsitis electrónics. Ests prcess se cntrlan pr medi de circuits

Más detalles

C.I.T. - Customer Interface Technology EXPRESS SHIPPER INSTALACIÓN

C.I.T. - Customer Interface Technology EXPRESS SHIPPER INSTALACIÓN EXPRESS SHIPPER INSTALACIÓN A REGISTRARSE EN TNT Pdems instalar directamente desde la web de TNT, per es recmendable realizar primer el registr, descargar el prgrama, instalarl y cnfigurarl, en este rden.

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 7. Funciones reales de variable real

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 7. Funciones reales de variable real Unidad didáctica 7. Funcines reales de variable real Autras: Glria Jarne, Esperanza Minguillón, Trinidad Zabal DOMINIO Se llama dmini de definición de f al cnjunt de númers reales para ls cuales eiste

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Tema 1: Matrices. A es una matriz en la que hemos significado las dos primeras filas y columnas, la fila p ésima y la última fila y columna.

Tema 1: Matrices. A es una matriz en la que hemos significado las dos primeras filas y columnas, la fila p ésima y la última fila y columna. Tema 1: Matrices 1. Matrices y tips de matrices El cncept de matriz alcanza múltiples aplicacines tant en la representación y manipulación de dats cm en el cálcul numéric. 1.1 Terminlgía Cmenzams cn la

Más detalles

EJERCICIOS DE PUNTOS EN EL ESPACIO

EJERCICIOS DE PUNTOS EN EL ESPACIO EJERCICIOS DE PUNTOS EN EL ESPACIO 1.- Las coordenadas de los vértices consecutivos de un paralelogramo son A (1, 0, 0) y B(0, 1, 0). Las coordenadas del centro M son M(0, 0, 1). Hallar las coordenadas

Más detalles

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA (Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA Esta clasiicación obedece a la orma en que están relacionados los elementos del dominio con los del codominio.

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

MODELADO Y SIMULACIÓN INTRODUCCIÓN. Eduardo Martínez

MODELADO Y SIMULACIÓN INTRODUCCIÓN. Eduardo Martínez MODELADO Y SIMULACIÓN INTRODUCCIÓN Eduardo Marínez Sisemas Dinámicos Modelos Maemáicos Principios de la Teoría General de Sisemas 3 Modelos Coninuos Discreos Sisemas Dinámicos Deinición de Sisema Un Sisema

Más detalles

El Criterio de Eisenstein

El Criterio de Eisenstein Ramón Espinza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Un plinmi cn ceficientes racinales puede ser reducible en [ x], per irreducible en [ x] Pr eempl, el plinmi x 5 es reducible en [ x] ( ) ( )

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009 EXAMEN DE MATEMÁTICAS I (Primer Parcial) de febrero de 9 Sólo una respuesa a cada cuesión es correca. Respuesa correca:. punos. Respuesa incorreca: -. punos Respuesa en blanco: punos.- Sea ABC un riángulo

Más detalles

Ejemplo: En este ejemplo veremos cómo podemos utilizar un coaxial slotted line para calcular la impedancia de carga Z L.

Ejemplo: En este ejemplo veremos cómo podemos utilizar un coaxial slotted line para calcular la impedancia de carga Z L. 91 Ejempl: En este ejempl verems cóm pdems utilizar un caxial sltted line para calcular la impedancia de carga. Un caxial sltted line tiene una pequeña abertura lngitudinal (i.e. slit) en su cnductr exterir.

Más detalles

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una.

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una. UNIVERSIDAD DE LONDRES PREPARATORIA GUIA DE MATEMÁTICAS VI Áreas I-II Plan : 9 Clave maeria : 00 Clave UNAM : Unidad I. Funciones Objeivos Que el alumno idenifique disinos ipos de funciones, esablezca

Más detalles

LECCIÓN 13: INTRODUCCIÓN A LOS SISTEMAS NO LINEALES DE ECUACIONES DI- FERENCIALES

LECCIÓN 13: INTRODUCCIÓN A LOS SISTEMAS NO LINEALES DE ECUACIONES DI- FERENCIALES LECCIÓN : INTRODUCCIÓN A LOS SISTEMAS NO LINEALES DE ECUACIONES DI- FERENCIALES Problema Calcula el sisema de primer orden equivalene a la ecuación + = 0, dibuja suficienes vecores del campo vecorial como

Más detalles

Selectividad Septiembre 2008 SEPTIEMBRE 2008

Selectividad Septiembre 2008 SEPTIEMBRE 2008 Bloque A SEPTIEMBRE 008.- Una ONG organiza un convoy de ayuda humanitaria con un máimo de 7 camiones, para llevar agua potable y medicinas a una zona devastada por unas inundaciones. Para agua potable

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

La transformada de Laplace

La transformada de Laplace Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x)

Más detalles

CAPÍTULO 3: INFILTRACIÓN

CAPÍTULO 3: INFILTRACIÓN 27 CAPÍTULO 3: INFILTRACIÓN 3.1 DEFINICIÓN El agua precipiada sobre la supericie de la ierra, queda deenida, se evapora, discurre por ella o penera hacia el inerior. Se deine como inilración al paso del

Más detalles

Test. Cada pregunta correcta está valorada con 0.5 puntos y cada incorrecta resta 0.25 puntos

Test. Cada pregunta correcta está valorada con 0.5 puntos y cada incorrecta resta 0.25 puntos Teléf.: 91 533 38 4-91 535 19 3 8003 MADRID EXAMEN DE ECONOMETRÍA (enero 010) 1h 15 Apellidos: Nombre: Tes. Cada preguna correca esá valorada con 0.5 punos y cada incorreca resa 0.5 punos 1.- Al conrasar

Más detalles

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones 01 Ejercicios de Selecividad Marices y Sisemas de Ecuaciones Ejercicios propuesos en 009 1- [009-1-A-1] a) [1 5] En un comercio de bricolaje se venden lisones de madera de res longiudes: 090 m, 150 m y

Más detalles

INFORME DE LABORATORIO Nº 1

INFORME DE LABORATORIO Nº 1 Universidad de Chile Facultad de Cs. Físicas y Matemáticas Labratri de Fluiddinámica y Prcess INFORME DE LABORATORIO Nº 1 Cinética de Reaccines CI41B Ingeniería Ambiental Nta Infrme Final: Nmbres: Ayudante

Más detalles

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V)

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) CONCEPTO.- Es aquel mimien en el cual un móil recrre espacis dierenes en iemps iguales, en ese cas aría la Velcidad pr l an aparece la aceleración.

Más detalles

cx + d k; ax 2 + bx + c 0&a 1 x 2 + b 1 x + c 1 a 2 x 2 + b 2 x + c 2, con a 1 a 2

cx + d k; ax 2 + bx + c 0&a 1 x 2 + b 1 x + c 1 a 2 x 2 + b 2 x + c 2, con a 1 a 2 Ls númers reales 1 OBJETIVOS PARTICULARES. Al terminar este capítul, el alumn debe ser capaz de: Identificar númers naturales, enters, racinales, irracinales y reales. Cncer prpiedades algebraicas y de

Más detalles

a) en [0, 2] ; b) en [-1, 1]

a) en [0, 2] ; b) en [-1, 1] UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO FACULTAD DE CIENCIAS NATURALES CATEDRA: Maemáica I CURSO: 04 TRABAJO PRACTICO Nº -Tercera Pare Pare III. Aplicaciones de la derivada TEOREMA DE ROLLE

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

SEMANA 4 Código de Pregunta Enunciado Tema 1 1 Responda si las siguientes funciones son demanda u oferta o no:

SEMANA 4 Código de Pregunta Enunciado Tema 1 1 Responda si las siguientes funciones son demanda u oferta o no: SEMANA 4 Códig de Pregunta Enunciad Tema 1 1 Respnda si las siguientes funcines sn demanda u ferta n: FUNCION Demanda Oferta JUSTIFICACIÓN q = f(p) = 3 - p q = f(p) = 2p + 100 q = f(p) = 100-5p q = f(p)

Más detalles

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2]

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2] UNIVERSIDAD TECNOLÓGICA NACIONAL Faculad Regional Rosario UDB Física Cáedra FÍSICA I CAPITULO : Movimieno en una dirección [S.Z.F.Y. ] Cinemáica: La Cinemáica se ocupa de describir los movimienos de los

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

CIRCUITOS CON DIODOS.

CIRCUITOS CON DIODOS. ema 3. Crcus cn dds. ema 3 CCUOS CON OOS. 1.- plcacón elemenal..- Crcus recradres (lmadres)..1.- eslucón de un crcu recradr ulzand las cuar aprxmacnes del dd..1.1.- eslucón ulzand la prmera aprxmacón..1..-

Más detalles

F(t) F(t) 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R RAPIDEZ DE CAMBIO X ( ) ( ) F(t)

F(t) F(t) 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R RAPIDEZ DE CAMBIO X ( ) ( ) F(t) Inroducción a la ísica Paralelos y 3. Profesor RodrigoVergara R RPIDEZ DE CMBIO Rapidez media de cambio Definir el concepo rapidez media de cambio nalizar arianes donde no es el iempo la ariable independiene

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen

Más detalles

Modelo de Jones-Manuelli

Modelo de Jones-Manuelli César Anúnez. I Nas de Crecimien Ecnómic UNIVERSIDAD NACIONA MAYOR DE SAN MARCOS FACUTAD DE CIENCIAS ECONÓMICAS (Universidad del Perú, Decana de América) Mdel de Jnes-Manuelli En esa pare inenarems presenar

Más detalles