DERIVADAS DE UNA FUNCIÓN DE DOS VARIABLES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DERIVADAS DE UNA FUNCIÓN DE DOS VARIABLES"

Transcripción

1 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Deriada respec de un ecr Deriadas direccinales Deriadas parciales Sea =( una unción deinida en un subcnjun DR sea =(D Si querems esudiar la ariación de en el pun del plan aín euclíde R n queda más remedi que elegir una dirección en para medirla Sea u un ecr del plan ecrial euclíde R : ( hu ( Cuand eisa sea ini el lím se denmina deriada de en el h h pun respec del ecr u Si además u =1 ennces el límie anerir se denmina deriada direccinal de en en la dirección del ecr u Se designa pr ( u Si u =(1= i se denmina simplemene deriada parcial de respec de la ariable Se designa ( bien ( Es decir: ( h(1 ( ( ( = ( = lím lím h h h h ( h Análgamene si u =(1= j se denmina deriada parcial de respec de la ariable Se designa ( bien ( Es decir: ( + h(1 ( = ( = lím h h ( = lím h ( + h h ( Unidad Dcene de Maemáicas 1

2 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Gradiene de una unción en un pun Si esán deinidas las deriadas parciales de una unción =( en un pun =(D se denmina ecr gradiene de en el pun simplemene gradiene de en se designa ( al ecr ( = ( ( (i ( j Deriadas parciales de rden superir Sea la unción =( Si eisen las deriadas parciales en d su dmini al mens en una pare de él pueden deinirse las uncines dnde eisan cm uncines de e Se bienen así cuar deriadas parciales de segund rden que designarems: bien bien bien bien Terema de las deriadas mias de Schwar Si la unción =( sus deriadas parciales esán deinidas sn cninuas en un enrn de un pun ( ennces se eriica que: ( ( Las reglas de la cadena 1 Sea una unción =( que iene deriadas parciales cninuas en ( ( sean ds uncines dierenciables en Ennces la unción cmpuesa ( ( ( es dierenciable en se eriica que: Unidad Dcene de Maemáicas

3 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES d d d d d d d d d d ( ( Supngams ahra una unción =( que iene deriadas parciales cninuas en ( sean ds uncines (u (u La unción cmpuesa (u (u es una unción de u en ls puns dnde esá deinida eriicándse además que si e ienen deriadas parciales cninuas respec de u ennces eisen las deriadas parciales de respec de u que ienen dadas pr las epresines: u u u De manera análga se pdrían deinir las reglas de la cadena para uncines de res más ariables Aplicación de la 1ª regla de la cadena al cálcul de deriadas direccinales Sea una supericie =( deinida en un subcnjun DR ( D u u u i u j al que u querems calcular la u 1 1 Dad un ecr uniari 1 deriada direccinal de la supericie en el pun en la dirección de u La reca aín deerminada pr u iene cm ecuacines paraméricas Aplicand la 1ª regla de la cadena u u 1 ( u d = d d d a que u1 u d d d d d d u 1 u ( u 1 u Recrdems que la aplicación crreca de la regla de la cadena ns eige que eisan las deriadas parciales sean cninuas en el pun Unidad Dcene de Maemáicas 3

4 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Ejercici: Hallar la deriada direccinal de la unción (= 3 en =(1 en la dirección del ecr i j Slución: ( u = ( u 1 u En primer lugar hallams las crdenadas de un ecr uniari en la dirección de que será u i j u1 u r r lad (1 3 1 =( u =(41 = 16 8 Lueg ( u = ( u Deriación de uncines implícias Algunas supericies del espaci de res dimensines se pueden represenar mediane ecuacines caresianas de la rma (= Se dice que dicha ecuación es una ecuación implícia de la supericie A eces es psible despejar de la ecuación anerir una de las ariables en unción de las ras ds beniéndse una arias ecuacines de la rma =( per en general es n siempre es psible Ejempls: 1-La ecuación implícia: 1 describe un elipside Despejand ems que el elipside ambién iene deinid pr las ecuacines eplícias La supericie descria pr la ecuación implícia e 4 n se puede represenar pr una arias ecuacines eplícias En (= cnsiderams la ariable dependiene de las ariables e Es decir =(: ( G( Si DR G G es el dmini de ennces en D: Unidad Dcene de Maemáicas 4

5 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Aplicand la segunda regla de la cadena a la unción implícia se biene: d d d d Ejercici: Cnsiderand =( hallar el gradiene del hiperblide = en (1 Slución: ( = ( ( Ahra bien (= = lueg ( = 1 5 lan angene a una supericie en un pun Sea =( la ecuación de una supericie S deinida en un subcnjun DR ( D Designams pr =( pr ( el pun crrespndiene en la supericie S Cuand eisa el plan angene a la supericie S en el pun cniene a das las recas angenes a la supericie pr dich pun En paricular cniene a las recas angenes en las direccines de ls ejes e respeciamene cuas ecuacines sn: Unidad Dcene de Maemáicas 5

6 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Unidad Dcene de Maemáicas 6 ( r ( r La ecuación caresiana del plan angene puede escribirse en rma eplícia : =a+b+c Cm ( =a +b +c c= -a -b lueg =a+b+ -a -b - =a(- +b(- Ahra bien ha de eriicarse que las recas angenes r r esén cnenidas en el plan lueg: ( b b b a ( r ( a a b a ( r Susiuend en se biene: (I Ora rma para la ecuación del plan angene Si escribims la supericie S en rma implícia (=-(= ennces aplicand la deriación de uncines en rma implícia : susiuend en la ecuación del plan angene se biene: X (II

7 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Unidad Dcene de Maemáicas 7 Terema Si ( es un pun de la supericie S deinida pr la unción =( las deriadas parciales eisen sn cninuas en ( ennces eise el plan angene a la supericie S en el pun ( siend su ecuación de la rma (I ó (II Reca nrmal a una supericie Si ( es un pun de la supericie S deinida pr la unción =( dnde eise el plan angene ennces eise la reca nrmal a S en ( es la reca perpendicular al plan angene pr Sus ecuacines paraméricas sn: (1 bien Ejercici Hallar la ecuación del plan angene a la supericie +3- =4 en el pun (1- Slución: Sea (= ennces: (= plan angene lueg su ecuación es: ( X = 4(-+4(-1+4(+= ++=1 Aprimación lineal Dierencial de una unción de ds ariables Si una unción =( es cninua iene deriadas parciales cninuas en un pun ( de su dmini ennces la supericie iene un plan angene en ( dnde =( de ecuación:

8 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES En las primidades de ( la supericie el plan esán próims una al r pr an pdems uiliar ls alres del plan para aprimar ls de la unción Es decir: ( ( Designems pr T( ( (ecuación del plan angene El plan angene T( a a desempeñar para las uncines de ds ariables el mism papel que juega la reca angene cm aprimación para las uncines de una sla ariable; permiiend esimar en muchs cass de manera sencilla alres de en puns ( próims a ( A cninuación la preguna que debems hacerns es Cuál sería la eaciud de esa aprimación? Sin demsrar admiirems el erema del alr medi para uncines de ds ariables que dice que si iene deriadas parciales cninuas en un enrn E del pun ( ennces: ( ( 1 siend 1 ininiésims en ( en ( ( es un ininiésim 1 ( 1 siend el errr cmeid T( Se eriica que si eisen las deriadas parciales de segund rden de la unción sn = cninuas en el enrn E M má ( E ennces 1 M Unidad Dcene de Maemáicas 8

9 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES La aprimación lineal de una unción de ds ariables ns sugiere cóm eender el cncep de dierencial a las mencinadas uncines de ds ariables: Sea ( un pun de un enrn E del pun ( Si ennces ( ( T( ( = ( ( Deinición Se dice que la unción =( es dierenciable en el pun ( si sl si su incremen al en dich pun (al pasar del pun a se puede escribir en la rma : ( ( O( ( ( O( siend O( un ininiésim de rden mar que es decir: O( lím ( ( ( lím Unidad Dcene de Maemáicas 9

10 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Cndición necesaria de dierenciabilidad ara que sea dierenciable en un pun ( es necesari que eisan las deriadas parciales de en dich pun Ahra bien éngase en cuena que puede que eisan las deriadas parciales en per que la unción n sea dierenciable en dich pun Es decir puede currir que : ( ( ( lím Cndición suiciene de dierenciabilidad Si eisen las deriadas parciales de =( en un enrn del pun ( sn cninuas en el pun ennces es dierenciable en Deinición Se llama dierencial al simplemene dierencial de una unción =( se designa d bien d a la epresión NOTA: d d d d d Cuand usams la dierencial para aprimar el incremen de la unción en un pun Se designa d ( d ( ( ennces (dd= rpsición 1 Teniend en cuena que ( ( la epresión ( se puede escribir: ( ( ( O( ( Si diidims pr enems: O( ( ( ( Llamand u si h hu ( u ecr uniari en la dirección de Unidad Dcene de Maemáicas 1

11 DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Cuand O( h ( ( lím ( hu ( = lím h h de en en la dirección u r an: '( u ( ' ( u que es la deriada direccinal Si es dierenciable en el pun ( ennces es cninua en En eec si en ( hacems que ( ( lím ( ( sea cual sea el ecr Ejercicis: R 1 Hallar la dierencial al para =cs-cs Slución: d d d =(cs+send+(-sen-csd= (cs+send-(sen+csd Dada la unción (= se pide: a Calcular (1 (151 hallar b Usar la dierencial al d para bener una aprimación de Slución: a(1= (151= (15 ( Lueg = (151- (1=9854 b d d d = d d Susiuend (=(1 d ennces d= (5 ( d Unidad Dcene de Maemáicas 11

Ejercicios de Diferenciabilidad

Ejercicios de Diferenciabilidad Ejercicis de Dierenciabilidad ) a) Obtener un valr aprimad de (-,05) + (,0). b) Calcular aprimadamente sen (,6) e /,57 (ejercici 0 capítul, []) 0.0 teniend en cuenta la aprimación ) El larg el anch de

Más detalles

FUNCIONES VECTORIALES DE UNA VARIABLE REAL

FUNCIONES VECTORIALES DE UNA VARIABLE REAL FUNCIONES VECTORIALES DE UNA VARIABLE REAL [Versión preliminar] Prf. Isabel Arraia Z. Cálcul III - Funcines vecriales de una variable real 1 Una función vecrial es cualquier función que iene n cm imagen

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

Tema 4B. Inecuaciones

Tema 4B. Inecuaciones 1 Tema 4B. Inecuacines 1. Intrducción Una inecuación es una desigualdad en la que aparecen númers y letras ligads mediante las peracines algebraicas. Ls signs de desigualdad sn: , Las inecuacines

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

FUNCIONES REALES DE VARIAS VARIABLES REALES

FUNCIONES REALES DE VARIAS VARIABLES REALES FUNCIONES REALES DE VARIAS VARIABLES REALES [Versión preliminar] Pr. Isabel Arratia Z. En esta unidad estudiarems uncines cn dmini cn valres en el cnjunt de ls númers reales. Ejempls de tales uncines sn

Más detalles

VECTORES PRODUCTO ESCALAR. Ejercicio nº 1.- Ejercicio nº 2.- b) Son linealmente independientes los tres vectores anteriores? Forman una base de 3?

VECTORES PRODUCTO ESCALAR. Ejercicio nº 1.- Ejercicio nº 2.- b) Son linealmente independientes los tres vectores anteriores? Forman una base de 3? VECTORES Ejercici nº.- Cnsiderams la base de frmada pr ls ectres a( ) b( ) c( ). a) Halla las crdenadas de ( 4 7 4) respect de la base anterir. b) Expresa si es psibleel ectr c cm cmbinación lineal de

Más detalles

CAPITULO 6: Análisis de circuitos con elementos dinámicos. 6.1 Inductores. Fig. 1 Fig. 2. di/dt. + v - Red Eléctrica

CAPITULO 6: Análisis de circuitos con elementos dinámicos. 6.1 Inductores. Fig. 1 Fig. 2. di/dt. + v - Red Eléctrica CAPITUO 6: Análisis de circuis cn elemens dinámics. En ese capíul esudiarems ls elemens almacenadres de energía (bbinas y cndensadres) y su cmpramien cuand se prducen aperuras cierres de inerrupres en

Más detalles

7 ECUACIONES DIFERENCIALES DE LOS CIRCUITOS Y SU SOLUCIÓN

7 ECUACIONES DIFERENCIALES DE LOS CIRCUITOS Y SU SOLUCIÓN 7 EUAIONES DIFEENIALES DE LOS IUITOS Y SU SOLUIÓN 7 EUAIONES DIFEENIALES DE LOS IUITOS Y SU SOLUIÓN...9 7. INTODUIÓN....40 7.. SOLUIÓN NATUAL Ó DE ESTADO TANSITOIO:...4 7.. SOLUIÓN FOZADA:...44 7. INTEPETAIÓN

Más detalles

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables)

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables) Funciones de varias variables. PROBLEMAS RESUELTOS 1 (coninuidad, derivabilidad y diferenciabilidad de funciones de varias variables) PROBLEMA 1 Esudiar la coninuidad de la función: xy ( xy, ) (,) x +

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES Unidad didáctica 7. Funcines reales de variable real Autras: Glria Jarne, Esperanza Minguillón, Trinidad Zabal REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES CRECIMIENTO Y DECRECIMIENTO Dada una función real

Más detalles

TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES

TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES Tema 47. Generación de curvas por envolvenes. TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES. Inroducción. Una curva o supericie es envolvene de un conjuno de curvas o supericies si es angene en cada puno

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica . Inroducción a las Ondas. Ondas en cuerdas 3. Ondas sonoras acúsica Modulo II: Ondas. Ejemplos deinición de onda. Función de onda iajera.3 Ondas armónicas.4 Ecuación de ondas elocidad de propagación Bibliograía:

Más detalles

Perceptrón Adaline. ( Desarrollado en el entorno Eclipse en el lenguaje JAVA ) Jose Alberto Benítez Andrades 71454586A

Perceptrón Adaline. ( Desarrollado en el entorno Eclipse en el lenguaje JAVA ) Jose Alberto Benítez Andrades 71454586A Perceptrón Adaline ( Desarrllad en el entrn Eclipse en el lenguaje JAVA ) Jse Albert Benítez Andrades 71454586A Redes Neurnales y Algritms Genétics Universidad de León Manual de usuari PerAda JABA 2.0

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 8 Insiuo de Física Faculad de Ineniería UdelaR CÓMO GANAR UN PARTIDO DE FÚTBOL SABIENDO FÍSICA Nahuel Barrios, Juan Pablo Gadea, Valenina Groposo, Luciana Marínez. INTRODUCCIÓN

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

SISTEMAS DE NIVEL DE LÍQUIDO

SISTEMAS DE NIVEL DE LÍQUIDO ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIEÍA SISTEMAS DE NIVEL DE LÍQUIDO Un sisema de nivel de líquid (sisema hidráulic), se describe mediane ecuacines diferenciales lineales n lineales, en dependencia

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 7. Funciones reales de variable real

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 7. Funciones reales de variable real Unidad didáctica 7. Funcines reales de variable real Autras: Glria Jarne, Esperanza Minguillón, Trinidad Zabal DOMINIO Se llama dmini de definición de f al cnjunt de númers reales para ls cuales eiste

Más detalles

OBJETIVOS DEL TEMA. Tema 4. Comparadores y Generadores de Onda. Comparadores de ventana. Comparadores

OBJETIVOS DEL TEMA. Tema 4. Comparadores y Generadores de Onda. Comparadores de ventana. Comparadores ema 4. mparadres y Generadres de nda JE DE EM nrducción Eapas cmparadras básicas cn mparadr de niel inersr mparadr de niel n inersr mparadres de enana mparadr de niel inersr cn hiséresis mparadr de niel

Más detalles

OPERACIONES CON MATRICES

OPERACIONES CON MATRICES OPERACIONES CON MATRICES ESCRITURA DE MATICES (MTRW) OPERACIONES BÁSICAS CON MATRICES APLICACIONES AL ÁLGEBRA LINEAL (MATEMÁTICAS I) Rang de una matriz Determinante de una matriz Autvalres y autvectres

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles

5. AMPLIFICADOR OPERACIONAL

5. AMPLIFICADOR OPERACIONAL 5. MPLIFICDO OPECIONL 5.. INTODUCCIÓN Figura 5- En la actualidad la mayría de prcess en la dustria en nuestrs hgares están cntrlads pr dispsitis electrónics. Ests prcess se cntrlan pr medi de circuits

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,

Más detalles

INDUCTANCIA. Cuando en una bobina la corriente varía con el tiempo se crea una Fem.:

INDUCTANCIA. Cuando en una bobina la corriente varía con el tiempo se crea una Fem.: NDCTANCA Andrés Gnzález hp://www.mdigial.k Auinducancia Cuand en una bbina la crriene varía cn el iemp se crea una Fem.: d () Dnde es un inducr y cuy valr se deermina a parir de la gemería de la bbina:

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

o o 2 1 2 2 24 α = + α = + α = α =

o o 2 1 2 2 24 α = + α = + α = α = Tema 7 Trignmetría Matemáticas 4º ESO 1 TEMA 7 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO 1 a) Pasa a radianes ls siguientes ánguls: 10 y 70 b) Pasa a grads ls ánguls: 7π rad 6 y,5 rad π 7π

Más detalles

Limites y continuidad

Limites y continuidad Bla entrn de un punt Limites cntinuidad Sea P ( ) un punt del plan R Se denmina bla entrn de centr P radi al cnjunt de punts P del plan cua distancia al punt P es inferir a Se designa pr E(P ) bien B(P

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

DERIVADA DE UNA FUNCIÓN REAL

DERIVADA DE UNA FUNCIÓN REAL Unidad didáctica 7 Funcines reales de variable real Autras: Glria Jarne, Esperanza Minguillón, Trinidad Zabal DERIVADA DE UNA FUNCIÓN REAL CONCEPTOS BÁSICOS Dada una función real y f( ) y un punt D en

Más detalles

Puntos, rectas y planos en el espacio

Puntos, rectas y planos en el espacio Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. La eca coa a los es planos coodenados

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

CAPÍTULO 3: INFILTRACIÓN

CAPÍTULO 3: INFILTRACIÓN 27 CAPÍTULO 3: INFILTRACIÓN 3.1 DEFINICIÓN El agua precipiada sobre la supericie de la ierra, queda deenida, se evapora, discurre por ella o penera hacia el inerior. Se deine como inilración al paso del

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

cx + d k; ax 2 + bx + c 0&a 1 x 2 + b 1 x + c 1 a 2 x 2 + b 2 x + c 2, con a 1 a 2

cx + d k; ax 2 + bx + c 0&a 1 x 2 + b 1 x + c 1 a 2 x 2 + b 2 x + c 2, con a 1 a 2 Ls númers reales 1 OBJETIVOS PARTICULARES. Al terminar este capítul, el alumn debe ser capaz de: Identificar númers naturales, enters, racinales, irracinales y reales. Cncer prpiedades algebraicas y de

Más detalles

= = f=440 Hz, v=143 m/s A=0.75 mm. b) Las posiciones de los nodos están en x=0,λ/2,2λ/2 :

= = f=440 Hz, v=143 m/s A=0.75 mm. b) Las posiciones de los nodos están en x=0,λ/2,2λ/2 : 15.7 Una de las cuerdas de una guiarra esá en el eje cuando esá en equilibrio. El eremo 0 el puene de la guiarra esá fijo. Una onda senoidal incidene iaja por la cuerda en dirección a 143 m/s con ampliud

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

CIRCUITOS CON DIODOS.

CIRCUITOS CON DIODOS. ema 3. Crcus cn dds. ema 3 CCUOS CON OOS. 1.- plcacón elemenal..- Crcus recradres (lmadres)..1.- eslucón de un crcu recradr ulzand las cuar aprxmacnes del dd..1.1.- eslucón ulzand la prmera aprxmacón..1..-

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Octav. PERIODO: Segund UNIDAD: Ecuacines inecuacines lineales

Más detalles

Ejemplo: En este ejemplo veremos cómo podemos utilizar un coaxial slotted line para calcular la impedancia de carga Z L.

Ejemplo: En este ejemplo veremos cómo podemos utilizar un coaxial slotted line para calcular la impedancia de carga Z L. 91 Ejempl: En este ejempl verems cóm pdems utilizar un caxial sltted line para calcular la impedancia de carga. Un caxial sltted line tiene una pequeña abertura lngitudinal (i.e. slit) en su cnductr exterir.

Más detalles

Cálculo del presupuesto de potencia para enlace inalámbrico punto a punto.

Cálculo del presupuesto de potencia para enlace inalámbrico punto a punto. Telecmunicacines 2010 Cálcul del presupuest de ptencia para enlace inalámbric punt a punt. Descripción del escenari y requerimients del enlace: Se desea establecer un enlace punt a punt, en el cual la

Más detalles

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones

Más detalles

de Emisor y Colector para finalmente obtener de ellas el Modelo Ebers Moll del transistor.

de Emisor y Colector para finalmente obtener de ellas el Modelo Ebers Moll del transistor. 1 1) Mediante un diagrama de Bandas de Energía eplique el funcinamient del transistr Biplar en la REGIO ACTIVA. 2) Mediante un diagrama del transistr P eplique cóm calcular las crrientes de Emisr y Clectr

Más detalles

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V)

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) CONCEPTO.- Es aquel mimien en el cual un móil recrre espacis dierenes en iemps iguales, en ese cas aría la Velcidad pr l an aparece la aceleración.

Más detalles

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido.

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido. EJERCICIOS FUNCIONES 4º OPCIÓN B 1 De las siguienes funciones decir cuál de ellas son funciones, en ese caso indica el dominio el recorrido. a) b) c) Aplicando el es de la línea verical se observa que

Más detalles

Tema 5: Diferenciabilidad: Aplicaciones

Tema 5: Diferenciabilidad: Aplicaciones Prof. Susana López 1 UniversidadAuónomadeMadrid Tema 5: Diferenciabilidad: Aplicaciones 1 Funciones compuesas y Regla de la cadena Recordemos que la regla de la cadena para funciones de una sola variable

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

C.I.T. - Customer Interface Technology EXPRESS SHIPPER INSTALACIÓN

C.I.T. - Customer Interface Technology EXPRESS SHIPPER INSTALACIÓN EXPRESS SHIPPER INSTALACIÓN A REGISTRARSE EN TNT Pdems instalar directamente desde la web de TNT, per es recmendable realizar primer el registr, descargar el prgrama, instalarl y cnfigurarl, en este rden.

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

TEMA 8. ENERGÍA Y TRABAJO

TEMA 8. ENERGÍA Y TRABAJO TEMA 8. ENERGÍA Y TRABAJO 8.1 CONCEPTO DE ENERGÍA De frma general, se puede decir que la energía es una prpiedad de tds ls cuerps que hace psible la interacción entre ells. Tda la energía del Univers estuv

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 4 Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7 + 7 4 7 7 7 7 40 ( 7 / ) / 7 / / 7 /0 0 7,... Uiliza la noación cienífica para

Más detalles

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales.

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales. Solución y crierios de corrección. Examen de mayores de años.. Maemáicas aplicadas a las ciencias sociales. BLOQUE A En un cenro de ocio hay salas de cine: A, B y. A una deerminada sesión han acudido personas.

Más detalles

VERIFICACIÓN DE REGISTROS DNS

VERIFICACIÓN DE REGISTROS DNS VERIFICACIÓN DE REGISTROS DNS Para verificar un varis registrs DNS, es psible realizarl mediante una aplicación llamada NSLkup, presente en sistemas Windws y Linux. INGRESANDO A NSLOOKUP (WINDOWS) Para

Más detalles

PRÁCTICA 5: REDES LOCALES

PRÁCTICA 5: REDES LOCALES PRÁCTICA 5: REDES LOCALES Ejercici 0 Cmpleta en tu cuadern la tería del Tema 2, manteniend tus prpis estils y frmat. Cmpleta ls cncepts LAN, MAN y WAN enumerand sus características principales. Explica

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

Expresa algebraicamente relaciones funcionales en las que unas magnitudes varían en función de otras.

Expresa algebraicamente relaciones funcionales en las que unas magnitudes varían en función de otras. RELACIÓN FUNCIONAL 14 Expresa algebraicamente relacines funcinales en las que unas magnitudes varían en función de tras. En Presentación de Cntenids se explica qué es la relación funcinal y sus diferentes

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

Física General 1 M O V I M I E N T O D E U N H O M B R E B A L A. Ronit Kremer, Noelia Pacheco.

Física General 1 M O V I M I E N T O D E U N H O M B R E B A L A. Ronit Kremer, Noelia Pacheco. Prect PE - Curs 7 Institut de Física O V I I E N T O D E U N H O B R E B A L A Rnit Kremer, Nelia Pachec. INTRODUCCIÓN: OBJETIVO: Dad el siguiente ejercici: Ejercici 11, práctic. imient de un hmbre bala.

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

RECTAS Y PLANOS EN EL ESPACIO. donde OP y OP

RECTAS Y PLANOS EN EL ESPACIO. donde OP y OP RECTAS Y ANOS EN E ESACIO A RECTA EN R Ecacines de la recta En el espaci R se determina na recta si se cnce n pnt de ella dirección representada pr n ectr n nl Figra a Recta en R Cm se bsera en la Figra

Más detalles

AVANCE SOLUCIONES INFORMÁTICAS. Preguntas Frecuentes SGTaller. Cómo respaldo la información del programa?

AVANCE SOLUCIONES INFORMÁTICAS. Preguntas Frecuentes SGTaller. Cómo respaldo la información del programa? Cóm respald la infrmación del prgrama? La base de dats de SGTaller se encuentra pr defect en C:\SGTaller 2\Base\Service.fdb Ese archiv cntiene tda la infrmación. Si Ud. a parte tiene reprtes persnalizads,

Más detalles

Capitulo III 3.2.4. ESTIRADO DE ALAMBRES Y BARRAS

Capitulo III 3.2.4. ESTIRADO DE ALAMBRES Y BARRAS 193 3..4. ESTIRDO DE LMBRES Y BRRS En el cntext de ls prcess de dermación vlumétrica, el estirad es una peración dnde la sección transversal de una barra, varilla alambre se reduce al tirar del material

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO #2: FUNDAMENTOS SOBRE VECTORES

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO #2: FUNDAMENTOS SOBRE VECTORES UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO #2: FUNDAMENTOS SOBRE VECTORES Dieg Luis Aristizábal R., Rbert Restrep A., Tatiana Muñz H. Prfesres,

Más detalles

ÁLGEBRA Y GEOMETRÍA ANALÍTICA SUPERFICIES CUÁDRICAS SUPERFICIES

ÁLGEBRA Y GEOMETRÍA ANALÍTICA SUPERFICIES CUÁDRICAS SUPERFICIES SUPERFICIES En el área de estudi del electrmagnetism ns encntrams cn la guiente tuación: Ds superficies cilíndricas caxiales cuys radis sn de cm y de 3 cm respectivamente, llevan cargas eléctricas iguales

Más detalles

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN Problemas de Maemáicas º Bachillerao OPTIMIZACIÓN En ese documeno se eplica brevemene cómo se resuelven los problemas de opimización, y se ilusra mediane un ejemplo. Como sabéis, los problemas de opimización

Más detalles

Cómo configurar el aula en Moodle?

Cómo configurar el aula en Moodle? Cóm cnfigurar el aula en Mdle? La platafrma Mdle les da a ls tutres pcines para cnfigurar un curs cn el fin de que puedan diseñar a su gust el espaci en el que publicarán sus cntenids. La función de cnfiguración

Más detalles

Dualidad y sensitividad

Dualidad y sensitividad Dualidad y sensitividad 1. Dualidad Dad un prblema de minimización en frma canónica PC: min c T x s.a Ax v x 0 su dual es el prblema max w T b s.aw T A c T W 0 Para un prblema de prgramación lineal en

Más detalles

Cálculo de las condiciones de equilibrio para los sistemas metalagua

Cálculo de las condiciones de equilibrio para los sistemas metalagua Cálcul de las cndicines de equilibri para ls sistemas metalagua Apellids, nmbre Muñz Prter, María Jsé (mjmunz@iqn.upv.es) Departament Centr Ingeniería Química y Nuclear scuela Técnica Superir de Ingeniers

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

Para instalar Hoteldruid, utilizaremos easyphp, cuya instalación ya se ha descrita en el vídeo de instalación de FacturaScripts

Para instalar Hoteldruid, utilizaremos easyphp, cuya instalación ya se ha descrita en el vídeo de instalación de FacturaScripts 1 QUÉ ES HOTELDRUID? Hteldruid es un prgrama de códig abiert para la gestión htelera (PMS). Gracias a la gran versatilidad de su interfaz web puede satisfacer una amplia gama de exigencias, desde las de

Más detalles

SESIÓN 7 EL CONCEPTO COGNOSCITIVO; EL PENSAMIENTO

SESIÓN 7 EL CONCEPTO COGNOSCITIVO; EL PENSAMIENTO SESIÓN 7 EL CONCEPTO COGNOSCITIVO; EL PENSAMIENTO I. CONTENIDOS: 1. Naturaleza de la cgnición. Prcess cgnitivs. 2. El pensamient. 3. La slución de prblemas. 4. La creatividad. II. OBJETIVOS: Al términ

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

Tema 10 Funciones elementales Matemáticas I 1º Bachillerato 1

Tema 10 Funciones elementales Matemáticas I 1º Bachillerato 1 Tema 0 Funciones elementales Matemáticas I º Bachillerato TEMA 0 FUNCIONES ELEMENTALES FUNCIÓN EJERCICIO : Indica cuáles de las siuientes representaciones corresponden a la ráica de una unción. Razona

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Pryect PMME - Curs 007 Institut de Física Facultad de Ingeniería Udela DINÁMICA DEL ÍGIDO Maurici Olivera, Guillerm Pachec, Pabl asilla. INTODUCCIÓN El siguiente trabaj se basa en la reslución

Más detalles

Perspectiva de Alto Nivel del Funcionamiento y de las interconexiones del computador

Perspectiva de Alto Nivel del Funcionamiento y de las interconexiones del computador Perspectiva de Alt Nivel del Funcinamient y de las intercnexines del cmputadr Capítul 3 Fecha de presentación Debems pder cntestar las preguntas, Qué aspects de diseñ sn ls que permite que ls cmpnentes

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Octav. PERIODO: Segund UNIDAD: Sistemas de númers reales.

Más detalles

FUNCIONES INTRODUCCIÓN

FUNCIONES INTRODUCCIÓN FUNCIONES INTRODUCCIÓN Contenidos Concepto unción Graica de una unción Dominio y Recorrido de una unción Clasiicación de la unciones Función Inversa Paridad de las Funciones Operaciones con unciones Ejemplos

Más detalles

AGREGADOS ECONOMICOS A PRECIOS CONSTANTES, ÍNDICES DEFLACTORES IMPLÍCITOS, DEFLACIÓN, RELACIÓN DE PRECIOS, CONSUMO INTERMEDIO Y MARGEN DE ERROR

AGREGADOS ECONOMICOS A PRECIOS CONSTANTES, ÍNDICES DEFLACTORES IMPLÍCITOS, DEFLACIÓN, RELACIÓN DE PRECIOS, CONSUMO INTERMEDIO Y MARGEN DE ERROR Universidad Nacinal de Ingeniería Elabración de Indicadres AGREGADOS ECONOMICOS A RECIOS CONSTANTES, ÍNDICES DEFLACTORES IMLÍCITOS, DEFLACIÓN, RELACIÓN DE RECIOS, CONSUMO INTERMEDIO Y MARGEN DE ERROR TEMA

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales CAPÍTULO 3 Sistemas de ecuacines lineales 3.1 SISTEMAS DE ECUACIONES CON DOS VARIABLES 3.2 MÉTODO DE ELIMINACIÓN DE GAUSS 3.3 SISTEMAS CON n VARIABLES, n 3 3.4 APLICACIONES SELECTAS 3.5 NOTAS FINALES Términs

Más detalles

Resolución Prueba Oficial

Resolución Prueba Oficial JUEVES 6 DE sepiembre DE 01 en n 1 on el maerial de esa edición podrás revisar ocho pregunas del Área emáica de Funciones siee de Geomería. El jueves 1 de sepiembre publicaremos la ercera pare de la resolución

Más detalles

MOVIMIENTO EN DOS DIMENSIONES

MOVIMIENTO EN DOS DIMENSIONES MOVIMIENTO EN DOS DIMENSIONES INTRODUCCIÓN Hems ist que el mimient de una partícula es rectilíne si: - - la elcidad es cnstante (MRU) la aceleración es cnstante clineal cn la elcidad (MRUV) Si la aceleración

Más detalles

HOTEL RURAL. Taller de modelado de objetos. Ingeniería del Software Curso 2005-2006. Salamanca, 16-XI-2005. Trabajo realizado por:

HOTEL RURAL. Taller de modelado de objetos. Ingeniería del Software Curso 2005-2006. Salamanca, 16-XI-2005. Trabajo realizado por: Taller de mdelad de bjets HOTEL RURAL Salamanca, 16-XI-2005 Trabaj realizad pr: Javier Trujill Hernández Javier Rubi Alamill Fernand Buitrag Alns El Htel Rural Un pequeñ htel rural necesita una aplicación

Más detalles

, si X toma valores muy grandes positivos, f(x) se va aproximando a l. o., si X toma valores muy grandes negativos, f(x) se va aproximando a l.

, si X toma valores muy grandes positivos, f(x) se va aproximando a l. o., si X toma valores muy grandes negativos, f(x) se va aproximando a l. 3.8 Límites en el infinit En casines interesa cnsiderar el cmprtamient de una función cuand la variable independiente tiende, n a un valr cncret, sin a valres muy grandes, tant psitivs cm negativs. En

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO NOVENO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO NOVENO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO NOVENO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Nven. PERIODO: Segund UNIDAD: Sistemas de ecuacines lineales

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

6. ALGEBRAS DE BOOLE

6. ALGEBRAS DE BOOLE 6.1. Relaciones de orden Relación de orden Se llama relación de orden sobre un conjuno A a cualquier relación R enre sus elemenos que verifica las siguienes res propiedades: 1. Refleiva: ara, para cualquier

Más detalles

Análisis de arquitecturas para un Core IP/MPLS

Análisis de arquitecturas para un Core IP/MPLS Análisis de arquitecturas para un Cre I/MLS Abreu, Marcel Universidad de Mntevide Resumen En la estructura de redes cnvergentes actuales, ls equips de núcle sn de vital imprtancia. A través de ells transita

Más detalles

Inicio. En este sitio encontrarás las indicaciones para aprender a crear una wiki en Google Sites.

Inicio. En este sitio encontrarás las indicaciones para aprender a crear una wiki en Google Sites. Inici Un wiki una wiki (del hawaian wiki, 'rápid') es un siti web cuyas páginas pueden ser editadas pr múltiples vluntaris a través del navegadr web. Ls usuaris pueden crear, mdificar brrar un mism text

Más detalles

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:

Más detalles

CRISTALOQUÍMICA TEMA 6 ESTRUCTURAS CRISTALINAS. Empaquetados compactos. Coordinación ÍNDICE

CRISTALOQUÍMICA TEMA 6 ESTRUCTURAS CRISTALINAS. Empaquetados compactos. Coordinación ÍNDICE CRISTALOQUÍMICA TEMA 6 ESTRUCTURAS CRISTALINAS Empaquetads cmpacts. Crdinación 6.1 Intrducción 6.2 Estructuras cristalinas ÍNDICE 6.3 Enlace en las estructuras cristalinas 6.4 Cristales iónics 6.5 Cristales

Más detalles

Control de un péndulo invertido usando métodos de diseño no lineales

Control de un péndulo invertido usando métodos de diseño no lineales Conrol de un péndulo inverido usando méodos de diseño no lineales F. Salas salas@caruja.us.es J.Aracil aracil@esi.us.es F. Gordillo gordillo@esi.us.es Depo de Ingeniería de Sisemas y Auomáica.Escuela Superior

Más detalles