LAS APUESTAS EN EL FRONTÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LAS APUESTAS EN EL FRONTÓN"

Transcripción

1 Las Apuestas en el Frontón LAS APUESTAS EN EL FRONTÓN Alberto Bagazgoitia (*) En los frontones el juego de la pelota vasca se ha mantenido y se mantiene con fuerza a través de los años. Estos últimos años además se ha revitalizado de una manera importante. La entrada de la televisión ha cambiado el panorama pelotístico y las cifras que actualmente se mueven en este deporte-espectáculo-negocio poco tienen que ver con las de hace unos años. El mundo de las apuestas, sin embargo, se sigue rigiendo por los mismos parámetros de antaño y siguen vigentes, si no estoy mal informado, las mismas normas en su funcionamiento. Y es este aspecto colateral de la pelota, el de las apuestas, el que quiero analizar someramente desde el punto de vista de las matemáticas. Me centraré en el aspecto técnico del problema, pero qué duda cabe que también admite un enfoque desde el punto de vista de los valores. (En el libro Al margen de la clase publicado hace más de 40 años por Rafael Rodríguez ya se calificaba la afición a apostar como feo vicio ). Como es bien sabido, los partidos se juegan a 22 tantos y el que apuesta por el que resulta perdedor debe pagar la cantidad apostada. Cuando el partido se desarrolla con normalidad no hay ningún problema, pero QUÉ OCURRE CUANDO UN PARTIDO DEBE SUSPENDERSE ANTES DE LLEGAR AL CARTÓN 22? CÓMO DEBEN PAGARSE LAS APUESTAS? Desde el punto de vista matemático el interés por el análisis de los juegos de azar interrumpidos viene de hace siglos. Según puede leerse en el libro Los inicios de la teoría de la probabilidad, a mediados del siglo XVII Huygens hizo un análisis exhaustivo del problema. Pascal y Fermat también abordaron el problema. El problema es bien conocido: En su versión más simple podría enunciarse así: Dos jugadores lanzan sucesivamente una moneda. Ganará la partida y por tanto el dinero, el que antes obtenga tres caras. Por cualquier motivo, la partida debe suspenderse antes de terminar, cuando el resultado es 2 a 1. Cómo debe repartirse el dinero?. No nos entretendremos aquí en explicar que la probabilidad de ganar del que va perdiendo es 1/4, y la del contrincante 3/4, por lo que el reparto debe hacerse en la proporción 3 a 1. Es decir el que va ganando se llevaría el 75% del total. El juego de la pelota es ciertamente diferente. En primer lugar hay que dejar claro que no es un juego de puro azar. Con el fin de equilibrar las esperanzas matemáticas de los apostantes, las apuestas realizadas se suelen ponderar teniendo en cuenta la mayor o menor probabilidad de que un bando pueda conseguir un tanto. Pero aún y todo como esta asignación de probabilidad es subjetiva, y en ella intervienen muchos factores, debemos reconocer que desde las matemáticas lo más que podremos lograr es una aproximación al problema real. * Asesor de Matemáticas. Berritzegune Vitoria. Febrero 2002 Otsaila

2 Alberto Bagazgoitia Hoy en día se pone mucho énfasis en la aplicación de las Matemáticas a los problemas reales, y ciertamente es un campo donde todavía tienen mucho que aportar, pero siempre deberemos ser conscientes de las limitaciones que presenta. La llamada MODELIZACIÓN MATEMÁTICA de los problemas reales exige indefectiblemente su simplificación y es en esta tarea, previa al tratamiento matemático, en la que se deben definir los factores o variables básicas de la situación, rechazar los de poca importancia, o establecer las hipótesis iniciales, en la que hay que ser especialmente cuidadoso para que el modelo matemático refleje lo más fielmente posible la realidad. Una vez establecido el modelo, la aplicación de los conocimientos matemáticos nos ofrecerá unos resultados con los que deberemos volver a la realidad a contrastarlos para validar o no el citado modelo. Quiero con esto decir que para entrar en el análisis matemático de las apuestas en la pelota es necesario dejar claro los presupuestos desde los que lo hacemos. CÓMO SE HACE ACTUALMENTE EN LOS FRONTONES CUANDO SE SUSPENDE UN PARTIDO? QUIÉN Y CUÁNTO HAY QUE PAGAR? Habitualmente los partidos de parejas se juegan a 22 tantos. La regla que se aplica en estos casos actualmente es la siguiente: Se divide la diferencia de tantos existente entre las dos parejas por los tantos que le falta a la pareja perdedora para llegar a 22. Esta fracción de la cantidad total que apostó, es la que debe pagar el que jugó a favor del que va perdiendo. Dicho de otra forma, si representamos por G los tantos en que ha quedado la pareja que va ganando, por P los de la perdedora y por AP la apuesta realizada por el apostante a favor de los perdedores, G - P Cantidad a pagar = x AP 22 - P Tiene esta fórmula justificación matemática? Es justa? Qué tienen que decir las Matemáticas al respecto? ANÁLISIS MATEMÁTICO DEL PROBLEMA Lo primero que hemos de reconocer es que en el problema real intervienen muchos factores, algunos de ellos subjetivos que serán imposibles de contemplar en la modelización del problema. Así pues, nos acercamos al problema con la humildad del que sabe que su herramienta no es la panacea que resuelve los problemas, sino sólo un instrumento que nos permita, eso sí, poner algo más de luz en la comprensión de la situación. 1ª APROXIMACIÓN: Consideremos el caso en que el partido en el momento de suspenderse registra el resultado de y la apuesta realizada entre los dos apostantes es de 100 a 100 Esto es, el que hubiese perdido (caso de llegar el rival a 22) debería pagar 100 al contrario. Supongamos, y aquí es donde introducimos las hipótesis propias de la modelización del problema, que la probabilidad p de que cada pareja logre un tanto es de 1/2, y que esa probabilidad se mantiene constante en los sucesivos tantos. 46 SIGMA Nº 20 SIGMA zk. 20

3 Las Apuestas en el Frontón A partir de aquí ya estamos en condiciones de aplicar nuestro modelo probabilístico: El de la PARTIDA INTERRUMPIDA: Vamos a calcular cuál es la probabilidad que tiene de llegar a 22 cada una de las dos parejas. El que va perdiendo tiene 1/4 de probabilidades de ganar (pues tiene que hacer los dos tantos seguidos), y el que va ganando tiene los 3/4 restantes. Por tanto, a la hora de pagar, (suponemos, como ocurre en la realidad, que el fondo no está puesto, sino que se paga al acabar el partido) el que va perdiendo debería pagar (3/4-1/4 )100 = 50. Observar cómo en este caso este resultado coincide con el que determina el método usado en los frontones: (21-20)/(22-20).100 = 50. Manteniendo las mismas hipótesis anteriores, analicemos otros casos. Calculemos las probabilidades que tendría de ganar el partido la pareja que va perdiendo si el resultado es: 21-19: Como tiene que hacer 3 tantos seguidos la probabilidad de ganar será 1/8. Y el pago que debería hacer: (7/8-1/8).100 = 75. Según lo vigente en el frontón, el pago sería: (2/3).100= : Como tiene que hacer 4 tantos seguidos la probabilidad de ganar será 1/16. Y el pago que debería hacer: (15/16-1/16).100 = Según lo vigente en el frontón, el pago sería: (3/4).100= 75. Se puede generalizar fácilmente al caso: 21-P: Como tiene que hacer 22-P tantos seguidos la probabilidad de ganar será 1/2 22-P OTROS CASOS: 20-19: Qué probabilidad de ganar tiene el que lleva 19 tantos? La probabilidad buscada será 1/2 por la probabilidad de ganar en el caso 21-19, más 1/2 por la probabilidad en el caso Obtenemos así una relación que expresa la probabilidad de ganar en función de los resultados posteriores. Y teniendo en cuenta que la probabilidad de ganar con el resultado es de 1/2, podemos obtener así la probabilidad buscada, y con el mismo método la de cualquier otro resultado. Si representamos con Pr[20,19] la probabilidad de que gane el que lleva 19 tantos, tendremos: Pr[20,19] = 1/2 Pr[21,19] + 1/2 Pr[20,20] = En general, y con la ayuda de un pequeño programa informático que nos facilite los cálculos, se puede construir la tabla que nos dé las probabilidades de ganar del jugador que va perdiendo en función de los diferentes resultados. A modo de ejemplo: La fila indica el tanteador del que va ganando y la columna el del que va perdiendo. Febrero 2002 Otsaila

4 Alberto Bagazgoitia X X X X X X X X X X X X X X X Es decir si el partido se suspendiese con el marcador 17-12, la probabilidad de ganar para el que lleva 12 es 0 090, y por tanto le correspondería hacer un pago de: ( ).100 = Y sin embargo aplicando la fórmula usada actualmente en los frontones: La diferencia es evidente. 2ª APROXIMACIÓN: [(17-12)/(22-12)].100 = 50 Hemos supuesto hasta ahora que la probabilidad de hacer un tanto era la misma,1/2, para cada pareja. Realmente ésta es una hipótesis que puede que no se ajuste en absoluto a la realidad, sobre todo si la diferencia entre unos y otros es grande. Analicemos el problema suponiendo que la probabilidad de hacer el tanto cada pareja es diferente, y llamemos p a la probabilidad de que haga el tanto la pareja que va ganando. Por tanto la probabilidad de hacer el tanto la pareja que va perdiendo será 1-p. Eso sí, mantendremos la hipótesis de que estas probabilidades se mantienen constantes a lo largo del partido. Si con G representamos los tantos que lleva la pareja que va ganando y con P los de la que va perdiendo, podremos utilizar la misma relación anterior para obtener la probabilidad de que gane el partido la pareja que va perdiendo: Pr[G,P] = p.pr[g+1,p] + (1-p).Pr[G,P+1] Si en el caso anterior la utilización de un programa informático era aconsejable, ahora resulta imprescindible, puesto que ya no podemos afirmar, como hemos hecho antes, que cuando el partido vaya empatado la probabilidad es de 0 5, y el trabajo se duplica. Para aplicar esta fórmula recursiva y obtener una matriz similar a la del caso anterior nos apoyamos en los casos, fáciles de calcular: En este caso Pr[G,P] significa la probabilidad de que gane el partido la pareja que ha hecho P tantos. (Aquí P podrá ser mayor que G.) 1ª fila: Pr[21,21]=1-p Pr[21,20]=(1-p) 2 Pr[21,19]=(1-p) ª columna: Pr[20,21]=1-p 2 Pr[19,21]=1-p SIGMA Nº 20 SIGMA zk. 20

5 Las Apuestas en el Frontón Para el resto de los resultados, expresar las probabilidades en función de p es demasiado complicado, así que lo haremos partiendo de un valor concreto de p. Tomemos por ejemplo, como valor de p = Como ha quedado ya indicado, el lugar (19,17) contiene la probabilidad de que gane el partido el que lleva 17 tantos, sabiendo que tiene una probabilidad de 0 4 de hacer cada tanto. El lugar (17,19) es la probabilidad de que gane el partido el que lleva 19 tantos, sabiendo que tiene una probabilidad de 0 4 de hacer cada tanto. Así pues, con este valor de p, si el partido se suspendiese con el marcador 17-12, la probabilidad de ganar para el que lleva 12 es 0 018, y por tanto le correspondería hacer un pago de: ( ).100 =96 4. OBTENCIÓN DIRECTA DE LA PROBABILIDAD BUSCADA El método utilizado anteriormente para calcular las probabilidades es un método recursivo. Exige calcular las probabilidades anteriores para conocer las siguientes. Sería deseable obtener una fórmula directa que dé la probabilidad a partir del resultado con el que se ha suspendido el partido. Sean A y B las dos parejas de jugadores. Al suspenderse el partido a A le faltan m tantos para llegar a 22 y a B le faltan n. La probabilidad de que A haga un tanto es p, y la de B es q. (p+q=1) Queremos calcular las probabilidades de victoria de A y de B. Una representación adecuada del problema siempre facilita la tarea. El punto O indica el momento en el que se suspende el partido. Interpretamos un tanto de A como un paso para arriba y un tanto de B como un paso hacia la derecha. A gana m m m m m m m-1 m-1... n O q n n-1 n B gana Febrero 2002 Otsaila

6 Alberto Bagazgoitia El desarrollo del partido puede representarse como un camino de origen O sobre la cuadrícula. Gana A si el camino conduce a alguno de los cuadraditos superiores, de coordenadas (0,m), (1,m), (2,m), (3,m),..., (n-1,m). Ganará B si el camino conduce a algún cuadrado de la derecha, de coordenadas (n,0), (n,1), (n,2),..., (n,m-1). Para encontrar la probabilidad de que gane A bastará con encontrar el n de caminos que llevan a los cuadrados superiores y la probabilidad de cada uno de estos caminos. El n de caminos que van de O a (0,m) es 1, y su probabilidad será p m. El n de caminos que van de O a (1,m) es m, y la probabilidad p m q. (Notar que el último paso siempre tiene que ser para arriba, por lo que el n de caminos a(1,m) es el mismo que a (1,m-1)). El n de caminos que van de O a (2,m) vendrá dado por las combinaciones de m+1 elementos tomados de 2 en 2. Y la probabilidad p m q 2. El n de caminos que van de O a (3,m) vendrá dado por las combinaciones de m+2 elementos tomados de 3 en 3. Y la probabilidad p m q 3. En general, La PROBABILIDAD DE QUE GANE A será: m p A = p m + ( ) pm 1 m + 1 q + ( ) pm m + 2 q 2 + ( ) pm m + n - 2 q ( ) pm q n-1 Análogamente, la de que gane B se obtendrá sin más que cambiar las p por q y las m por n n n + 1 n + 2 p B = q n + ( ) qn p + ( ) qn p 2 + ( ) qn n - 1 m + n - 2 p ( ) qn m - 1 p m-1 Otro asunto a tener en cuenta es la cantidad apostada por cada apostante. Hasta ahora hemos supuesto que eran iguales Pero la mayoría de las apuestas no son así, sino que pueden ser Esto define la cantidad que cada jugador debe pagar, así como la esperanza de ganar. Así si llamamos: AG la cantidad que apostó el que va ganando. AP la cantidad que apostó el que va perdiendo. p la probabilidad que hemos calculado de que el que va perdiendo gane: resultará, que la cantidad a pagar será: AP(1-p) - AG.p Hasta aquí la modelización matemática del problema. La única hipótesis necesaria que se debe asumir es la de que una vez fijada una probabilidad para hacer un tanto por una determinada pareja, esa probabilidad se mantiene constante a lo largo del partido. Corresponde a la subjetividad de los apostantes el fijar la probabilidad citada, pero al tratarse de apuestas, con dinero por medio, ya sabemos que será difícil que los dos apostantes lleguen a un 50 SIGMA Nº 20 SIGMA zk. 20

7 Las Apuestas en el Frontón acuerdo. Pueden todavía las matemáticas aportar algo más en este sentido? Pueden colaborar a la obtención de una probabilidad p que sea la más objetiva posible, y por tanto aceptada por las dos partes? PROBABILIDAD MÁXIMA QUE DA LUGAR A UN RESULTADO CONCRETO Tomemos un resultado concreto, por ejemplo Sea R la pareja que lleva 17 tantos y A la que lleva 12. Se trataría de encontrar cuál es (o cuál ha sido) el máximo valor de la probabilidad de que R haga un tanto, para que se haya producido el resultado En general: (Ver Engel) Se trata de una experiencia aleatoria que se repite n veces, siendo p la probabilidad de éxito (p es desconocida). El suceso , contiene s éxitos y n-s fracasos. Este suceso tiene una probabilidad de f(p) = p s (1-p) n-s. Parece buena idea tomar como valor estimado de p, el valor que haga máximo f(p). (Procedimiento conocido con el nombre de estimación por el método de la máxima verosimilitud ). Derivando respecto a p: f (p) = s.p s-1 (1-p) n-s - p s (n-s)(1-p) n-s-1 = p s-1 (1-p) n-s-1 (s-np) Igualando a cero se tiene como valor máximo para p, p = s/n Es decir, P máx = n éxitos / n experiencias. (Es una buena aproximación cuando s y n-s son elevados) En nuestro ejemplo anterior, si el resultado es 17-12, la probabilidad estimada sería: 17/29 = Por tanto, si el partido acabase y aplicamos nuestros cálculos anteriores con la probabilidad p = , obtenemos que la probabilidad de ganar el partido para el que lleva 12 tantos es: 0 023, y por tanto le correspondería pagar un 95 45% de su apuesta. Mientras que, como ya se ha indicado anteriormente, según la reglamentación actual tiene que pagar el 50%. OTROS EJEMPLOS 1 ) Partido suspendido con el resultado Probabilidad estimada: 20/37 = Probabilidad de que el que va perdiendo gane el partido: Por tanto debe pagar: 84 8% Según la reglamentación del frontón pagará: 60% Febrero 2002 Otsaila

8 Alberto Bagazgoitia 2 ) Partido suspendido con el resultado Probabilidad estimada: 18/28 = Probabilidad de que el que va perdiendo gane el partido: Por tanto debe pagar: 99 9% Según la reglamentación del frontón pagará: 66 7% HABRÁ QUE REVISAR LA ACTUAL REGLAMENTACIÓN? Bibliografía [1] Arthur Engel, Probabilidad y Estadística, Editorial MESTRAL [2] Marisol de Mora, Los Juicios de la teoría de la probabilidad, Charles, U.P.V. 52 SIGMA Nº 20 SIGMA zk. 20

Un juego de cartas: Las siete y media

Un juego de cartas: Las siete y media Un juego de cartas: Las siete y media Paula Lagares Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad de Sevilla

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

Probabilidad y Simulación

Probabilidad y Simulación Probabilidad y Simulación Estímulo del Talento Matemático Real Academia de Ciencias 4 de febrero de 2006 Entendiendo el azar Queremos entender un fenómeno aleatorio (azar, incertidumbre). Entenderlo lo

Más detalles

Índice de materias. 1. Introducción. 2. Conceptos básicos de la probabilidad

Índice de materias. 1. Introducción. 2. Conceptos básicos de la probabilidad Índice de materias 1. Introducción 2. Conceptos básicos de la probabilidad Índice de materias 1. Introducción 2. Conceptos básicos de la probabilidad 3. Modelos de probabilidad elementales Índice de materias

Más detalles

LABORATORIO DE MATEMÁTICAS (2ª PARTE) (*) Grupo Mayrit (**) ACTIVIDADES - NÚMEROS SUMA SOBRE LA MESA TEMA MATERIAL NIVEL NÚMEROS ENTEROS

LABORATORIO DE MATEMÁTICAS (2ª PARTE) (*) Grupo Mayrit (**) ACTIVIDADES - NÚMEROS SUMA SOBRE LA MESA TEMA MATERIAL NIVEL NÚMEROS ENTEROS LABORATORIO DE MATEMÁTICAS (2ª PARTE) (*) SIGMA 31 Grupo Mayrit (**) ACTIVIDADES - NÚMEROS SUMA SOBRE LA MESA Código BAR-2 (Ficha del profesor). TEMA MATERIAL NIVEL NÚMEROS ENTEROS BARAJA DE NÚMEROS ENTEROS

Más detalles

1. Juegos de suma cero con dos jugadores

1. Juegos de suma cero con dos jugadores Teoría de juegos Jesús López Fidalgo Esta teoría está íntimamente relacionada con la teoría de la decisión. Lo que diferencia una de otra es el rival contra el que se entra en juego. En la teoría de la

Más detalles

ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA

ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA MaMaEuSch (Management Mathematics for European School) http://www.mathematik.uni-kl.de/~mamaeusch/ Modelos matemáticos orientados a la educación Clases

Más detalles

Estadística. 1. Cuántos números impares hay de cinco cifras? (Respuesta: 45000)

Estadística. 1. Cuántos números impares hay de cinco cifras? (Respuesta: 45000) 1. Cuántos números impares hay de cinco cifras? (Respuesta: 45000) 2. De cuántas maneras distintas se pueden ordenar en fila 8 personas? (Respuesta: 40320) 3. De cuántas maneras distintas se pueden repartir

Más detalles

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos.

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Prof. D. Miguel Ángel García Hoyo. Septiembre de 2011 Dependencia lineal

Más detalles

Práctica 1 El juego de los chinos

Práctica 1 El juego de los chinos Práctica 1 El juego de los chinos Fecha de entrega: 6 de diciembre Según una teoría, el conocido como juego de los chinos nació en el año 1787 en un pequeño pueblo de León. Felipe Valdeón Triguero, un

Más detalles

La estrategia básica para jugar blackjack.

La estrategia básica para jugar blackjack. La estrategia básica para jugar blackjack. Por Carlos Zilzer. Concepto básico: En cada turno, el jugador tiene que seleccionar una de 3 posibles jugadas: Plantarse, Pedir una carta o Doblar la apuesta.

Más detalles

SIMULACIÓN SIMULACIÓN DE UN JUEGO DE VOLADOS

SIMULACIÓN SIMULACIÓN DE UN JUEGO DE VOLADOS UNIVERSIDAD NACIONAL DE INGENIERIA RECINTO UNIVERSITARIO SIMON BOLIVAR FACULTAD DE ELECTROTECNIA Y COMPUTACIÓN INGENIERIA EN COMPUTACIÓN SIMULACIÓN SIMULACIÓN DE UN JUEGO DE VOLADOS Integrantes: Walter

Más detalles

Estadística y probabilidad para niños. Beatriz Lacruz Departamento de Métodos Estadísticos Universidad de Zaragoza Diciembre de 2012

Estadística y probabilidad para niños. Beatriz Lacruz Departamento de Métodos Estadísticos Universidad de Zaragoza Diciembre de 2012 Estadística y probabilidad para niños Beatriz Lacruz Departamento de Métodos Estadísticos Universidad de Zaragoza Diciembre de 2012 GEOMETRÍA ESTADÍSTICA ARITMÉTICA PROBABILIDAD LAS MATEMÁTICAS Mañana

Más detalles

Empresarial y Financiero

Empresarial y Financiero Curso de Excel Empresarial y Financiero SESIÓN : REGRESIÓN Rosa Rodríguez Relación con el Mercado Descargue de yahoo.com los Datos de precio ajustado de cierre de las acciones de General Electric (GE),

Más detalles

10. Probabilidad y. Estadística

10. Probabilidad y. Estadística 10. Probabilidad y Estadística Ámbito científico 1. Saltos de canguro 2. Pares y nones 3. La travesía del río 4. Las tres fichas 5. Las tres ruletas 6. El dado ganador 7. El reparto 8. Lotería 9. Lotería

Más detalles

Notas de Probabilidades

Notas de Probabilidades 1 Introducción Notas de Probabilidades En la vida cotidiana nos encontramos con frecuencia con situaciones que producen varios resultados conocidos, sin poder determinar con exactitud cual de ellos ocurrirá.

Más detalles

NORMAS SOBRE LOS CONCURSOS DE PRONÓSTICOS

NORMAS SOBRE LOS CONCURSOS DE PRONÓSTICOS NORMAS SOBRE LOS CONCURSOS DE PRONÓSTICOS A PARTIR DE LA TEMPORADA 2015 2016 1 NORMAS SOBRE LOS CONCURSOS DE PRONÓSTICOS 2 ANEXO NORMAS QUE REGULAN LOS CONCURSOS DE PRONÓSTICOS DE LA APUESTA DEPORTIVA

Más detalles

mus REGLAMENTO OBJETIVO DEL JUEGO

mus REGLAMENTO OBJETIVO DEL JUEGO mus REGLAMENTO Para empezar a jugar al Mus se necesita una baraja Española (sin 8s ni 9s),4 jugadores que se sentaran por parejas uno enfrente del otro y un puñado de fichas o garbanzos para llevar el

Más detalles

coordenadas (x,y) en el plano. Producto de matrices. Sean las dos matrices A = (a ij ) m n B = (b ij ) p q

coordenadas (x,y) en el plano. Producto de matrices. Sean las dos matrices A = (a ij ) m n B = (b ij ) p q APLICACIONES DE LAS MATRICES El presente estudio se originó como respuesta a la ayuda que me pidió mi nieto mayor, de 7 años, mientras hacía su curso en un colegio de Brisbane, Australia, a la fecha de

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Probabilidad y sus aplicaciones en ingeniería informática

Probabilidad y sus aplicaciones en ingeniería informática Probabilidad y sus aplicaciones en ingeniería informática Víctor Hernández Eduardo Ramos Ildefonso Yáñez c Víctor Hernández, Eduardo Ramos, Ildefonso Yánez EDICIONES CDÉMICS Probabilidad y sus aplicaciones

Más detalles

REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA

REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Similar a las distribuciones de frecuencia, una distribución de probabilidad discreta puede ser representada (descrita) tanto gráficamente como

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

INDICADORES POR ENCUESTA. Cuaderno Práctico -1 -

INDICADORES POR ENCUESTA. Cuaderno Práctico -1 - INDICADORES POR ENCUESTA Cuaderno Práctico -1 - ÍNDICE Elaboración del CUESTIONARIO...- 4 - Selección de la MUESTRA...- 5 - APLICACIÓN del cuestionario...- 7 - MECANIZACIÓN de datos...- 8 - Cálculo de

Más detalles

Entrevista de Eduard Punset a Amir Aczel, matemático y divulgador científico. Londres, 10 de enero del 2012.

Entrevista de Eduard Punset a Amir Aczel, matemático y divulgador científico. Londres, 10 de enero del 2012. Entrevista de Eduard Punset a Amir Aczel, matemático y divulgador científico. Londres, 10 de enero del 2012. Vídeo del programa: http://www.redesparalaciencia.com/7252/redes/redes-125-descifrar-las-probabilidades-en-la-vida

Más detalles

ESTRATEGIA DE APUESTAS DE RAFA PAREJA EJEMPLO PRÁCTICO REAL DE LA JORNADA 19 DE 2011/2012

ESTRATEGIA DE APUESTAS DE RAFA PAREJA EJEMPLO PRÁCTICO REAL DE LA JORNADA 19 DE 2011/2012 ESTRATEGIA DE APUESTAS DE RAFA PAREJA Vamos a explicar, utilizando un ejemplo práctico, qué sistema seguimos para generar nuestra combinación de apuestas de cada jornada. La estrategia se divide en 5 pasos

Más detalles

LOS JUEGOS EN MATEMÁTICAS. Jose Ramón Gregorio Guirles (*) 1. JUEGOS PARA AUTOMATIZAR OPERACIONES SENCILLAS DE SUMAS Y RESTAS

LOS JUEGOS EN MATEMÁTICAS. Jose Ramón Gregorio Guirles (*) 1. JUEGOS PARA AUTOMATIZAR OPERACIONES SENCILLAS DE SUMAS Y RESTAS LOS JUEGOS EN MATEMÁTICAS SIGMA 26 Jose Ramón Gregorio Guirles (*) 1. JUEGOS PARA AUTOMATIZAR OPERACIONES SENCILLAS DE SUMAS Y RESTAS Como ya comentaba en un artículo anterior sobre juegos de numeración,

Más detalles

Se trata de una estrategia numérica, de buscar una secuencia de números ganadores.

Se trata de una estrategia numérica, de buscar una secuencia de números ganadores. http://www.sinewton.org/numeros ISSN: 1887-1984 Volumen 71, agosto de 2009, páginas 139 147 Estrategias simples (y no tan simples) para los juegos de NIM J.A. Rupérez Padrón y M. García Déniz -Club Matemático

Más detalles

ESTRATEGIAS DE CÁLCULO MENTAL CON MULTIPLICACIONES Y DIVISIONES EN EL 2º CICLO DE PRIMARIA. José Ramón Gregorio Guirles (*)

ESTRATEGIAS DE CÁLCULO MENTAL CON MULTIPLICACIONES Y DIVISIONES EN EL 2º CICLO DE PRIMARIA. José Ramón Gregorio Guirles (*) ESTRATEGIAS DE CÁLCULO MENTAL CON MULTIPLICACIONES Y DIVISIONES EN EL 2º CICLO DE PRIMARIA SIGMA 29 José Ramón Gregorio Guirles (*) En este segundo artículo dedicado a las estrategias de cálculo mental

Más detalles

Las matemáticas para la empresa: un reto pendiente

Las matemáticas para la empresa: un reto pendiente Las matemáticas para la empresa: un reto pendiente Padilla Garrido, N.; Cortés Rodríguez, C.; Serrano Czaia, I.; Vílchez Lobato, M. L. y Herrero Chacón, I. Universidad de Huelva Resumen El fracaso académico

Más detalles

Tema 1: Teoría de la decisión bajo incertidumbre

Tema 1: Teoría de la decisión bajo incertidumbre Tema 1: Teoría de la decisión bajo incertidumbre Microeconomía Avanzada II Iñigo Iturbe-Ormaeche U. de Alicante 2008-09 Anomalías Introducción Formalización Utilidad esperada Actitud frente al riesgo Aplicaciones

Más detalles

Modelos de regresión: lineal simple y regresión logística

Modelos de regresión: lineal simple y regresión logística 14 Modelos de regresión: lineal simple y regresión logística Irene Moral Peláez 14.1. Introducción Cuando se quiere evaluar la relación entre una variable que suscita especial interés (variable dependiente

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 3. Definición intuitiva de probabilidad: ley de Laplace La palabra probabilidad, que usamos habitualmente, mide el grado de creencia que tenemos de que ocurra un hecho que puede pasar o no pasar. Imposible,

Más detalles

EL PROBLEMA DE LA RUINA DEL JUGADOR. Jesús de la Cal (*)

EL PROBLEMA DE LA RUINA DEL JUGADOR. Jesús de la Cal (*) EL PROBLEMA DE LA RUINA DEL JUGADOR SIGMA 29 Jesús de la Cal (*) 1. EL PROBLEMA Supongamos en escena a dos jugadores: uno, al que llamaremos "J" (con el que nos identificaremos a lo largo de esta historia),

Más detalles

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática 1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos

Más detalles

Modelos de distribuciones discretas

Modelos de distribuciones discretas Tema 4 Modelos de distribuciones discretas En este capítulo estudiaremos las distribuciones discretas más importantes. importancia es doble, por las aplicaciones y por su relevancia conceptual. De nuevo,

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Población y muestra. Técnicas de muestreos

Población y muestra. Técnicas de muestreos MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Población y muestra. Técnicas de muestreos Paula Lagares Barreiro * Justo Puerto Albandoz * MaMaEuSch **

Más detalles

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Soluciones de los ejercicios de la primera Unidad Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 5 de marzo de 0 Índice general Ejercicio.. Manejo del formalismo de los sucesos.............

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

LA DISTRIBUCIÓN TRAPEZOIDAL COMO MODELO PROBABILÍSTICO PARA LA METODOLOGÍA PERT

LA DISTRIBUCIÓN TRAPEZOIDAL COMO MODELO PROBABILÍSTICO PARA LA METODOLOGÍA PERT LA DISTRIBUCIÓN TRAPEZOIDAL COMO MODELO PROBABILÍSTICO PARA LA METODOLOGÍA PERT JOSÉ CALLEJÓN CÉSPEDES EDUARDO PÉREZ RODRÍGUEZ ANTONIO RAMOS RODRÍGUEZ Facultad de Ciencias Económicas y Empresariales Universidad

Más detalles

PARA MAYOR INFORMACION ABRA LA PAGINA WEB www.abaco.com.ve www.miprofe.com.ve www.abrakadabra.com.ve

PARA MAYOR INFORMACION ABRA LA PAGINA WEB www.abaco.com.ve www.miprofe.com.ve www.abrakadabra.com.ve Este material es producido por José Arturo Barreto, M,A,, en Caracas, Venezuela josearturobarreto@yahoo.com Tel: (0416)3599615 (0424)2616413 (0412)0231903 PARA MAYOR INFORMACION ABRA LA PAGINA WEB www.abaco.com.ve

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

Acertar: dependencia o independencia de los sucesos?

Acertar: dependencia o independencia de los sucesos? Nivel: 2.º Medio Sector: Matemática Unidad temática: Estadística y probabilidad Actividad para el estudiante Acertar: dependencia o independencia de los sucesos? Quizás hayas jugado el juego Monopoly o

Más detalles

Tema 3. La elección en condiciones de incertidumbre

Tema 3. La elección en condiciones de incertidumbre Tema 3 La elección en condiciones de incertidumbre Epígrafes El valor esperado La hipótesis de la utilidad esperada La aversión al riesgo La compra de un seguro Cap. 5 P-R 2 Introducción Cómo escogemos

Más detalles

Creator1X2 Estadísticas 1X2 Fútbol Pronosticador Generador de apuestas

Creator1X2 Estadísticas 1X2 Fútbol Pronosticador Generador de apuestas Creator1X2 Estadísticas 1X2 Fútbol Pronosticador Generador de apuestas 1. INTRODUCCION 2. REQUERIMIENTOS 3. OPCIONES DEL MENU PRINCIPAL A. ESTADISTICAS 1X2 Configurar Estadística Mantenimiento de Quinielas

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Práctica 1 - Pista de Carreras 12407 - Programación II

Práctica 1 - Pista de Carreras 12407 - Programación II 1. Introducción Práctica 1 - Pista de Carreras 12407 - Programación II En esta práctica el objetivo es implementar una matriz de adyacencia para el juego Pista de Carreras. Con tal fin, primero hay que

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor

Más detalles

UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST

UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST 7.1. ANÁLISIS DE LOS ÍTEMS Al comenzar la asignatura ya planteábamos que uno de los principales problemas a los que nos enfrentábamos a la hora

Más detalles

Manejo de la Información

Manejo de la Información Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado

Más detalles

Juego Azar O Matemática?

Juego Azar O Matemática? Juego Azar O Matemática? Carlos Aragón Pérez Grado en Ingeniería en telecomunicaciones c.aragon@edu.uah.es Vamos a explicar las técnicas matemáticas que podremos utilizar para poder ganar en los juegos

Más detalles

Algoritmos. Autor: José Ángel Acosta Rodríguez

Algoritmos. Autor: José Ángel Acosta Rodríguez Autor: 2006 ÍNDICE Página Índice 1 Problema 1. Movimiento de figuras geométricas.2 Problema 2. Conversión decimal a binario....3 Problema 3. Secuencias binarias..4 Problema 4. Conversión a binario a octal...

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

Notas sobre combinatoria y probabilidad [segunda parte]

Notas sobre combinatoria y probabilidad [segunda parte] Notas sobre combinatoria y probabilidad [segunda parte] Tercer artículo de una serie dedicada a la estadística y su aplicación en las aulas, el texto es la segunda parte de un análisis acerca del uso de

Más detalles

ECONOMIA DE LA INFORMACION Y DE LA INCERTIDUMBRE EJERCICIOS (TEORIA DE JUEGOS)

ECONOMIA DE LA INFORMACION Y DE LA INCERTIDUMBRE EJERCICIOS (TEORIA DE JUEGOS) ECONOMIA DE LA INFORMACION Y DE LA INCERTIDUMBRE EJERCICIOS (TEORIA DE JUEGOS) Ejercicio 1. Aplicando el concepto de estrategias estrictamente dominadas al siguiente juego, qué estrategias podemos estar

Más detalles

Capítulo 3: Lineamientos y prácticas para la administración del ancho de banda

Capítulo 3: Lineamientos y prácticas para la administración del ancho de banda Capítulo 3: Lineamientos y prácticas para la administración del ancho de banda 3.1 Comparación de la asignación estática y dinámica del ancho de banda La asignación estática es una técnica eficiente cuando

Más detalles

Índice 1 / 47. 1- Qué es la Estadística?

Índice 1 / 47. 1- Qué es la Estadística? Índice 1- Qué es la Estadística? 1 / 47 2- Los sucesos aleatorios y la Teoría de la Probabilidad 2.1- Los sucesos aleatorios 2.2- La probabilidad de un suceso 2.3- La regla de Laplace 2.4- Dato curioso:

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

Introducción al Cálculo de Probabilidades a través de casos reales

Introducción al Cálculo de Probabilidades a través de casos reales MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Introducción al Cálculo de Probabilidades a través de casos reales Paula Lagares Barreiro * Federico Perea

Más detalles

Apuntes de Matemática Discreta 7. Relaciones de Orden

Apuntes de Matemática Discreta 7. Relaciones de Orden Apuntes de Matemática Discreta 7. Relaciones de Orden Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 7 Relaciones de Orden Contenido

Más detalles

GEOMETRÍA CON AYUDA VIRTUAL

GEOMETRÍA CON AYUDA VIRTUAL GEOMETRÍA CON AYUDA VIRTUAL SIGMA 28 Alberto Bagazgoitia (*) 1. MOSAICOS: MATERIALES VIRTUALES EN GEOMETRÍA La resolución de problemas y las pequeñas investigaciones son una parte esencial del trabajo

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

Apuntes de Matemática Discreta 4. Permutaciones y Variaciones

Apuntes de Matemática Discreta 4. Permutaciones y Variaciones Apuntes de Matemática Discreta 4. Permutaciones y Variaciones Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 4 Permutaciones y Variaciones

Más detalles

Boletín: Cadenas de Markov IES de MOS Métodos Estadísticos y Numéricos

Boletín: Cadenas de Markov IES de MOS Métodos Estadísticos y Numéricos Boletín: Cadenas de Markov IES de MOS Métodos Estadísticos y Numéricos 1. Tenemos 2 bolas blancas y 2 negras. Las repartimos en dos urnas cada una con 2. El sistema está en estado j si la urna 1 contiene

Más detalles

Bloque III. Probabilidad y Estadística. Bloque III. Probabilidad y Estadística

Bloque III. Probabilidad y Estadística. Bloque III. Probabilidad y Estadística Bloque III. Probabilidad y Estadística 9 Bloque III. Probabilidad y Estadística 96 Ampliación de Matemáticas 3º ESO Bloque III. Probabilidad y Estadística Introducción Este bloque está dividido en los

Más detalles

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL. REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer

Más detalles

TEORIA DE LA PROBABILIDAD

TEORIA DE LA PROBABILIDAD TEORIA DE LA PROBABILIDAD 2.1. Un poco de historia de la teoría de la probabilidad. Parece evidente que la idea de probabilidad debe ser tan antigua como el hombre. La idea es muy probable que llueva mañana

Más detalles

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

MODELO PARA LA ELABORACIÓN DE PROGRAMACIONES Y UNIDADES DIDÁCTICAS POR COMPETENCIAS. Autor: Daniel Hernández Cárceles

MODELO PARA LA ELABORACIÓN DE PROGRAMACIONES Y UNIDADES DIDÁCTICAS POR COMPETENCIAS. Autor: Daniel Hernández Cárceles MODELO PARA LA ELABORACIÓN DE PROGRAMACIONES Y UNIDADES DIDÁCTICAS POR COMPETENCIAS Autor: Daniel Hernández Cárceles INDICE: 1. INTRODUCCIÓN.... 2 2. COMPETENCIAS BÁSICAS... 2 3. PASOS PARA ELABORAR UNA

Más detalles

Análisis del juego televisivo QUIÉN QUIERE SER MILLONARIO? R

Análisis del juego televisivo QUIÉN QUIERE SER MILLONARIO? R Análisis del juego televisivo QUIÉN QUIERE SER MILLONARIO? R Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad

Más detalles

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7 Página 1 de 7 1 CRITERIOS DE EVALUACIÓN 1.1 SECUENCIA POR CURSOS DE LOS CRITERIOS DE EVALUACION PRIMER CURSO 1. Utilizar números naturales y enteros y fracciones y decimales sencillos, sus operaciones

Más detalles

Indicadores matemáticos para el análisis técnico de precios

Indicadores matemáticos para el análisis técnico de precios ANÁLISIS TÉCNICO DE PRECIOS Nota técnica Joaquín Arias Segura Ph.D i Especialista Regional en Políticas y Negociaciones Comerciales para la Región Andina Instituto Interamericano de Cooperación para la

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Qué viene el euro! Francisco M. Bou, Lucía Puchalt, Marta I. Trapero, Mónica Vivó

Qué viene el euro! Francisco M. Bou, Lucía Puchalt, Marta I. Trapero, Mónica Vivó 38 Qué viene el euro! noviembre 2001, pp. 89-94 Francisco M. Bou, Lucía Puchalt, Marta I. Trapero, Mónica Vivó IDEAS Y RECURSOS Y Desde este artículo se pretende dar a conocer un recurso para que los alumnos,

Más detalles

DISTRIBUCIÓN BINOMIAL Y DISTRIBUCIÓN NORMAL

DISTRIBUCIÓN BINOMIAL Y DISTRIBUCIÓN NORMAL Capítulo 3 DISTRIBUCIÓN BINOMIAL Y DISTRIBUCIÓN NORMAL 3.1. Introducción Estudiaremos en este tema dos de las distribuciones de probabilidad más importantes y que son imprescindibles a la hora de adentrarnos

Más detalles

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7 Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7 Definiciones: 1- La probabilidad estudia la verosimilitud de que determinados sucesos o eventos ocurran o no, con respecto a otros sucesos o eventos

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

CAPÍTULO 5: PROBABILIDADES

CAPÍTULO 5: PROBABILIDADES Página de PÍTULO : PROBBILIDDE Para extender los resultados de la muestra a la población, es necesario utilizar la idea de modelo probabilístico. uando tomamos una muestra de una población, nuestras conclusiones

Más detalles

César Antonio Aguilar Facultad de Lenguas y Letras 25/03/2013 Cesar.Aguilar72@gmail.com

César Antonio Aguilar Facultad de Lenguas y Letras 25/03/2013 Cesar.Aguilar72@gmail.com Métodos y técnicas de investigación cuantitativa César Antonio Aguilar Facultad de Lenguas y Letras 25/03/2013 Cesar.Aguilar72@gmail.com Algunos conceptos básicos (1) En esta sesión, y basándonos en el

Más detalles

FICHERO DE AYUDA DEL PROGRAMA QUINIBASKET

FICHERO DE AYUDA DEL PROGRAMA QUINIBASKET FICHERO DE AYUDA DEL PROGRAMA QUINIBASKET Versión QUINIBASKET : 2.0 r1 Fecha : 03/11/2013 1. INFORMACION GENERAL El programa sirve para tratar apuestas del juego QUINIBASKET. Para más información relacionada

Más detalles

La demanda de plazas en la licenciatura de Medicina en España

La demanda de plazas en la licenciatura de Medicina en España La demanda de plazas en la licenciatura de Medicina en España Estudio econométrico por Comunidades Autónomas de la demanda de plazas en las facultades de Medicina españolas para el curso 2006/2007 Asignatura:

Más detalles

LAS MATEMÁTICAS DE ESO Y BACHILLERATO A TRAVÉS DE LOS JUEGOS 3. JUEGOS DE PROBABILIDAD, ESTADÍSTICA Y ESTRATEGIA. MAURICIO CONTRERAS

LAS MATEMÁTICAS DE ESO Y BACHILLERATO A TRAVÉS DE LOS JUEGOS 3. JUEGOS DE PROBABILIDAD, ESTADÍSTICA Y ESTRATEGIA. MAURICIO CONTRERAS LAS MATEMÁTICAS DE ESO Y BACHILLERATO A TRAVÉS DE LOS JUEGOS 3. JUEGOS DE PROBABILIDAD, ESTADÍSTICA Y ESTRATEGIA. MAURICIO CONTRERAS Introducción La combinación del azar con diferentes reglas da lugar

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

Ku Information System Tutorial. Una consulta sencilla. Crear la consulta. Seleccionar el área de información. Decidir qué queremos ver

Ku Information System Tutorial. Una consulta sencilla. Crear la consulta. Seleccionar el área de información. Decidir qué queremos ver Para demostrar el uso de Ku simularemos una consulta. Ku puede hacer consultas mucho más complejas, pero para mantener el tutorial sencillo haremos una muy simple. Puedes completar el tutorial en menos

Más detalles

FICHERO DE AYUDA DEL PROGRAMA PLENO1X2WIN INDICE

FICHERO DE AYUDA DEL PROGRAMA PLENO1X2WIN INDICE FICHERO DE AYUDA DEL PROGRAMA PLENO1X2WIN Versión : 2.0 Fecha : 11/11/2009 INDICE 1. OPCIONES PRINCIPALES a. HACER QUINIELA Condicionar: Tipos de filtros Cargar Quiniela base (desde cero o fichero ASCII)

Más detalles

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios

Más detalles

Ejemplo: Apuesta? 100 PERA PERA MANZANA La casa gana!!! Apuesta? 300 FRUTILLA FRUTILLA FRUTILLA GANASTE 600!!! Apuesta? 0 Gracias por jugar!!!

Ejemplo: Apuesta? 100 PERA PERA MANZANA La casa gana!!! Apuesta? 300 FRUTILLA FRUTILLA FRUTILLA GANASTE 600!!! Apuesta? 0 Gracias por jugar!!! Problema: El Tragamonedas. Pepito fue a un casino de juegos y ganó un montón de dinero apostando al tragamonedas. Quedó tan fascinado con el juego que decidió, una vez en casa, hacer un programa que le

Más detalles

Enfoque del Marco Lógico (EML)

Enfoque del Marco Lógico (EML) Enfoque del Marco Lógico (EML) Qué es el EML? Es una herramienta analítica que se utiliza para la mejorar la planificación y la gestión de proyectos tanto de cooperación al desarrollo como de proyectos

Más detalles

Juegos de estrategia

Juegos de estrategia Juegos de estrategia José H. Nieto (jhnieto@yahoo.com). Introducción Los juegos a los cuales nos referimos en este trabajo pueden conceptualizarse como sistemas que pueden estar en cierto número de estados,

Más detalles

2015 / 2016 CONSULTA EN EL AREA DE SOCIOS. ESCRUTINIO de la Jornada 13. PLENO al 15 0,00. Premio de 14 0,00. Premio de 13 0,00. Premio de 12 5.

2015 / 2016 CONSULTA EN EL AREA DE SOCIOS. ESCRUTINIO de la Jornada 13. PLENO al 15 0,00. Premio de 14 0,00. Premio de 13 0,00. Premio de 12 5. 2015 / 2016 CONSULTA EN EL AREA DE SOCIOS SOCIO: 12345678A Clave: rounders1x2 ESCRUTINIO de la Jornada 13 PLENO al 15 0,00 Premio de 14 0,00 Premio de 13 0,00 Premio de 12 5.829,72 Premio de 11 373,08

Más detalles

En una misma ronda, un jugador puede haber resultado ganador o perdedor dependiendo de a qué tipo de juego está jugando.

En una misma ronda, un jugador puede haber resultado ganador o perdedor dependiendo de a qué tipo de juego está jugando. Modalidades de juego En una misma ronda, un jugador puede haber resultado ganador o perdedor dependiendo de a qué tipo de juego está jugando. Por eso es conveniente conocer las distintas modalidades para

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13 Carlos Ivorra Índice 1 Introducción a la optimización 1 2 Programación entera 18 3 Introducción a la programación lineal 24 4 El método símplex

Más detalles

Teoremas de la función implícita y de la función inversa

Teoremas de la función implícita y de la función inversa Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Teoremas de la función implícita y de la función inversa 1. El teorema de la función implícita 1.1. Ejemplos

Más detalles

Guía de ForexMultiplicator

Guía de ForexMultiplicator Guía de ForexMultiplicator El sistema ForexMultiplicator es la automatización de un sistema de inversión basado en la detección en las gráficas de un patrón que siempre indica un cambio de tendencia. En

Más detalles

Introducción. Estadística 1. 1. Introducción

Introducción. Estadística 1. 1. Introducción 1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia

Más detalles