NÚMEROS COMPLEJOS: C

Tamaño: px
Comenzar la demostración a partir de la página:

Download "NÚMEROS COMPLEJOS: C"

Transcripción

1 NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales y en diferencias que usan el polinomio característico asociado. 1. Cómo aparecen los números complejos? Dada una ecuación de segundo grado: ax 2 + bx + c = 0 si el discriminante: = b 2 4ac es no negativo, sabemos que tiene dos raíces reales: r 1,2 = b ± b 2 4ac 2a Si el discriminante es negativo, la ecuación no tiene solución en el conjunto de los números reales. Esto nos lleva a pensar que podemos extender dicho conjunto para incorporar todas las soluciones posibles de una ecuación cuadrática. Si pensamos que existe un número (no real) tal que su cuadrado es igual a 1 podremos realizar la extensión. Llamemos i a dicho número imaginario, entonces sabemos que: i = 1 y que: i 2 = 1 1

2 2. El espacio C A partir de esta definición construimos el conjunto de los NÚMEROS COMPLEJOS: C = {a + b i a, b R} para el cual definimos el concepto de igualdad: IGUALDAD: Dados dos números complejos u = a + bi y v = c + di decimos que son iguales, u = v, si: a = c y b = d y dos operaciones básicas: SUMA: Dados dos números complejos u = a + bi y v = c + di definimos su suma u + v: u + v = (a + c) + (b + d)i PRODUCTO: Dados dos números complejos u = a + bi y v = c + di definimos su producto u v = u v = uv: uv = (ac bd) + (ad + bc)i Notemos que las definiciones están basadas en la suma y producto de los números reales y son coherentes con estas operaciones: u + v = a + bi + c + di = a + c + bi + di = (a + c) + (b + d)i 2

3 y u v = (a + bi)(c + di) = ac + adi + (bi)(c) + (bi)(di) = ac + adi + bci + (bd)(ii) = ac + adi + bci + (bd)( 1) = ac + adi + bci + (bd)( 1) = (ac bd) + (ad + bc)i Dado el número complejo z = a+bi, llamaremos parte real de z al valor a y escribimos: Re(z) = Re(a + bi) = a igualmente llamamos parte imaginaria de z al valor b y escribimos: Im(z) = Im(a + bi) = b Si un número complejo tiene parte real cero se dice que es imaginario puro, por otro lado si tiene parte imaginaria cero lo identificaremos con el número real correspondiente y hablaremos de un real puro. Dos números complejos son iguales si tienen partes reales iguales y partes imaginarias iguales. Las operaciones suma y producto cumplen las propiedades: Propiedades de la suma y producto de números complejos 1. Asociatividad: x, y, z C: (x + y) + z = x + (y + z) (xy)z = x(yz) 2. Conmutatividad x, y C: x + y = y + x xy = yx 3

4 3. Distributividad x, y, z C: x(y + z) = xy + xz 4. Elemento Neutro 0 = 0 + 0i cumple: x C : x + 0 = x 1 = 1 + 0i cumple: x C : x 1 = x 5. Elementos Inversos x = a + bi C, x = a + ( b)i = a bi cumple: x + ( x) = 0 x = a + bi C, x 0, x 1 a = a 2 + b b 2 a 2 + b i cumple: 2 x(x 1 ) = 1 Todas estas propiedades se pueden demostrar a partir de las definiciones dadas y las propiedades de las operaciones en los números reales. La existencia de elementos inversos nos permiten definir las operaciones inversas; resta para la suma y división para el producto: RESTA: Dados dos números complejos u = a + bi y v = c + di definimos su resta o diferencia u v: u v = u + ( v) = (a c) + (b d)i DIVISIÓN: Dados dos números complejos u = a + bi y v = c + di 0 definimos su división o cociente u/v = u v : u v = uv 1 = Casos particulares interesantes de la división son: ac + bd bc ad + c 2 + d2 c 2 + d i 2 a + bi c a + bi i = a c + b c i = b ai 1 c + di = c c 2 + d d 2 c 2 + d i 2 1 i = i 4

5 3. Conjugación y Módulo Para trabajar en el espacio C las siguientes definiciones son muy útiles: CONJUGADO: Dado un número complejo z = a + bi definimos su conjugado como: z = a bi MÓDULO o NORMA: Dado un número complejo z = a + bi definimos su módulo (o norma) como: z = a 2 + b 2 Así podemos decir que todo número complejo tiene su conjugado, que dos complejos conjugados tienen la misma parte real y la parte imaginaria con el mismo valor absoluto pero signos diferentes. Notemos que un número complejo es igual a su conjugado si y solo si es real puro, es decir tiene parte imaginaria cero. Para todos u, z C, son válidas las propiedades: 1. u + z = u + z 2. uz = u z 3. Re(z) = z+z 2 4. Im(z) = z z 2 5. (z) = z 6. z = 0 z = 0 7. z = z = z 8. z = z z 9. zu = z u 10. z + u z + u 11. z u z + u 5

6 Todo lo establecido anteriormente nos permite pensar en el espacio de números complejos C como una extensión del espacio de los números reales R. Es por esto que podemos trabajar en C en muchos sentidos de manera similar a como se trabaja en el conjunto de números reales R y en muchos otros de manera muy diferente. Por ejemplo una característica de los reales que no se puede extender a los complejos es el concepto de orden: los números reales pueden ser ordenados pero los complejos no. El sentido de extender los números reales es el de poder tener un juego completo de raíces de polinomios. Al inicio vimos que podíamos tener polinomios de grado dos con coeficientes reales que no tenían raíces reales. Al extender nuestro espacio a los complejos es fácil ver que todo polinomio de grado dos tiene dos raíces complejas. Por ejemplo: x 2 + x + 1 = 0 no tiene raíces reales, sin embargo si aplicamos la formula usual para las raíces de polinomios de grado 2, obtendríamos: x 1,2 = 1 ± 1 2 4(1)(1) 2(1) = 1 ± 3 2 = ± 2 i dos raíces, pero ahora en el espacio de los números complejos. En la sección siguiente veremos un resultado muy importante y bastante más general al respecto. 4. El Teorema Fundamental del Álgebra Hemos visto que en el espacio de números complejos C podemos encontrar dos raíces 1 para cualquier polinomio de grado dos, ax 2 +bx+c, con coeficientes reales, a, b, c R. No es difícil extender este resultado para polinomios con coeficientes complejos, la misma fórmula, b± b 2 4ac, es válida. Lamentablemente para polinomios de mayor grado no 2a se dispone de fórmulas cerradas que nos permitan calcular las raíces. A pesar de esto sigue siendo válido que un polinomio de grado n, n i=0 a i x i, con coeficientes complejos, a i C para i = 1,..., n, tiene n raíces en el espacio C. A este resultado se le conoce como el Teorema Fundamental del Álgebra. Existen algunas formulaciones equivalentes del mismo, pero esta es la más usual y la que nos interesa. 1 Tomando en cuenta la multiplicidad 6

7 Sin dar la prueba damos el teorema formalmente: Teorema 1 (TFA) Dado un polinomio de grado n, p n (x) = n i=0 a i x i con coeficientes a i C para todo i = 1,..., n, existen n números complejos r i C, i = 1,..., n, no necesariamente todos diferentes, tales que: p n (x) = a n n i=1 (x r i ) = a n (x r 1 )(x r 2 )... (x r n ) Los r i son las raíces del polinomio, es fácil ver que p n (r i ) = a n (r i r 1 )(r i r 2 )... (r i r i )... (r i r n ) = 0 El número de veces que aparece una raíz en el desarrollo se llama multiplicidad. Una raíz simple tiene multiplicidad 1. Sean m 1, m 2..., m k las multiplicidades de las raíces de un polinomio de grado n, el teorema nos indica que es verdad: k m j = n j=1 Aunque el teorema es válido para polinomios con coeficientes complejos, nosotros solo trataremos con polinomios con coeficientes reales. El teorema nos dice que en este caso particular también se tienen n raíces en el espacio complejo. Un resultado interesante y útil es que si el polinomio tiene coeficientes reales entonces las raíces complejas se presentan en pares conjugados. Formalmente probaremos que si r C es tal que p n (r) = 0 entonces p n (r) = 0. Veamos primero que: p n (r) = = = = n a i r i i=0 n a i r i i=0 n a i r i i=0 n a i r i i=0 = p n (r) 7

8 Donde la primera igualdad es por definición del polinomio, y las siguientes usan las propiedades de la conjugación, incluyendo el hecho que el conjugado de un número real es el mismo número (a i = a i ). Lo que hemos establecido es que p n (r) = p n (r) de esta forma si r es tal que p n (r) = 0 entonces p n (r) = p n (r) = 0 = 0 Observando que: (x r)(x r) = (x (α + βi))(x (α βi)) = (x α βi)(x α + βi)) = (x α) 2 (βi) 2 = (x α) 2 + β 2 = x 2 2αx + (α 2 + β 2 ) podemos afirmar que todo polinomio de grado n se puede descomponer en un producto de polinomios de grado 1 y 2 con coeficientes reales 2 : p n (x) = a n m i=1 (x r i ) para cierto m tal que 0 m n y n m par. 2 (x 2 + b j x + c j ) En resumen, las raíces de un polinomio de grado n pueden ser reales o complejos conjugados, siendo la suma de las multiplicidades de las raíces igual a n. Así en particular un polinomio de grado 2 puede tener: dos raíces reales diferentes, una raíz real repetida (multiplicidad 2) o raíces complejas conjugadas. Un polinomio de grado 3 puede tener: tres raíces reales diferentes, dos raíces reales diferentes con multiplicidades 1 y 2, una raíz real con multiplicidad 3 o una raíz real y un par de raíces complejas conjugadas. 2 Si r > s: s i=r P i = 0 n m j=1 8

9 5. Representación de los números complejos Así como podemos representar al conjunto R como una recta, el espacio C de los números complejos se puede representar por un plano: De esta manera a cada punto (a, b) del plano le asociamos el número complejo a + bi y viceversa. Podemos pensar en el vector con punto inicial en el origen (0, 0) y punto final en (a, b), este vector se puede describir dando su módulo (longitud) R y argumento (angulo) θ: Usando geometría básica podemos calcular: R = a 2 + b 2 que corresponde al módulo. Para el ángulo θ [0, 2π[ sabemos que: cos(θ) = a R 9

10 y que sin(θ) = b R De estas ecuaciones obtenemos otra forma de escribir un número complejo no nulo: a + bi = ( ) a a 2 + b 2 a2 + b + b 2 a2 + b i 2 ( a = R R + i b ) R = R (cos(θ) + i sin(θ)) Observemos que al cero le corresponde módulo R = 0 pero el argumento es indeterminado. Es decir que tanto el par (a, b) como el par (R, θ) describen un número complejo particular. A la representación (R, θ) se le conoce como representación polar. 6. Potencias y exponencial de un número complejo En la solución de ecuaciones diferenciales y ecuaciones en diferencias aparecen las potencias y exponenciales de las raíces de cierto polinomio característico. En el caso que estas raíces sean complejas se hace necesario trabajar con las potencias y exponenciales de números complejos. Para poder trabajar en este sentido empezaremos por dar una tercera forma de escribir un número complejo. Para esto necesitamos las expansiones en series de potencias de las funciones exponencial, seno y coseno: e x = cos(x) = sin(x) = x k k! = 1 + x + x2 2 + x ( 1) k x2k 2k! = 1 x2 2 + x4 4! x6 6! +... ( 1) k x2k+1 2k! + 1 = x x3 3! + x5 5! x7 7! +... k=0 k=0 k=0 Aceptando estas identidades como ciertas, no solo para x R sino también para 10

11 x C, podemos usarlas para calcular la exponencial de ix: e ix = (ix) k k=0 k! = 1 + (ix) + (ix)2 2 + (ix)3 3! + (ix)4 4! + (ix)5 5! +... = 1 + ix + (x)2 2 + i(x)3 3! + (x)4 4! + i(x)5 5! +... = 1 + ix x2 2 ix3 3! + x4 4! + ix5 5! +... = 1 x2 2 + x4 4! x6 6! + + +i(x x3 3! + x5 5! x7 7! +... ) = cos(x) + i sin(x) Hemos obtenido, no muy formalmente, una identidad importante, llamada la Formula de Euler: e ix = cos(x) + i sin(x) Podemos escribir entonces : a + bi = R (cos(θ) + i sin(θ)) = Re iθ Con esto es fácil establecer: Para u = a + bi = R (cos(θ) + i sin(θ)) = Re iθ y v = c + di = S (cos(φ) + i sin(φ)) = Se iφ tenemos que: uv = Re iθ Se iφ = RSe i(θ+φ) = RS (cos(θ + φ) + i sin(θ + φ)) u v = Reiθ Se = R iφ S ei(θ φ) = R (cos(θ φ) + i sin(θ φ)) S Expresión a partir de la cual es fácil calcular la potencia de un número complejo, 11

12 expresándolo de la forma anterior: (a + bi) t = (R (cos(θ) + i sin(θ))) t = ( Re iθ) t = R t e iθt = R t (cos(θt) + i sin(θt)) y también calcular la exponencial: e a+bi = e a e bi = e a (cos(b) + i sin(b)) 7. Ejercicios 1. Dados los números complejos: x = a + bi 12

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

4.1. Qué es un número complejo. Representación geométrica.

4.1. Qué es un número complejo. Representación geométrica. Tema Números complejos.. Qué es un número complejo. Representación geométrica. Un número complejo z C C es el conjunto de los números complejos es una expresión de la forma z a + b i en la que a, b R a

Más detalles

Los números complejos

Los números complejos Los números complejos Algo de historia La fórmula para resolver ecuaciones de segundo grado ax 2 +bx+c = 0 es conocida desde tiempos de los griegos. Se sabía que algunas de estas ecuaciones tienen 2 soluciones,

Más detalles

El número real y complejo

El número real y complejo El número real y complejo Dpto. Matemática Aplicada Universidad de Málaga Sistema de números reales Números naturales N = {0,1,2,3,...} Números enteros Z = {..., 3, 2, 1,0,1,2,3,...} { } p Números racionales

Más detalles

Álgebra Lineal. Departamento de Matemáticas Universidad de Los Andes. Primer Semestre de 2007

Álgebra Lineal. Departamento de Matemáticas Universidad de Los Andes. Primer Semestre de 2007 Álgebra Lineal Departamento de Matemáticas Universidad de Los Andes Primer Semestre de 2007 Universidad de Los Andes () Álgebra Lineal Primer Semestre de 2007 1 / 50 Texto guía: Universidad de Los Andes

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM. 1 1.2.1. Definición 1. CONJUNTOS DE NÚMEROS 1.2. NÚMEROS COMPLEJOS Se llama número complejo a cualquier epresión de la forma z = + i donde

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5 ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 5 DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Números Complejos Se define el conjunto de los

Más detalles

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice.

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. Índice general II. UNIDAD 2 3 1. Trigonometría.................................. 3 1.1. Razones trigonométricas de un ángulo................. 3 2. Números complejos................................ 5 2.1.

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4 NÚMEROS COMPLEJOS (C) DEFINICIÓN DE LA UNIDAD IMAGINARIA El cuadrado de un número real siempre es no negativo. Por ejemplo, no existe ningún número real x para el cual x 2 = -1. Para remediar esta situación,

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS ÁLGEBRA I NUMEROS COMPLEJOS. Imaginario: guardia que no efectúa rondas, pero se encuentra en un lugar fijo dispuesto a intervenir si fuera necesario.

Más detalles

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i.

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i. NÚMEROS COMPLEJOS PATRICIA KISBYE 1. DEFINICIÓN En los números reales es posible resolver cualquier ecuación lineal en una variable: ax = b, siempre que a sea distinto de 0. Pero las ecuaciones cuadráticas,

Más detalles

ETS Minas: Métodos matemáticos Tema 1 Preliminares

ETS Minas: Métodos matemáticos Tema 1 Preliminares ETS Minas: Métodos matemáticos Tema 1 Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Septiembre 2008, versión 1.7 Contenido 1.

Más detalles

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 Tema: Números Complejos (C). 1. Clasifica los siguientes números complejos en reales e imaginarios. Mencionar, para cada uno,

Más detalles

Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa.

Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa. DEFINICIÓN:Los Números Imaginarios surgen de la necesidad de resolver ecuaciones cuadráticas sin solución en el campo real. Este conjunto se representa por I Este conjunto posee elementos que se obtienen

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

Números Complejos. Contenido. Definición

Números Complejos. Contenido. Definición U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Números Complejos William La Cruz Números Complejos...3

Más detalles

Números complejos. Sesión teórica 2 (págs ) 21 de septiembre de Potencias de complejos

Números complejos. Sesión teórica 2 (págs ) 21 de septiembre de Potencias de complejos Números complejos Sesión teórica 2 (págs. 10-15) 21 de septiembre de 2010 Llamaremos números complejos a los elementos del conjunto: C = {a + bi a, b R}. La expresión a + bi se denomina forma binómica

Más detalles

2. Números Complejos. Presenta: Eduardo Hernández Huerta. Universidad del Valle de México (UVM). Campus Coyoacán 9 de septiembre de 2017

2. Números Complejos. Presenta: Eduardo Hernández Huerta. Universidad del Valle de México (UVM). Campus Coyoacán 9 de septiembre de 2017 ÁLGEBRA 2. Números Complejos Presenta: Eduardo Hernández Huerta Universidad del Valle de México (UVM). Campus Coyoacán 9 de septiembre de 2017 Contenido 1 Números complejos Complejo conjugado Representación

Más detalles

Notas sobre polinomios

Notas sobre polinomios Notas sobre polinomios Glenier Bello 1. Definiciones y conceptos básicos 1.1. Un polinomio es una función f : C C del tipo f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, donde n es un entero no negativo

Más detalles

Definición 1 Se definen los siguientes conceptos: (3) El conjunto de los números complejos. (a) la parte real de z es Re(z) = a.

Definición 1 Se definen los siguientes conceptos: (3) El conjunto de los números complejos. (a) la parte real de z es Re(z) = a. UNIVERSIDAD ARTURO PRAT FACULTAD DE INGENIERIA Y ARQUITECTURA 1 Conceptos Básicos Sabemos que las soluciones de la ecuación x 2 1 = 0 son x 1 = 1 y x 2 = 1. Una forma de determinar dichas soluciones es

Más detalles

Familiarizar al alumno con las distintas maneras de expresar números complejos.

Familiarizar al alumno con las distintas maneras de expresar números complejos. Capítulo 2 Aritmética compleja Objetivos Familiarizar al alumno con las distintas maneras de expresar números complejos. Manejar con soltura las operaciones aritméticas con números complejos. 2.1. Representaciones

Más detalles

z = ( a 2 + b 2) 1/2 arg(z) = arctan, (5)

z = ( a 2 + b 2) 1/2 arg(z) = arctan, (5) 1 NUMEROS COMPLEJOS 1.1 Definiciones básicas Definimos la unidad imaginaria i 1. Todos los números complejos se escriben de la forma: z = a + ib, (1) donde a y b son números reales. Dado z = a+ib con a

Más detalles

Números complejos y Polinomios

Números complejos y Polinomios Semana 13 [1/14] 23 de mayo de 2007 Forma polar de los complejos Semana 13 [2/14] Raíces de la unidad Raíz n-ésima de la unidad Sean z C y n 2. Diremos que z es una raíz n-ésima de la unidad si z n = 1

Más detalles

Análisis Complejo Primer Cuatrimestre 2009

Análisis Complejo Primer Cuatrimestre 2009 Análisis Complejo Primer Cuatrimestre 009 Práctica 1: Números complejos Números complejos 11 Exprese los siguientes números complejos en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i),

Más detalles

Tema 1. Números Complejos

Tema 1. Números Complejos Tema 1. Números Complejos Prof. William La Cruz Bastidas 27 de septiembre de 2002 Capítulo 1 Números Complejos Definición 1.1 Un número complejo, z, es un número que se expresa como z = x + iy o, de manera

Más detalles

Material de Apoyo. 1. Notación Usual. Q Los números racionales (fracciones). R Los números reales. ], a] El intervalo {x R : x a}.

Material de Apoyo. 1. Notación Usual. Q Los números racionales (fracciones). R Los números reales. ], a] El intervalo {x R : x a}. Material de Apoyo 1. Notación Usual N Los números naturales {1, 2, 3,...}. Z Los enteros {..., 3, 2, 1, 0, 1, 2, 3,...}. Q Los números racionales (fracciones). R Los números reales. P Los números primos

Más detalles

Análisis Complejo Segundo Cuatrimestre 2011

Análisis Complejo Segundo Cuatrimestre 2011 Análisis Complejo Segundo Cuatrimestre 011 Práctica 1: Números complejos Números complejos 11 Expresar los siguientes números en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i), (c) 1 1+3i,

Más detalles

TEMA 3: NÚMEROS COMPLEJOS

TEMA 3: NÚMEROS COMPLEJOS APUNTES DE MATEMÁTICAS TEMA 3: NÚMEROS COMPLEJOS 1º BACHILLERATO _ ÍNDICE Tema 3 Introducción... 3 1. Cómo se maneja 1?... 3. Un nuevo campo numérico C... 4 3. CONJUGADO DE UN NÚMERO COMPLEJO.... 5 4.

Más detalles

Módulo 1 - Diapositiva 7 Números Complejos. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales

Módulo 1 - Diapositiva 7 Números Complejos. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales Módulo 1 - Diapositiva 7 Números Complejos Facultad de Ciencias Exactas y Naturales Temas Números complejos C Axiomas de campo para C Plano complejo y módulo Solución de ecuaciones lineales y cuadráticas

Más detalles

Números complejos ( 1)(25) =

Números complejos ( 1)(25) = Números complejos Introducción Podemos pensar en las progresivas ampliaciones de los conjuntos numéricos como el método necesario para resolver ecuaciones algebraicas progresivamente complicadas. Así,

Más detalles

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1.

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1. Contenido Apunte de Números complejos o imaginarios: Suma y producto de números complejos. División. Raíz cuadrada. Conjugado. Módulo y argumento. Fórmula De Moivre. Raíces. Primera parte NUMEROS COMPLEJOS

Más detalles

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos Capítulo 1 NÚMEROS COMPLEJOS Observe que la ecuación x 2 + 1 0 no tiene solución en los números reales porque tendríamos que encontrar un número cuyo cuadrado fuera 1, es decir x 2 1 o, lo que viene a

Más detalles

Números complejos. por. Ramón Espinosa Armenta

Números complejos. por. Ramón Espinosa Armenta Números complejos por Ramón Espinosa Armenta En el siglo XVI, el matemático italiano Gerolamo Cardano se preguntó si tenía sentido considerar raíces cuadradas de números negativos. Tal raíz cuadrada debería

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: 1 CONOCIMIENTOS PREVIOS. 1 Números complejos. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Sería conveniente realizar un ejercicio

Más detalles

3.5 NÚMEROS COMPLEJOS

3.5 NÚMEROS COMPLEJOS 64 CAPÍTULO Funciones polinomiales y racionales.5 NÚMEROS COMPLEJOS Operaciones aritméticas con números complejos Raíces cuadradas de números negativos Soluciones complejas de ecuaciones cuadráticas Vea

Más detalles

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán 1. Comprobar que: a) ( i) i(1 i) = i b) 1+i 3 4i + i 5i = 5 c) 5 (1 i)( i)(3 i) = i d) (1 i) 4 = 4. Resuelve las siguientes ecuaciones: a) (1 + i)z

Más detalles

Números complejos ( 1)(25) =

Números complejos ( 1)(25) = Números complejos 1. Introducción Podemos pensar en las progresivas ampliaciones de los conjuntos numéricos como el método necesario para resolver ecuaciones algebraicas progresivamente complicadas. Así,

Más detalles

Señales y Sistemas. Grado en Ingeniería de Computadores. Revisión matemáticas

Señales y Sistemas. Grado en Ingeniería de Computadores. Revisión matemáticas Señales y Sistemas Grado en Ingeniería de Computadores Revisión matemáticas José Sáez Landete Departamento de Teoría de la Señal y Comunicaciones Universidad de Alcalá Curso 2015-16 Contenidos 1 Numeros

Más detalles

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la aritmética de Diofanto (año 275). 56 8i 14 + 10i 1. Trata la

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z Problemas de VC para EDVC elaborados por C. Mora, Tema 1 Ejercicio 1 Escribir en forma binómica los siguientes números complejos: i n, n Z; ( 1 + i ) n, n N; ( ) ( ) 4 5 1 + i 3 i ; (1+i 3) 0 ; e 1/z 1

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 11[1/22] 4 de mayo de 2007 Anillos y cuerpos Semana 11[2/22] Anillos Comenzamos ahora el estudio de estructuras algebraicas que tengan definidas dos operaciones, y las clasificaremos en anillos

Más detalles

Resolver ecuaciones cuadráticas. Departamento de Matemáticas Universidad de Puerto Rico - Arecibo

Resolver ecuaciones cuadráticas. Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Resolver ecuaciones cuadráticas Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene una forma general como sigue ax + bx

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

Números complejos (lista de problemas para examen)

Números complejos (lista de problemas para examen) Números complejos (lista de problemas para examen) En esta lista de problemas trabajamos con la construcción de números complejos (como pares ordenados de los reales) y con su representación en la forma

Más detalles

Semana 12 [1/8] Números complejos. 15 de mayo de Números complejos

Semana 12 [1/8] Números complejos. 15 de mayo de Números complejos Semana 12 [1/8] 15 de mayo de 2007 Aviso Semana 12 [2/8] Importante Los contenidos asociados a números complejos en la tutoría de la semana 11, se consideran como parte de esta semana. Esto se reflejará

Más detalles

El cuerpo de los números complejos como cuerpo de ruptura

El cuerpo de los números complejos como cuerpo de ruptura El cuerpo de los números complejos como cuerpo de ruptura El cuerpo algebraicamente cerrado de los números complejos es una extensión del cuerpo de los números reales, cuerpo al que estrictamente contiene

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Preliminares

Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Preliminares 1 Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Preliminares Prof. Adán Salas Gutiérrez Álgebra 1. El factorial de un número n N es el producto de todos

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS Para una mirada sobre el origen y desarrollo histórico de los números complejos leer el siguiente documento páginas 8-13 CANTIDADES IMAGINARIAS Definición: Las cantidades imaginarias

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos Matemáticas I Ejercicios resueltos. Tema : Números Complejos 1. Calcula: ( + i)( i) (1 i)( i) c) i ( i)5i + i( 1 + i) (5 i) d) ( i)( + i) ( i) (+i)( i) (1 i)( i) i+i ( i i ) +i ( 1 5i) +1+i+5i 5 + i +

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z UNIDAD NÚMEROS COMPLEJOS Página 0 El paso de N a Z 0 Imagina que solo se conocieran los números naturales, N. Sin utilizar otro tipo de números, intenta resolver las siguientes ecuaciones: a) x + b) x

Más detalles

TEMA 7 NÚMEROS COMPLEJOS

TEMA 7 NÚMEROS COMPLEJOS TEMA 7 NÚMEROS COMPLEJOS La unidad imaginaria i. Hay ecuaciones que no se pueden resolver en. Por ejemplo: x + 1 = 0 x = - 1 x = ± -1 En el siglo XVI se inventaron un número para resolver esta i = -1 ecuación.

Más detalles

El cuerpo de los números complejos

El cuerpo de los números complejos Capítulo 1 El cuerpo de los números complejos En este primer capítulo se revisan los conceptos elementales relativos a los números complejos. El capítulo comienza con una breve nota histórica y después

Más detalles

pero por otra parte la suma de sus lados debe ser 12

pero por otra parte la suma de sus lados debe ser 12 UNIDAD 1: NUMEROS COMPLEJOS. 1.1 Origen de los números Complejos y definiciones. 1.1.1 Un poco de historia. El gran matemático Diofanto (275 d.c) construyó un triángulo con una cuerda en la que había realizado

Más detalles

Tema 3. El cuerpo de los números complejos Introducción

Tema 3. El cuerpo de los números complejos Introducción Tema 3 El cuerpo de los números complejos 3.0.6 Introducción Aunque parezca que los complejos se introducen a partir de la resolución de la ecuación x +1 0, da más lejos de la realidad, esta era rechazada

Más detalles

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación

Más detalles

Laboratorio de Simulación

Laboratorio de Simulación Trimestre 05-I Grupo CC-0A Andrés Cedillo (AT-50) Objetivos Plantear y resolver algunos problemas de ciencia e ingeniería utilizando capacidades numéricas, gráficas, simbólicas y de programación Integrar

Más detalles

Sistemas Numéricos, Polinomios

Sistemas Numéricos, Polinomios Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 04 Prof. K. Chang. Sistemas Numéricos,

Más detalles

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada Tema 1. Números reales y funciones reales de variable real. Números complejos Departamento de Análisis Matemático Universidad de Granada Números reales Números reales Universidad de Granada Septiembre,

Más detalles

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy (MAT01) 1 er Semestre de 010 1 Números Complejos Se define el conjunto de los números complejos como: C = {a + bi / a, b R, i = 1} Definición 1.1. Sea z, w C tal que z = x + iy en donde x, y R. Se define:

Más detalles

Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso

Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Repaso de Álgebra Colegio Molière Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Operaciones aritméticas a + b b + a ab ba (Ley Conmutativa) (a + b) + c a

Más detalles

Los números complejos

Los números complejos Universidad Autónoma de Madrid Actualización en Análisis Matemático, abril de 2012 Cardano (1501 1576) Dividir un segmento de longitud 10 en dos trozos tales que el rectángulo cuyos lados tienen la longitud

Más detalles

Álgebra Enero I.-Resolver las ecuaciones dadas por factorización y si no es posible, hacerlo usado formula general.

Álgebra Enero I.-Resolver las ecuaciones dadas por factorización y si no es posible, hacerlo usado formula general. Laboratorio # 1 Ecuaciones Cuadráticas I I.-Resolver las ecuaciones dadas por factorización y si no es posible, hacerlo usado formula general. 1) x 2 3x + 2 = 0 2) x 2 x 12 = 0 3) 3y 2 + 2y 1 = 0 4) 6z

Más detalles

Análisis Complejo - Primer Cuatrimestre de 2018

Análisis Complejo - Primer Cuatrimestre de 2018 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Análisis Complejo - Primer Cuatrimestre de 018 Práctica N 1: Números Complejos, Esfera de Riemann y Homografías

Más detalles

Números complejos. Números complejos 28/02/2016 CURSO

Números complejos. Números complejos 28/02/2016 CURSO Números complejos CURSO 2015-2016 Números complejos 1) Definición números complejos 2) Representación gráfica de un número complejo ( Afijo, módulo, argumento). Conjugado 3) Operaciones con números complejos.

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA300 Propiedas Propiedas Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n

Más detalles

gr(p(x)) = n = deg(p(x)), cuando a n 0. El conjunto de todos los polinomios con coeficiente en K lo denotamos por K[x]

gr(p(x)) = n = deg(p(x)), cuando a n 0. El conjunto de todos los polinomios con coeficiente en K lo denotamos por K[x] Capítulo 5 Polinomios Definición 22 Sea K igual a Z,Q,R,C, un polinomio en la variable x con coeficientes en K es una expresión de la forma p(x) = a n x n +a n 1 x n 1 + +a 1 x+a 0, donde a i con i desde

Más detalles

Resumen de funciones y ejercicios resueltos de cuadráticas

Resumen de funciones y ejercicios resueltos de cuadráticas Resumen de funciones y ejercicios resueltos de cuadráticas 1. Definición Llamaremos ecuaciones cuadráticas o ecuaciones de segundo grado a las ecuaciones que pueden reducirse a la forma ax 2 + bx + c =

Más detalles

Matemáticas I Tema 6. Números Complejos

Matemáticas I Tema 6. Números Complejos Matemáticas I Tema 6. Números Complejos Índice 1. Introducción 2 2. Números 2 2.1. Unidad imaginaria............................... 3 2.2. Soluciones de ecuaciones de segundo grado.................. 3

Más detalles

Apéndice 5: Diagonalización de matrices

Apéndice 5: Diagonalización de matrices Apéndice 5: Diagonalización de matrices Más aplicaciones de la diagonalización. Resolución de ecuaciones en diferencias Hay cierto tipo de problemas cuya resolución depende de la potencia de una matriz.

Más detalles

Resumen del contenidos 5.(*3.2) sobre el Teorema del coseno y el Teorema del seno

Resumen del contenidos 5.(*3.2) sobre el Teorema del coseno y el Teorema del seno epública Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Escuela Técnica obinsoniana P.S. S. S. Venezuela Barinas Edo Barinas esumen del contenidos 5.(*3. sobre el Teorema del coseno

Más detalles

5. Efectúa las siguientes operaciones con números complejos:

5. Efectúa las siguientes operaciones con números complejos: 17. Expresa en forma binómica el complejo 4 4π 1. Calcular i. Efectúa la siguiente operación con números complejos: 5 + i 5 i. Efectúa el siguiente cociente de complejos en forma polar, expresando el resultado

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Ecuaciones y Gráficas en dos variables. 1. Plano Cartesiano, cuadrantes, signos 2. Localizar puntos en plano

Ecuaciones y Gráficas en dos variables. 1. Plano Cartesiano, cuadrantes, signos 2. Localizar puntos en plano Ecuaciones y Gráficas en dos variables Discusión 1. Plano Cartesiano, cuadrantes, signos 2. Localizar puntos en plano Fórmulas de Distancia Theorem 1. La distancia de dos puntos A y B en recta real es:

Más detalles

1. Álgebra de Números Complejos.

1. Álgebra de Números Complejos. 1. Álgebra de Números Complejos. Los números complejos se pueden introducir en el proceso de búsqueda de soluciones para ecuaciones polinomiales como x 2 + 1 = 0 ó x 2 + 4x + 13 = 0. En general un valor

Más detalles

En un anillo la operación de multiplicación no siempre tiene un elemento como el 0 de la adición.

En un anillo la operación de multiplicación no siempre tiene un elemento como el 0 de la adición. Capítulo 5 Anillos Definición 5.1. Un anillo es un conjunto no vacío A en el cual hay definidas dos operaciones + (adición) y (multiplicación) que satisface los axiomas: 1. (Clausura) Para cada a, b A,

Más detalles

El álgebra de los números complejos

El álgebra de los números complejos Apuntes de Álgebra Lineal Capítulo 1 El álgebra de los números complejos 1.1. Los números complejos 1.1.1. La unidad imaginaria Los números complejos aparecieron históricamente cuando los matemáticos aceptaron

Más detalles

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES FUNCIONES REALES DE UNA VARIABLE Índice Presentación... 3 Conjunto de los números reales... 4 Los intervalos... 6 Las potencias... 7 Los polinomios... 8 La factorización de polinomios (I)... 9 La factorización

Más detalles

C alculo Septiembre 2010

C alculo Septiembre 2010 Cálculo Septiembre 2010 Funciones reales de variable real Conjuntos de números Números complejos Funciones reales de variable real Valor absoluto Funciones polinómicas y racionales Función exponencial

Más detalles

TRABAJO PRÁCTICO Nº 4: POLINOMIOS

TRABAJO PRÁCTICO Nº 4: POLINOMIOS TRABAJO PRÁCTICO Nº : POLINOMIOS EJERCICIOS A DESARROLLAR Clase ) Dados los polinomios reales P(x) =.x ; Q(x) = 3x3 x + y los polinomios complejos R(x) = i.x ; S(x) = x + ( + i).x i, calcular: a) 3x. P(x)

Más detalles

Apellidos y Nombre: Hoja 1

Apellidos y Nombre: Hoja 1 Hoja 1 1 Hallar dos números complejos tales que su suma sea 1+6i y su cociente imaginario puro. Suponer, además que la parte real del que se tome como divisor al calcular el cociente es 1. Hallar los números

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

GUIA DE MATEMÁTICA. ECUACIÓN DE 2 GRADO. I. ITEM DE VERDADERO Y FALSO. Indica si las siguientes proposiciones son verdaderas o falsas.

GUIA DE MATEMÁTICA. ECUACIÓN DE 2 GRADO. I. ITEM DE VERDADERO Y FALSO. Indica si las siguientes proposiciones son verdaderas o falsas. GUIA DE MATEMÁTICA. ECUACIÓN DE GRADO. Nombre: Curso: 3 medio Fecha: I. ITEM DE VERDADERO Y FALSO. Indica si las siguientes proposiciones son verdaderas o falsas.. La fórmula general de la ecuación de

Más detalles

Tema 1: El cuerpo de los números complejos. Nota histórica. El cuerpo de los números complejos. Marisa Serrano José Ángel Huidobro

Tema 1: El cuerpo de los números complejos. Nota histórica. El cuerpo de los números complejos. Marisa Serrano José Ángel Huidobro Índice Tema 1: El cuerpo de los números complejos Marisa Serrano José Ángel Huidobro Universidad de Oviedo 6 de octubre de 2008 email: mlserrano@uniovi.es jahuidobro@uniovi.es Nota histórica El cuerpo

Más detalles

El alumno conocerá los fundamentos conceptuales de los números complejos 1.1. DEFINICIÓN Y ORIGEN Y OPRACIONES FUNDAMENTALES CON NÚMEROS COMPLEJOS

El alumno conocerá los fundamentos conceptuales de los números complejos 1.1. DEFINICIÓN Y ORIGEN Y OPRACIONES FUNDAMENTALES CON NÚMEROS COMPLEJOS ALGEBRA LINEAL OBJETIVO GENERAL: EL ALUMNO ANALIZARÁ Y ADQUIRIRÁ LOS CONOCIMEINTOS DEL ÁÑGEBRA LINEAL Y LOS PALICARÁ COMO UNA HERRAMIENTA PARA LA SOLUCIÓN DE PROBLEMAS PRÁCTICO DEL ÁREA DE INGENOERÍA.

Más detalles

Complejos, C. Reales, R. Fraccionarios

Complejos, C. Reales, R. Fraccionarios NÚMEROS COMPLEJOS Como ya sabemos, conocemos distintos cuerpos numéricos en matemáticas como por ejemplo el cuerpo de los números racionales, irracionales, enteros, negativos,... Sin embargo, para completar

Más detalles

Números complejos Matemáticas I. Números complejos. Necesidad de ampliar el conjunto de los números reales.

Números complejos Matemáticas I. Números complejos. Necesidad de ampliar el conjunto de los números reales. Números complejos. Necesidad de ampliar el conjunto de los números reales. En ocasiones cuando resolvemos ecuaciones como la siguiente x 1=0 Nos encontramos, si despejamos la incógnita x, con que x=± 1

Más detalles

Números reales Conceptos básicos Algunas propiedades

Números reales Conceptos básicos Algunas propiedades Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que

Más detalles

Números Complejos. Presentación 1 Precalculus Sec. 1.5

Números Complejos. Presentación 1 Precalculus Sec. 1.5 Números Complejos Presentación 1 Precalculus Sec. 1.5 Tipos de números reales Enteros positivos o números naturales: Enteros no-negativos: 1,, 3, 4,... Enteros 0, 1,, 3, 4,......, 4, 3,, 1, 0, 1,, 3, 4,...

Más detalles

Capítulo 4. Integración

Capítulo 4. Integración Capítulo 4. Integración En este capítulo vamos a estudiar cómo se puede hacer integración con funciones multivariables. Estudiaremos los siguientes temas: 4.1. Integral de Riemann, teorema de Fubini. 4..

Más detalles

Semana 17. (22 y 24 de junio) Arturo.

Semana 17. (22 y 24 de junio) Arturo. Semana 17. (22 y 24 de junio) Arturo. Teorema. Dado un círculo C de centro O y un ángulo inscrito AP B, entonces AP B = 1 2 AOB. la demostración se encuentra en la página 23 de sus notas: http://www.cimat.mx/especialidad.seg/documentos/geometria-euclideana.pdf

Más detalles

Álgebra I Práctica 5 - Polinomios

Álgebra I Práctica 5 - Polinomios Números complejos Álgebra I Práctica 5 - Polinomios 1. Para los siguientes z C, hallar Re(z), Im(z), z, Re(z 1 ), Im(z 1 ), Re( i z) e Im(i z). i) z = (2 + i)(1 + 3 i). ii) z = 5 i(1 + i) 4. iii) z = (

Más detalles

1. NUMEROS COMPLEJOS.

1. NUMEROS COMPLEJOS. Apunte de Números complejos o imaginarios: Representación gráfica. Complejos conjugados y opuestos. Forma trigonométrica, de De Moivre, exponencial. Operaciones. Raíces.Fórmula de Euler. 1. NUMEROS COMPLEJOS.

Más detalles