Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó?

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó?"

Transcripción

1 Fuerz: soluciones 1.- Un óvil cuy s es de 600 kg celer rzón de 1,2 /s 2. Qué uerz lo ipulsó? = 600 kg = 1,2 /s 2 F = >>>>> F = 600 kg 1,2 /s 2 = Qué s debe tener un cuerpo pr que un uerz de 588 lo celere rzón de 9,8 /2? F = 588 = 9,8 /s 2 F = >>>>> = F/ = 588 / 9,8 /s 2 = 60 kg 3.- Sobre un cuerpo de 250 kg ctún dos uerzs, en sentidos opuestos, hci l derech un de y hci l izquierd un de Cuál es l celerción del cuerpo? = 250 kg F der = F izq = F izq F der De l igur se observ que ls uerzs hy que restrls: ΣF = = F der - F izq F der F izq = >>>>> = (F der F izq ) / = ( ) / 250 kg = 3,52 /s Pr el proble nterior: Supong que ls uerzs ctún durnte un inuto. Qué distnci recorrerá en ese tiepo?, Qué velocidd lcnzrá l térino del inuto? = 3,52 /s 2 t = 1 in = 60 s Suponiendo que el objeto prte del reposo: v i = 0 /s d = vit + t 2 /2 >>>>> d = 0 /s 60 s + 3,52 /s 2 (60 s) 2 / 2 = v = v i + t >>>>> v = 0 /s + 3,52 /s 2 60 s = 211,2 /s 5.- Un óvil de 100 kg recorre 1 k en un tiepo de 10 s prtiendo del reposo. Si lo hizo con celerción constnte, qué uerz lo ipulsó? = 100 kg d = 1 k = t = 10 s v i = 0 /s F =, pero se desconoce l celerción, por lo tnto: d = v i t + t 2 /2 >>>>> = 2(d v i t)/t 2 = 2 ( /s 10 s) / (10 s) 2 = 20 /s 2 Ahor, F = >>>>> F = 100 kg 20 /s 2 = Hernán Verdugo Fbini Proesor de Mteátic y Físic 1

2 6.- Un ontcrgs de kg de s desciende con un celerción de 1 /s 2. Hllr l tensión en el cble. ot: en este proble, el dibujo o digr de uerzs, es prácticente indispensble. = kg = 1 /s 2 g = 9,8 /s 2 Cundo hy ás de un uerz ctundo sobre un cuerpo hy que hllr l uerz resultnte, por lo tnto, se tendrá: ΣF = = = Se h puesto en prier térino debido que el oviiento es en l dirección de. Entonces: = = (g ) = kg (9,8 /s 2 1 /s 2 ) = Un cuerpo de 2 kg pende del extreo de un cble. Clculr l tensión del iso, si l celerción es ) 5 /s 2 hci rrib, b) 5 /s 2 hci bjo. = 2 kg ) = 5 /s 2 scendiendo b) = 5 /s 2 descendiendo ) ΣF = = - = + = ( + g) = 2 kg (5 /s 2 + 9,8 /s 2 ) = 29,6 b) ΣF = = - = = (g ) = 2 kg (9,8 /s 2 5 /s 2 ) = 9,6 8.- Clculr l áxi celerción con l que un hobre de 90 kg puede deslizr hci bjo por un cuerd que solo puede soportr un crg de 735. Coo l cuerd sostiene lo áxio un peso equivlente 735, se supondrá que l estr el hobre en l cuerd, l tensión será áxi. = 90 kg = 735 ΣF = = >>>>> = ( ) / = (90 kg 9,8 /s ) / 90 kg = 1,633 /s 2 ) b) Hernán Verdugo Fbini Proesor de Mteátic y Físic 2

3 9.- De un cuerd que ps por un pole penden dos ss, un de 7 kg y otr de 9 kg. Suponiendo que no hy roziento, clculr l celerción y l tensión en l cuerd. A este siste se le denoin áquin de Atwood. 1 = 7 kg 2 = 9 kg Al ser de yor s 2, l s 2 cerá con un celerción y l s 1 scenderá con l is celerción, suponiendo que l cuerd que une bs ss es inextensible. En l s 1, se tiene: 1 g = 1 En l s 2, se tiene: 2 g = g 2 g Si se sun ls dos ecuciones nteriores, se tendrá: 2 g 1 g = >>>>> ( 2 1)g = ( ) Entonces: = ( 2 1 )g / ( ) = (9 kg 7 kg) 9,8 /s 2 / (7 kg + 9 kg) = 1,225 /s 2 Y, l tensión se obtiene reeplzndo l celerción en culquier de ls dos ecuciones iniciles. Si se consider l prier: = g = ( + g) = 7 kg (1,225 /s 2 + 9,8 /s 2 ) = 77, Un bloque de 50 kg está en reposo sobre un suelo horizontl. L uerz horizontl íni necesri pr que inicie el oviiento es de 147 y l uerz horizontl íni necesri pr ntenerlo en oviiento con un velocidd constnte es de 98. ) Clculr el coeiciente de roce cinético, b) cuál será l uerz de roce cundo se plique l bloque un uerz horizontl de 49? = 50 kg F íni = 147 (pr inicir el oviiento) F íni = 98 (pr ntener el oviiento) ) Pr que el coeiciente de roce cinético, el objeto debe estr en oviiento, por lo tnto, considereos l uerz íni pr ntener el oviiento. F = con igul l uerz de roce cinétic, que es igul = µ k Por lo tnto, F = µ k, y coo el objeto no tiene oviiento verticl, se tiene que =. Entonces, F = µ k >>>>> µ k = F / = 98 / (50 kg 9,8 /s 2 ) = 0,2 Observción: no conundir el concepto de uerz norl que se escribe con l letr con l unidd de uerz, que es el newton, y tbién se escribe con l letr. b) Si se plic un uerz horizontl de 49, el bloque no se overá y que l uerz íni pr epezr overlo es 147. Y, en este cso, l uerz de roce estátic que ectrá l bloque será 49. Hy que considerr que l uerz de roce estátic que ect un objeto es equivlente l uerz que intent overlo ientrs no se lcnce l uerz íni necesri pr logrr overlo. F Hernán Verdugo Fbini Proesor de Mteátic y Físic 3

4 11.- Sobre un bloque de 50 kg situdo sobre un supericie horizontl se plic un uerz de 196 durnte 3 s. Sbiendo que el coeiciente de roce entre el bloque y el suelo es de 0,25, hllr l velocidd que dquiere el bloque l cbo de 3 s. = 50 kg F = 196 t = 3 s µ = 0,25 v =? F v Coo no hy oviiento verticl: = Suponiendo que el bloque prte del reposo, entonces hy un celerción que le perite lcnzr l velocidd, v = v i + t, que se dese deterinr, entonces: ΣF = >>>>> F = F µ = F µ = >>>>> = (F µ) / = (196 0,25 50 kg 9,8 /s 2 ) / 50 kg = 1,47 /s 2 Y, coo v = v i + t, se tiene: v = 0 /s + 1,47 /s 2 3 s = 4,41 /s 12.- En l supericie de un es hy un bloque de 25 kg, está sujeto trvés de un cble, que ps por un pole, con otro cuerpo de 20 kg, que cuelg verticlente. Clculr l uerz constnte que es necesrio plicr l bloque de 25 kg pr que el bloque de 20 kg sciend con un celerción de 1 /s 2, sbiendo que el coeiciente de roce entre l es y el bloque es 0,2. 1 = 25 kg F 25 kg 2 = 20 kg = 1 /s 2 µ = 0,2 Priero se verá lo que ocurre en el cuerpo 1. = 1 g F = 1 >>>>> F µ = 1 (1) F µ 1 g = 1 En el segundo cuerpo, se tiene: (2) 2 g = 2 Y, si hor se su (1) con (2), se tendrá: F µ 1 g 2 g = >>>>> F = ( ) + (µ )g F = (25 kg + 20 kg) 1 /s 2 + (0,25 25 kg + 20 kg) 9,8 /s 2 = 302,25 1 g 20 kg 2 g Hernán Verdugo Fbini Proesor de Mteátic y Físic 4

5 13.- Un cuerpo de 100 kg pende del extreo de un cuerd. Clculr su celerción cundo l tensión en l cuerd es ) 125, b) 1.200, c) 980. = 100 kg ) = 125 b) = 184 c) = 980 Pr todos los csos se utilizrá l ecución = >>>>> = ( - ) /. Esto signic que se supone que el cuerpo sciende. ) = ( kg 9,8 /s 2 ) / 100 kg = - 8,55 /s 2 Coo l celerción resultó negtiv, entonces el cuerpo no sciende, sino que desciende con l celerción de 8,55 /s 2. b) = ( kg 9,8 /s 2 ) / 100 kg = 2,2 /s 2 Coo l celercion es positiv, lo que supuso es correcto, es decir, el cuerpo sciende con un celerción de 2,2 /s 2. c) = ( kg 9,8 /s 2 ) / 100 kg = 0 /s 2 Coo l celerción es 0 /s 2, el cuerpo sciende o desciende con velocidd constnte, y tbién puede estr en reposo. Hy que recordr que el concepto de celerción se reiere l cbio de l velocidd El scensor de un in, que pes 7.840, rrnc hci rrib con un celerción de 6 /s 2. Clculr l tensión en el cble en el oento del rrnque. W = = = 6 /s 2 Coo = 7840, entonces = 7840 / g = 7840 / 9,8 /s 2 = 800 kg = >>>>> = + = 800 kg 6 /s = Un cuerpo de kg que pende del extreo de un cble, desciende con un velocidd de 4 /s cundo epiez detenerse. Sbiendo que el espcio que recorre hst detenerse es de 3, clculr l tensión en el cble suponiendo que l descelerción es constnte. = kg v i = 4 /s v = 0 /s d = 3 = >>>>> = = (g ) v 2 = v i 2 + 2d >>>>> = (v 2 - v i 2 ) / 2d = [(0 /s) 2 (4 /s) 2 ] / (2 3 ) = - 2,67 /s 2 Entonces: = kg [9,8 /s 2 (-2,67 /s 2 )] = Hernán Verdugo Fbini Proesor de Mteátic y Físic 5

6 16.- L s de un scensor es de kg. Clculr l tensión en los cbles cundo ) sciende con un celerción de 1 /s 2, b) desciende con un celerción de 1 /s 2. = kg ) = 1 /s 2 scendiendo. = >>>>> = + = ( + g) = kg (1 /s 2 + 9,8 /s 2 ) = b) = 1 /s 2 descendiendo. = >>>>> = = (g ) = kg (9,8 /s 2 1 /s 2 ) = Un hobre de 80 kg está dentro de un scensor que desciende con un celerción uniore de 1 /s 2. Clculr l uerz que el hobre ejerce sobre dicho scensor. Íde cundo sciende con l is celerción nterior. = 80 kg = 1 /s 2 descendiendo. L uerz que l person ejerce sobre el piso del scensor es equivlente l tensión que debe soportr l cuerd que sostiene el scensor. = >>>>> = = (g ) = 80 kg (9,8 /s 2 1 /s 2 ) = 704 Y, si sciende, se tiene: = >>>>> = + = ( + g) = 80 kg (1 /s 2 + 9,8 /s 2 ) = De los extreos de un cuerd que ps por un pole sin roziento, penden dos crgs de 2 y 6 kg de s. Clculr l celerción y l tensión en l cuerd. Este ejercicio se reliz igul que el núero 9. Resultdos: = 4,9 /s 2 = 29, Un scensor rrnc hci rrib con un celerción constnte de or que los 0,8 s h scendido 1. Dentro de él v un hobre que llev un pquete de 3 kg colgndo de un hilo. Clculr l tensión en el hilo. t = 0,8 s d = 1 v i = 0 /s = 3 kg Coo el scensor celer hci rrib, todo lo que v en su interior celer de igul or. d = v i t + t 2 /2 >>>>> = 2(d v i t)/t 2 = 2 (1 0 /s 0,8 s) / (0,8 s) 2 = 3,125 /s 2 Luego, lo que ocurre con el pquete que sostiene l person, serí: = >>>> = + = ( + g) = 3 kg (3,125 /s 2 + 9,8 /s 2 ) = 38,775 Hernán Verdugo Fbini Proesor de Mteátic y Físic 6

7 20.- Un prcidist de 70 kg se lnz libreente l espcio desde el reposo y los 5 segundos del instnte de lnziento bre su prcíds. Este trd en brirse por copleto 0,8 s y l velocidd ps 12 /s cundo está totlente bierto. Clculr l uerz edi ejercid sobre ls cuerds del prcíds, suponiendo que éste crece de peso. = 70 kg v i = 0 /s t = 5 s (de cíd) t = 0,8 s (de pertur del prcíds) v = 12 /s (luego de brir el prcíds) Si se dese deterinr l uerz edi ejercid por ls cuerds del prcíds, considerese que en ese tro, ientrs se bre el prcíds, hy un descelerción que serí: = (v v i )/t, donde es velocidd inl, v, corresponde l que lcnz luego de cer libreente durnte 5 s, es decir: v = gt = 9,8 /s 2 5 s = 49 /s. ótese que est será l rpidez inicil l oento de inicir l pertur del prcíds, por lo tnto, l descelerción que experient el prcíds serí: = (12 /s 49 /s) / 0,8 s = - 46,25 /s 2 Es celerción punt hci rrib, por lo tnto, es igul 46,25 /s 2 hci rrib. Y, de l igur, se tiene: = >>>>> = + = ( + g) = 70 kg (46,25 /s 2 + 9,8 /s 2 ) = 3.923, Un bloque de 50 kg está sobre un supericie horizontl y se ueve lo lrgo de ell por l cción de un cuerd prlel l supericie cuyo otro extreo está unido, trvés de un pole sin roziento, un cuerpo de 12 kg que cuelg libreente. Sbiendo que el coeiciente de roce es 0,2, clculr el espcio que recorrerá el prier cuerpo los 10 s de inicirse el oviiento. 1 = 50 kg 2 = 12 kg µ = 0,2 t = 10 s v i = 0 /s d =? En el cuerpo 1 : = 1 g = 1 >>> µ = 1 (1) - µ 1 g = 1 En el cuerpo 2 : (2) 2 g = 2 Si se sun (1) con (2), se tiene: 2 g µ 1 g = >>>>> = g( 2 µ 1 ) / ( ) = 9,8 /s 2 (12 kg 0,2 50 kg) / (50 kg + 12 kg) = 0,316 /s 2 50 kg 1 g 12 kg 2 g Ahor, con d = v i t + t 2 /2, se tiene d = 0 /s 10 s + 0,316 /s 2 (10 s) 2 / 2 = 15,8 Hernán Verdugo Fbini Proesor de Mteátic y Físic 7

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físic Generl Proyecto PMME - Curso 00 Instituto de Físic Fcultd de Inenierí UdelR TITULO DINÁMICA DE LA PARTÍCULA - MÁQUINA DE ATWOOD DOBLE. AUTORES: Gonzlo d Ros, Jvier Belzren, Dieo Aris. INTRODUCCIÓN

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

- 1 - PLANO INCLINADO

- 1 - PLANO INCLINADO - 1 - PLNO INCLINDO DESCOMPOSICIÓN DE L FUERZ PESO Suponé que tengo un cuerpo que está poydo en un plno que está inclindo un ángulo. L fuerz peso punt pr bjo de est ner: UN CUERPO POYDO EN UN PLNO INCLINDO.

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

Resumen de los errores más frecuentes en Matemáticas de 1º ESO.

Resumen de los errores más frecuentes en Matemáticas de 1º ESO. Resuen de los errores ás frecuentes en Mteátics de 1º ESO. 1º. Propiedd distributiv. L propiedd distributiv respecto l producto-división y l su-diferenci nos dice: A) b c b c B) b c b c Observ: b c b c

Más detalles

EJERCICIOS DE CINEMÁTICA PARA REPASAR

EJERCICIOS DE CINEMÁTICA PARA REPASAR EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede

Más detalles

SEGUNDA LEY DE NEWTON

SEGUNDA LEY DE NEWTON SEGUNDA LEY DE NEWTON Isc Newton (642-727), ncido el ño que urió Glileo, es el principl rquitecto de l ecánic clásic, l cul se resue en sus tres leyes del oviiento. Ls Leyes de Newton son tres principios

Más detalles

Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2011 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2011 Problemas (Dos puntos por problema). Exen de Físic-1, 1 Inenierí Quíic Prier prcil Diciebre de 2011 Probles (Dos puntos por proble) Proble 1: Los tres bloques de fiur están conectdos por edi de cuerds liers que psn por poles sin roziento

Más detalles

Fundamentos Físicos de la Ingeniería 1º Examen Parcial / 19 de enero de 2002

Fundamentos Físicos de la Ingeniería 1º Examen Parcial / 19 de enero de 2002 Fundmentos Físicos de l Ingenierí º Emen Prcil / 9 de enero de 00. Un muchcho que está 4 m de un pred erticl lnz contr ell un pelot según indic l igur. L pelot sle de su mno m por encim del suelo con un

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones. DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE (MAS)

MOVIMIENTO ARMÓNICO SIMPLE (MAS) MOVIMIENO RMÓNICO SIMPLE (MS) E n nuestr vid cotidin con frecuenci se puede observr que existe otro tipo de oviiento, por ejeplo: el péndulo del reloj de tu cs, un sierr eléctric, un cepillo de dientes

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m Problem 5.54 A w A 4 kn 0 kn.8 m 0. m w L vig A soport dos crgs concentrds y descns sobre el suelo el cul ejerce un crg linelmente distribuid hci rrib como se muestr. Determine ) l distnci pr l cul w A

Más detalles

Un vector es simplemente un segmento orientado. sentido. módulo a

Un vector es simplemente un segmento orientado. sentido. módulo a 1 1-MAGNITUDES ESCALARES Y ECTORIALES. CÁLCULO ECTORIAL BÁSICO -CINEMÁTICA. MAGNITUDES FUNDAMENTALES PARA EL ESTUDIO DEL MOIMIENTO. 3-CLASIFICACIÓN DE MOIMIENTOS. 4-COMPOSICIÓN DE MOIMIENTOS. PROYECTILES.

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

Segunda ley de Newton

Segunda ley de Newton Segund ley de Newton Fcultd de Ingenierí, Cienci Exct y Nturle. Univeridd Fvloro. Eilino Ctillo, eilinoctillo@hotil.co Federico Ferreyr Pon, fundferreyr@hotil.co Crlo Nicolá Rutenberg, purple@uol.co.r

Más detalles

( ) [ ] 20 MATEMÁTICAS EJERCICIOS DE CÁLCULO BÁSICO [ ] [ ] [ ] [ ] [ ] ( ) ) [ ] ( ) 9 OPERACIONES CON POTENCIAS [ ]) 4

( ) [ ] 20 MATEMÁTICAS EJERCICIOS DE CÁLCULO BÁSICO [ ] [ ] [ ] [ ] [ ] ( ) ) [ ] ( ) 9 OPERACIONES CON POTENCIAS [ ]) 4 MATEMÁTICAS DE CÁLCULO BÁSICO OPERACIONES CON POTENCIAS. Coplet ls csills vcís. ( ) ( b) 8 8 8 ( ) ( ) ( : ) : ( ) 9 : : : (: ) ( : ) : 8 : : 0 : : ( ) ( ) ( ) ( ) : ( ) ( ) ( ) ( ) : ) ( ) 0 ( ) 0 ( :

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES

ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES Pág. 1 B3.1 ECUACIÓN DE CAMBIO DE CONDICIONES B3.1.1 CATENARIA B3.1.1.1 Curv de equilibrio de un hilo El conductor tendido entre dos poyos dquiere l for de un

Más detalles

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009 E.T.S. DE INGENIERÍ (ICI). TEORÍ DE ESTRUCTURS Y CONSTRUCCIONES INDUSTRIES Exmen Septiembre 009 EE TENTENTE El exmen const de vrios ejercicios, que se reprtirán sucesivmente, con un tiempo máximo pr l

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

1.1. Respuestas a los ejercicios sobre MAS

1.1. Respuestas a los ejercicios sobre MAS .. Respuests los ejercicios sobre MAS Sbeos que l elongción de un..s. está dd por un ecución del tipo A cos ( t unque pudier ser igulente un función seno. Así que bstrí coprr con l ecución dd, pr obtener

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

M Si se ha desplazado x la masa que cuelga m ( x) L Por la IILN. 2 x

M Si se ha desplazado x la masa que cuelga m ( x) L Por la IILN. 2 x UNIVERSIDAD NACIONA DE INGENIRIA FACUTAD DE INGENIERIA INDUSTRIA Y DE SISTEAS Curso: FISICA I CB 3U 1I Profesor: ic. JOAQUIN SACEDO jslcedo@uni.edu.pe Tem: Cdens Un cuerd de lonitud y ms, se desliz sin

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Tema 4. Integración compleja

Tema 4. Integración compleja Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.

Más detalles

PROBLEMAS DE ESTÁTICA

PROBLEMAS DE ESTÁTICA UCM PEMS DE ESÁIC undmentos ísicos de l Ingenierí. Deprtmento ísic plicd UCM Equipo docente: ntonio J rbero lfonso Cler Mrino Hernández. ES grónomos lbcete Pblo Muñiz Grcí José. de oro Sáncez EU. I.. grícol

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO 3 Aplicciones 3.5 Trbjo de un fuerz 1 Se dice que un fuerz reliz un trbjo cundo cmbi el estdo de reposo o estdo de movimiento de un cuerpo. En este sentido, el trbjo que reliz un fuerz pr llevr

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA ZAO AÑO 014 Ing.

Más detalles

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales Aplicción del Cálculo Integrl pr l Solución de Problemátics Reles Jun S. Fierro Rmírez Universidd Pontifici Bolivrin, Medellín, Antioqui, 050031 En este rtículo se muestr el proceso de solución numéric

Más detalles

SISTEMA DE COORDENADAS CARTESIANAS

SISTEMA DE COORDENADAS CARTESIANAS SISTEMA DE COORDENADAS CARTESIANAS Definición El siste de coordends crtesins en el plno está constituido por dos rects perpendiculres que se intersecn en un punto O l que se le ll el origen. Un de ls rects

Más detalles

3 Aplicaciones de las EDO s lineales de segundo orden

3 Aplicaciones de las EDO s lineales de segundo orden Práctics de Ecuciones Diferenciles G. Aguilr, N. Bol, C. Clvero, F. Gspr 3 Aplicciones de ls EDO s lineles de segundo orden Objetivos: Anlizr en profundidd, en un ejemplo simple, l importnci de ls ecuciones

Más detalles

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área Núeros irrcionles Algun vez hs utilizdo núeros irrcionles? Se dese clculr l longitud de un ldo de un pist de bile de for cudrd, cuy áre es 6 u A = 6 u x x Definios los eleentos: x = ldo del cudrdo A =

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar:

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar: Pl Mdre Mols, nº 86- MADRID Correo: nsconsolcion@plnlf.es / Telf. 9 59 95 / 69 56 698 / F 9 55 59 / www.nsconsolcion.co TEMA : SISTEMAS DE ECUACIONES LINEALES Pr eper:. Discutir resolver los siguientes

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

Velocidad ÁREA. Tiempo. m =

Velocidad ÁREA. Tiempo. m = 1.1. Reisión de mru y mru. El moimiento rectilíneo uniforme (mru) es un moimiento que se reliz con elocidd constnte, y l ecución que permite representr ese moimiento es x t (1) L ecución nterior puede

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

RAZONAMIENTO MATEMÁTICO

RAZONAMIENTO MATEMÁTICO RAZONAMIENTO MATEMÁTICO CUATRO OPERACIONES. Por cd cutro docens de mnzns que un comercinte compr, le obsequin dos mnzns. Cuántos son de obsequio si llevó 4800 mnzns? A) 40 ) 76 C) D) 9 E) 84 4 doc 4

Más detalles

j Actividades propuestas

j Actividades propuestas 58 7 CAMPO MAGNÉTCO j Sigue prcticndo. Un protón inicilente en reposo se celer bjo un diferenci de potencil de 5 voltios. A continución entr en un cpo gnético unifore, perpendiculr l velocidd, y describe

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

Nivelación de Cálculo

Nivelación de Cálculo Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,

Más detalles

Funciones cuadráticas

Funciones cuadráticas Funciones cudrátics A l función polinómic de segundo grdo f() + b + c siendo, b, c números reles y 0, se l denomin función cudrátic. Los términos de l función reciben los siguientes nombres: y + b + c

Más detalles

= = 11,11. Actividades resueltas de Dinámica

= = 11,11. Actividades resueltas de Dinámica Actividades resueltas de Dináica Sobre un cuerpo de 5 kg actúa una uerza de 0 N durante 3 s. Calcular: a) El ipulso de la uerza. b) La variación de la cantidad de oviiento del cuerpo. c) Su velocidad inal

Más detalles

El clásico problema del bloque y la cuña, pero esta vez no tan clásico... Santiago Silva y Guillermo Paredes.

El clásico problema del bloque y la cuña, pero esta vez no tan clásico... Santiago Silva y Guillermo Paredes. El cláico proble del bloque y l cuñ, pero et vez no tn cláico... INTRODUCCION: Sntigo Silv y Guillero rede. lnteo del proble: ROBLEMA 3 L figur uetr un cuñ de ángulo 30º, 60º, y 90º y ltur h que e encuentr

Más detalles

AUXILIAR 6: CAPM y Teoría de carteras

AUXILIAR 6: CAPM y Teoría de carteras urso: IN56A Seestre: Priver 007 Pro: José Miguel ruz Andrés Kettlún Aux: Lorenzo Réus Jie Sáez AUXILIAR 6: APM y Teorí de crters Pregunt 1 Supong que usted tiene los siguientes dtos sore los retornos esperdos

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow

Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow Universidd de l Repúblic Cálculo Fcultd de Ingenierí - IMERL Segundo semestre 6 Práctico 9 - Cálculo de integrles. Teorem fundmentl y regl de Brrow. Utilizndo los resultdos del ejercicio 9 del práctico

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

DEPARTAMENTO DE FÍSICA Y QUÍMICA IES CASTILLO DE LUNA

DEPARTAMENTO DE FÍSICA Y QUÍMICA IES CASTILLO DE LUNA PROBLEMAS DE DINÁMICA 1º BACHILLERATO Curso 12-13 1. Se arrastra un cuerpo de 20 Kg por una mesa horizontal sin rozamiento tirando de una cuerda sujeta a él con una fuerza de 30 N. Con qué aceleración

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

UNIVERSITAT DE VALÈNCIA FACULTAT DE FÍSICA FÍSICA GENERAL I. Problemas (CURSO 06/07) DEPARTAMENTO DE FÍSICA APLICADA

UNIVERSITAT DE VALÈNCIA FACULTAT DE FÍSICA FÍSICA GENERAL I. Problemas (CURSO 06/07) DEPARTAMENTO DE FÍSICA APLICADA UNIVERSITAT DE VALÈNCIA FACULTAT DE FÍSICA FÍSICA GENERAL I Problems (CURSO 6/7) DEPARTAMENTO DE FÍSICA APLICADA ÍNDICE Bibliogrfí...4 Cinemátic y dinámic de l prtícul...5 Trbjo y energí. Principios de

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica.

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica. Corriente eléctric 1. Corriente eléctric: ntensidd y densidd de corriente. 2. Ley de Ohm. Resistenci. Conductividd eléctric. 3. Potenci disipd en un conductor. Ley de Joule. Fuerz electromotriz. BBLOGRAFÍA:.

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

PROBLEMAS DINÁMICA DE LA PARTÍCULA. 1. Ecuación básica de la dinámica en referencias inerciales y no inerciales

PROBLEMAS DINÁMICA DE LA PARTÍCULA. 1. Ecuación básica de la dinámica en referencias inerciales y no inerciales PRBLEMS DE DINÁMIC DE L PRTÍCUL. Ecuación básica de la dináica en referencias inerciales y no inerciales. Leyes de conservación del ipulso, del oento cinético y del trabajo 3. Fuerzas centrales 4. Gravitación

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

a) La percusión que recibe la varilla viene dada por De las leyes de la dinámica impulsiva se sigue:

a) La percusión que recibe la varilla viene dada por De las leyes de la dinámica impulsiva se sigue: . Un vrill uniforme de longitud l y ms m cuelg verticlmente y está sujet por un rticulción en su extremo superior. L vrill se golpe en su extremo inferior con un fuerz orizontl F que dur un tiempo muy

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Pág 1 de 10

Pág 1 de 10 www.mtemticsfisicquimic.cm Pág 1 de 10 1.- Desde un glb, un ltur de 175 m sbre el suel y scendiend cn un elcidd de 8 m/s, se suelt un bjet. Clculr: ( l máxim ltur lcnzd pr éste; (b l psición y l elcidd

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

INTERACCIÓN MAGNÉTICA

INTERACCIÓN MAGNÉTICA NTERACCÓN MAGNÉTCA ROBLEMAS ROUESTOS : () Determine l dirección de l fuerz que se ejerce sobre un protón que se desplz en un cmpo mgnético pr cd situción representd en l Fig. ( b) Repetir el problem si

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

Las medias como promedios ponderados

Las medias como promedios ponderados Misceláne Mtemátic 8 (009) 1 6 SMM Ls medis como promedios ponderdos Alfinio Flores Peñfiel University of Delwre lfinio@mth.udel.edu Resumen Tres de ls medis que se usn frecuentemente en mtemátics (medi

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles