Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó?

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó?"

Transcripción

1 Fuerz: soluciones 1.- Un óvil cuy s es de 600 kg celer rzón de 1,2 /s 2. Qué uerz lo ipulsó? = 600 kg = 1,2 /s 2 F = >>>>> F = 600 kg 1,2 /s 2 = Qué s debe tener un cuerpo pr que un uerz de 588 lo celere rzón de 9,8 /2? F = 588 = 9,8 /s 2 F = >>>>> = F/ = 588 / 9,8 /s 2 = 60 kg 3.- Sobre un cuerpo de 250 kg ctún dos uerzs, en sentidos opuestos, hci l derech un de y hci l izquierd un de Cuál es l celerción del cuerpo? = 250 kg F der = F izq = F izq F der De l igur se observ que ls uerzs hy que restrls: ΣF = = F der - F izq F der F izq = >>>>> = (F der F izq ) / = ( ) / 250 kg = 3,52 /s Pr el proble nterior: Supong que ls uerzs ctún durnte un inuto. Qué distnci recorrerá en ese tiepo?, Qué velocidd lcnzrá l térino del inuto? = 3,52 /s 2 t = 1 in = 60 s Suponiendo que el objeto prte del reposo: v i = 0 /s d = vit + t 2 /2 >>>>> d = 0 /s 60 s + 3,52 /s 2 (60 s) 2 / 2 = v = v i + t >>>>> v = 0 /s + 3,52 /s 2 60 s = 211,2 /s 5.- Un óvil de 100 kg recorre 1 k en un tiepo de 10 s prtiendo del reposo. Si lo hizo con celerción constnte, qué uerz lo ipulsó? = 100 kg d = 1 k = t = 10 s v i = 0 /s F =, pero se desconoce l celerción, por lo tnto: d = v i t + t 2 /2 >>>>> = 2(d v i t)/t 2 = 2 ( /s 10 s) / (10 s) 2 = 20 /s 2 Ahor, F = >>>>> F = 100 kg 20 /s 2 = Hernán Verdugo Fbini Proesor de Mteátic y Físic 1

2 6.- Un ontcrgs de kg de s desciende con un celerción de 1 /s 2. Hllr l tensión en el cble. ot: en este proble, el dibujo o digr de uerzs, es prácticente indispensble. = kg = 1 /s 2 g = 9,8 /s 2 Cundo hy ás de un uerz ctundo sobre un cuerpo hy que hllr l uerz resultnte, por lo tnto, se tendrá: ΣF = = = Se h puesto en prier térino debido que el oviiento es en l dirección de. Entonces: = = (g ) = kg (9,8 /s 2 1 /s 2 ) = Un cuerpo de 2 kg pende del extreo de un cble. Clculr l tensión del iso, si l celerción es ) 5 /s 2 hci rrib, b) 5 /s 2 hci bjo. = 2 kg ) = 5 /s 2 scendiendo b) = 5 /s 2 descendiendo ) ΣF = = - = + = ( + g) = 2 kg (5 /s 2 + 9,8 /s 2 ) = 29,6 b) ΣF = = - = = (g ) = 2 kg (9,8 /s 2 5 /s 2 ) = 9,6 8.- Clculr l áxi celerción con l que un hobre de 90 kg puede deslizr hci bjo por un cuerd que solo puede soportr un crg de 735. Coo l cuerd sostiene lo áxio un peso equivlente 735, se supondrá que l estr el hobre en l cuerd, l tensión será áxi. = 90 kg = 735 ΣF = = >>>>> = ( ) / = (90 kg 9,8 /s ) / 90 kg = 1,633 /s 2 ) b) Hernán Verdugo Fbini Proesor de Mteátic y Físic 2

3 9.- De un cuerd que ps por un pole penden dos ss, un de 7 kg y otr de 9 kg. Suponiendo que no hy roziento, clculr l celerción y l tensión en l cuerd. A este siste se le denoin áquin de Atwood. 1 = 7 kg 2 = 9 kg Al ser de yor s 2, l s 2 cerá con un celerción y l s 1 scenderá con l is celerción, suponiendo que l cuerd que une bs ss es inextensible. En l s 1, se tiene: 1 g = 1 En l s 2, se tiene: 2 g = g 2 g Si se sun ls dos ecuciones nteriores, se tendrá: 2 g 1 g = >>>>> ( 2 1)g = ( ) Entonces: = ( 2 1 )g / ( ) = (9 kg 7 kg) 9,8 /s 2 / (7 kg + 9 kg) = 1,225 /s 2 Y, l tensión se obtiene reeplzndo l celerción en culquier de ls dos ecuciones iniciles. Si se consider l prier: = g = ( + g) = 7 kg (1,225 /s 2 + 9,8 /s 2 ) = 77, Un bloque de 50 kg está en reposo sobre un suelo horizontl. L uerz horizontl íni necesri pr que inicie el oviiento es de 147 y l uerz horizontl íni necesri pr ntenerlo en oviiento con un velocidd constnte es de 98. ) Clculr el coeiciente de roce cinético, b) cuál será l uerz de roce cundo se plique l bloque un uerz horizontl de 49? = 50 kg F íni = 147 (pr inicir el oviiento) F íni = 98 (pr ntener el oviiento) ) Pr que el coeiciente de roce cinético, el objeto debe estr en oviiento, por lo tnto, considereos l uerz íni pr ntener el oviiento. F = con igul l uerz de roce cinétic, que es igul = µ k Por lo tnto, F = µ k, y coo el objeto no tiene oviiento verticl, se tiene que =. Entonces, F = µ k >>>>> µ k = F / = 98 / (50 kg 9,8 /s 2 ) = 0,2 Observción: no conundir el concepto de uerz norl que se escribe con l letr con l unidd de uerz, que es el newton, y tbién se escribe con l letr. b) Si se plic un uerz horizontl de 49, el bloque no se overá y que l uerz íni pr epezr overlo es 147. Y, en este cso, l uerz de roce estátic que ectrá l bloque será 49. Hy que considerr que l uerz de roce estátic que ect un objeto es equivlente l uerz que intent overlo ientrs no se lcnce l uerz íni necesri pr logrr overlo. F Hernán Verdugo Fbini Proesor de Mteátic y Físic 3

4 11.- Sobre un bloque de 50 kg situdo sobre un supericie horizontl se plic un uerz de 196 durnte 3 s. Sbiendo que el coeiciente de roce entre el bloque y el suelo es de 0,25, hllr l velocidd que dquiere el bloque l cbo de 3 s. = 50 kg F = 196 t = 3 s µ = 0,25 v =? F v Coo no hy oviiento verticl: = Suponiendo que el bloque prte del reposo, entonces hy un celerción que le perite lcnzr l velocidd, v = v i + t, que se dese deterinr, entonces: ΣF = >>>>> F = F µ = F µ = >>>>> = (F µ) / = (196 0,25 50 kg 9,8 /s 2 ) / 50 kg = 1,47 /s 2 Y, coo v = v i + t, se tiene: v = 0 /s + 1,47 /s 2 3 s = 4,41 /s 12.- En l supericie de un es hy un bloque de 25 kg, está sujeto trvés de un cble, que ps por un pole, con otro cuerpo de 20 kg, que cuelg verticlente. Clculr l uerz constnte que es necesrio plicr l bloque de 25 kg pr que el bloque de 20 kg sciend con un celerción de 1 /s 2, sbiendo que el coeiciente de roce entre l es y el bloque es 0,2. 1 = 25 kg F 25 kg 2 = 20 kg = 1 /s 2 µ = 0,2 Priero se verá lo que ocurre en el cuerpo 1. = 1 g F = 1 >>>>> F µ = 1 (1) F µ 1 g = 1 En el segundo cuerpo, se tiene: (2) 2 g = 2 Y, si hor se su (1) con (2), se tendrá: F µ 1 g 2 g = >>>>> F = ( ) + (µ )g F = (25 kg + 20 kg) 1 /s 2 + (0,25 25 kg + 20 kg) 9,8 /s 2 = 302,25 1 g 20 kg 2 g Hernán Verdugo Fbini Proesor de Mteátic y Físic 4

5 13.- Un cuerpo de 100 kg pende del extreo de un cuerd. Clculr su celerción cundo l tensión en l cuerd es ) 125, b) 1.200, c) 980. = 100 kg ) = 125 b) = 184 c) = 980 Pr todos los csos se utilizrá l ecución = >>>>> = ( - ) /. Esto signic que se supone que el cuerpo sciende. ) = ( kg 9,8 /s 2 ) / 100 kg = - 8,55 /s 2 Coo l celerción resultó negtiv, entonces el cuerpo no sciende, sino que desciende con l celerción de 8,55 /s 2. b) = ( kg 9,8 /s 2 ) / 100 kg = 2,2 /s 2 Coo l celercion es positiv, lo que supuso es correcto, es decir, el cuerpo sciende con un celerción de 2,2 /s 2. c) = ( kg 9,8 /s 2 ) / 100 kg = 0 /s 2 Coo l celerción es 0 /s 2, el cuerpo sciende o desciende con velocidd constnte, y tbién puede estr en reposo. Hy que recordr que el concepto de celerción se reiere l cbio de l velocidd El scensor de un in, que pes 7.840, rrnc hci rrib con un celerción de 6 /s 2. Clculr l tensión en el cble en el oento del rrnque. W = = = 6 /s 2 Coo = 7840, entonces = 7840 / g = 7840 / 9,8 /s 2 = 800 kg = >>>>> = + = 800 kg 6 /s = Un cuerpo de kg que pende del extreo de un cble, desciende con un velocidd de 4 /s cundo epiez detenerse. Sbiendo que el espcio que recorre hst detenerse es de 3, clculr l tensión en el cble suponiendo que l descelerción es constnte. = kg v i = 4 /s v = 0 /s d = 3 = >>>>> = = (g ) v 2 = v i 2 + 2d >>>>> = (v 2 - v i 2 ) / 2d = [(0 /s) 2 (4 /s) 2 ] / (2 3 ) = - 2,67 /s 2 Entonces: = kg [9,8 /s 2 (-2,67 /s 2 )] = Hernán Verdugo Fbini Proesor de Mteátic y Físic 5

6 16.- L s de un scensor es de kg. Clculr l tensión en los cbles cundo ) sciende con un celerción de 1 /s 2, b) desciende con un celerción de 1 /s 2. = kg ) = 1 /s 2 scendiendo. = >>>>> = + = ( + g) = kg (1 /s 2 + 9,8 /s 2 ) = b) = 1 /s 2 descendiendo. = >>>>> = = (g ) = kg (9,8 /s 2 1 /s 2 ) = Un hobre de 80 kg está dentro de un scensor que desciende con un celerción uniore de 1 /s 2. Clculr l uerz que el hobre ejerce sobre dicho scensor. Íde cundo sciende con l is celerción nterior. = 80 kg = 1 /s 2 descendiendo. L uerz que l person ejerce sobre el piso del scensor es equivlente l tensión que debe soportr l cuerd que sostiene el scensor. = >>>>> = = (g ) = 80 kg (9,8 /s 2 1 /s 2 ) = 704 Y, si sciende, se tiene: = >>>>> = + = ( + g) = 80 kg (1 /s 2 + 9,8 /s 2 ) = De los extreos de un cuerd que ps por un pole sin roziento, penden dos crgs de 2 y 6 kg de s. Clculr l celerción y l tensión en l cuerd. Este ejercicio se reliz igul que el núero 9. Resultdos: = 4,9 /s 2 = 29, Un scensor rrnc hci rrib con un celerción constnte de or que los 0,8 s h scendido 1. Dentro de él v un hobre que llev un pquete de 3 kg colgndo de un hilo. Clculr l tensión en el hilo. t = 0,8 s d = 1 v i = 0 /s = 3 kg Coo el scensor celer hci rrib, todo lo que v en su interior celer de igul or. d = v i t + t 2 /2 >>>>> = 2(d v i t)/t 2 = 2 (1 0 /s 0,8 s) / (0,8 s) 2 = 3,125 /s 2 Luego, lo que ocurre con el pquete que sostiene l person, serí: = >>>> = + = ( + g) = 3 kg (3,125 /s 2 + 9,8 /s 2 ) = 38,775 Hernán Verdugo Fbini Proesor de Mteátic y Físic 6

7 20.- Un prcidist de 70 kg se lnz libreente l espcio desde el reposo y los 5 segundos del instnte de lnziento bre su prcíds. Este trd en brirse por copleto 0,8 s y l velocidd ps 12 /s cundo está totlente bierto. Clculr l uerz edi ejercid sobre ls cuerds del prcíds, suponiendo que éste crece de peso. = 70 kg v i = 0 /s t = 5 s (de cíd) t = 0,8 s (de pertur del prcíds) v = 12 /s (luego de brir el prcíds) Si se dese deterinr l uerz edi ejercid por ls cuerds del prcíds, considerese que en ese tro, ientrs se bre el prcíds, hy un descelerción que serí: = (v v i )/t, donde es velocidd inl, v, corresponde l que lcnz luego de cer libreente durnte 5 s, es decir: v = gt = 9,8 /s 2 5 s = 49 /s. ótese que est será l rpidez inicil l oento de inicir l pertur del prcíds, por lo tnto, l descelerción que experient el prcíds serí: = (12 /s 49 /s) / 0,8 s = - 46,25 /s 2 Es celerción punt hci rrib, por lo tnto, es igul 46,25 /s 2 hci rrib. Y, de l igur, se tiene: = >>>>> = + = ( + g) = 70 kg (46,25 /s 2 + 9,8 /s 2 ) = 3.923, Un bloque de 50 kg está sobre un supericie horizontl y se ueve lo lrgo de ell por l cción de un cuerd prlel l supericie cuyo otro extreo está unido, trvés de un pole sin roziento, un cuerpo de 12 kg que cuelg libreente. Sbiendo que el coeiciente de roce es 0,2, clculr el espcio que recorrerá el prier cuerpo los 10 s de inicirse el oviiento. 1 = 50 kg 2 = 12 kg µ = 0,2 t = 10 s v i = 0 /s d =? En el cuerpo 1 : = 1 g = 1 >>> µ = 1 (1) - µ 1 g = 1 En el cuerpo 2 : (2) 2 g = 2 Si se sun (1) con (2), se tiene: 2 g µ 1 g = >>>>> = g( 2 µ 1 ) / ( ) = 9,8 /s 2 (12 kg 0,2 50 kg) / (50 kg + 12 kg) = 0,316 /s 2 50 kg 1 g 12 kg 2 g Ahor, con d = v i t + t 2 /2, se tiene d = 0 /s 10 s + 0,316 /s 2 (10 s) 2 / 2 = 15,8 Hernán Verdugo Fbini Proesor de Mteátic y Físic 7

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

- 1 - PLANO INCLINADO

- 1 - PLANO INCLINADO - 1 - PLNO INCLINDO DESCOMPOSICIÓN DE L FUERZ PESO Suponé que tengo un cuerpo que está poydo en un plno que está inclindo un ángulo. L fuerz peso punt pr bjo de est ner: UN CUERPO POYDO EN UN PLNO INCLINDO.

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

EJERCICIOS DE CINEMÁTICA PARA REPASAR

EJERCICIOS DE CINEMÁTICA PARA REPASAR EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede

Más detalles

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

Un vector es simplemente un segmento orientado. sentido. módulo a

Un vector es simplemente un segmento orientado. sentido. módulo a 1 1-MAGNITUDES ESCALARES Y ECTORIALES. CÁLCULO ECTORIAL BÁSICO -CINEMÁTICA. MAGNITUDES FUNDAMENTALES PARA EL ESTUDIO DEL MOIMIENTO. 3-CLASIFICACIÓN DE MOIMIENTOS. 4-COMPOSICIÓN DE MOIMIENTOS. PROYECTILES.

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Tema 4. Integración compleja

Tema 4. Integración compleja Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

Velocidad ÁREA. Tiempo. m =

Velocidad ÁREA. Tiempo. m = 1.1. Reisión de mru y mru. El moimiento rectilíneo uniforme (mru) es un moimiento que se reliz con elocidd constnte, y l ecución que permite representr ese moimiento es x t (1) L ecución nterior puede

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

TEMA VI: ACIDOS Y BASES

TEMA VI: ACIDOS Y BASES www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

UNIVERSITAT DE VALÈNCIA FACULTAT DE FÍSICA FÍSICA GENERAL I. Problemas (CURSO 06/07) DEPARTAMENTO DE FÍSICA APLICADA

UNIVERSITAT DE VALÈNCIA FACULTAT DE FÍSICA FÍSICA GENERAL I. Problemas (CURSO 06/07) DEPARTAMENTO DE FÍSICA APLICADA UNIVERSITAT DE VALÈNCIA FACULTAT DE FÍSICA FÍSICA GENERAL I Problems (CURSO 6/7) DEPARTAMENTO DE FÍSICA APLICADA ÍNDICE Bibliogrfí...4 Cinemátic y dinámic de l prtícul...5 Trbjo y energí. Principios de

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

MATEMÁTICA. Unidad 4. Geometría analítica. Objetivos de la unidad:

MATEMÁTICA. Unidad 4. Geometría analítica. Objetivos de la unidad: MATEMÁTICA Unidd Geometrí nlític Objetivos de l unidd: Aplicrás correctmente l geometrí nlític: prábol, elipse e hipérbol l encontrr soluciones diverss problemátics del entorno. 55 Figurs cónics ests son

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA

Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA Mtemátics º ESO Fernndo Brroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA. En cd cso escribe un polinomio que cumpl ls condiciones que se indicn. Con grdo coeficientes enteros. Trinomio de grdo sin

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

GUÍA DE PROBLEMAS F 10º

GUÍA DE PROBLEMAS F 10º Unidad 3: Dináica de la partícula GUÍ DE PROBLEMS 1)-Una partícula de asa igual a kg esta tirada hacia arriba por una plano inclinado liso ediante una fuerza de 14,7 N. Deterinar la fuerza de reacción

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

BUC: Física II. Práctica N 0 3: Carga eléctrica y ley de Coulomb.

BUC: Física II. Práctica N 0 3: Carga eléctrica y ley de Coulomb. BUC: Físic II. Práctic N 0 3: Crg eléctric y ley e Coulomb. Problem 1: Un crg puntul e 3. 10-6 C está un istnci e 1.3 cm e otr e crg -1.48 10-6 C. Ubicr ests crgs en un sistem e referenci rbitrrio, y clculr

Más detalles

1 q 1 U 5 1 1. (dos cargas puntuales) U 5 q 0. 1 q 2. 1 q 3. r 3 0 i r i. r 1. q 0 4pP a. (q 0 en presencia de otras cargas puntuales)

1 q 1 U 5 1 1. (dos cargas puntuales) U 5 q 0. 1 q 2. 1 q 3. r 3 0 i r i. r 1. q 0 4pP a. (q 0 en presencia de otras cargas puntuales) CAPÍTULO 23 RESUMEN Energí potencil eléctric: L fuerz eléctric cusd por culquier conjunto de crgs es un fuerz conservtiv. El trbjo W relizdo por l fuerz eléctric sobre un prtícul con crg que se mueve en

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

ELECTRICIDAD Y MAGNETISMO. Electrostática-Vacío

ELECTRICIDAD Y MAGNETISMO. Electrostática-Vacío ELECTRCDAD Y MAGNETSMO. Electrostátic-Vcío 1) Suponiendo un nue de electrones confind en un región entre dos esfers de rdios 2 cm y 5 cm, tiene un densidd de crg en volumen expresd en coordends esférics:

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Capitulo 14. Mezclas de Gas-Vapor y Aire Acondicionado. Guía de estudio en PowerPoint

Capitulo 14. Mezclas de Gas-Vapor y Aire Acondicionado. Guía de estudio en PowerPoint Cpitulo 14 Mezcls de Gs-Vpor y Aire Acondiciondo Guí de estudio en oweroint r Acopñr Therodynics: An Engineering Approch, 6th edition by Yunus A. Çengel nd Michel A. Boles Objetios Diferencir entre ire

Más detalles

Resumen: Límites de funciones. Asíntotas

Resumen: Límites de funciones. Asíntotas Resue: Líites de ucioes. Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. Ejeplos: *?

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Las combinaciones de negocios se regulan en dos normas del PGC:

CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Las combinaciones de negocios se regulan en dos normas del PGC: CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Gregorio Lbtut Serer http://gregorio-lbtut.blogspot.com.es/ Universidd de Vlenci. Ls combinciones de negocios se reguln en dos norms

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

Cálculo Integral. Métodos de integración

Cálculo Integral. Métodos de integración Unidd Métodos de integrción álculo Integrl Métodos de integrción Universidd iert y Distnci de Méico Unidd Métodos de integrción Índice UNIDD MÉTODOS DE INTEGRIÓN Propósito de l unidd ompetenci especíic

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

La máquina de corriente continua

La máquina de corriente continua Cpítulo I L máquin de corriente continu L máquin de corriente continu.. Introducción. Ls máquins de corriente continu (cc) se crcterizn por su verstilidd. Medinte diverss combinciones de devndos en derivción

Más detalles

DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE

DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE Lbortorio de Físic Generl rimer Curso (Termodinánic) DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE Fech: 07/0/05. Objetivo de l práctic Medir el coeficiente dibático del ire relizndo un expnsión rápid..

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 200-20 MATERIA: TECNOLOGÍA INDUSTRIAL II INSTRUCCIONES Y CRITERIOS GENERALES DE

Más detalles

1. Indicar el lenguaje aceptado por los siguientes autómatas :

1. Indicar el lenguaje aceptado por los siguientes autómatas : Universidd Rey Jun Crlos Grdo en Ingenierí de Computdores Máquins Secuenciles, Autómts y Lengujes Hoj de Prolems: Autómts Finitos Determinists Nivel del ejercicio : ( ) ásico, ( ) medio, ( ) vnzdo.. Indicr

Más detalles

M A T E M Á T I C A S. Números Reales. Fraccionarios Positivos Negativos MIXTOS: 3 ¼ 1

M A T E M Á T I C A S. Números Reales. Fraccionarios Positivos Negativos MIXTOS: 3 ¼ 1 M A T E M Á T I C A S Números Reles Enteros Rcionles Positivos Negtivos Nturles (,,,4,5,6... α) Primos (,,5,7,,,7) Pres (... 4,-,0,,4,6,..., ) Impres ( -...,-,-,0,,,5,..., ) Dígitos ( 0,,,,4,5,6,7,8,9

Más detalles

UNIDADES DE GUIADO TIPOLOGIA. La gama de unidades de guía es muy amplia. Las guías se pueden agrupar en diversas familias.

UNIDADES DE GUIADO TIPOLOGIA. La gama de unidades de guía es muy amplia. Las guías se pueden agrupar en diversas familias. UNIDADES DE GUIADO TIPOLOGIA L gm de uniddes de guí es muy mpli. Ls guís se pueden grupr en diverss fmilis. Uniddes de guí pr l conexión con cilindros estándres. Ests son uniddes pr su conexión con un

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

Continuidad. Funciones

Continuidad. Funciones I. E. S. Siete Colins (Ceut) Deprtmento de Mtemátics Mtemátics de º de Bchillerto Continuidd de Funciones Por Jvier Crroquino CZs Ctedrático de mtemátics del I.E.S. Siete Colins Ceut 005 Continuidd De

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 9 EJERCICIOS Ls relciones de proporcionlidd 1 Indic, entre los siguientes pres de mgnitudes, los que son directmente proporcionles, los que son inversmente proporcionles y los que no gurdn

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

FORMULARIO PARA VIGAS Y PÓRTICOS

FORMULARIO PARA VIGAS Y PÓRTICOS FORURIO PR VIGS Y PÓRTIOS Formurio pr vigs y pórticos.. Otención de istriución de Soicitciones medinte Formución de cuy s Funciones de cuy permiten epresr tnto distriución de crgs sore un vig sometid

Más detalles

ELABORADO POR: JULIO CESAR MACIAS ZAMORA LEYES DE NEWTON

ELABORADO POR: JULIO CESAR MACIAS ZAMORA LEYES DE NEWTON LEYES DE EWO 3... EJEIIOS ESUELOS 3... Un mujer sostiene un objeto en un de sus mnos. Aplicndo l ercer Ley de eton del movimiento, l fuerz de rección l peso de l bol es: (Segundo exmen de ubicción 006)

Más detalles

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos:

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos: Fcultd de Informátic Universidd Complutense de Mdrid Prolems ásicos: PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5 1. Especifique como máquin de Moore un sistem secuencil cuy slid z se comport, en función

Más detalles

3 Potencias y raíces de números

3 Potencias y raíces de números Potecis y ríces de úeros reles. Potecis de expoete turl. Defiició. El producto tiee sus siete fctores igules. Este producto se puede idicr de for brevid coo. se ll poteci, y l fctor, bse. El úero de veces

Más detalles

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones.

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones. Guía de Ejercicios Vectores y algunas plicaciones. 1 Notabene : Todas las agnitudes vectoriales se presentan en esta guía con negrita y cursiva. Por distracción, puede haberse oitido tal cosa en algún

Más detalles

METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA

METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA Est metodologí es plicble ls ctividdes de proyecto que conllevn un cmbio de flot de vehículos pesdos en el trnsporte de mercncís

Más detalles

Fuerzas distribuidas: centroides y centros de gravedad

Fuerzas distribuidas: centroides y centros de gravedad bee76985_ch05.qd 10/24/06 11:02 M Pge 219 PÍTUL 5 Fuers distribuids: centroides centros de grvedd En l fotogrfí se muestr l construcción de un trmo del viducto Skw, el cul cru l bhí que se encuentr entre

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

CALOR Y TEMPERATURA. b) T real = 47.76 C c) T = -400 C

CALOR Y TEMPERATURA. b) T real = 47.76 C c) T = -400 C CALOR Y TEMPERATURA 1.- En un lugr en que l presión tmosféric es 760 mm de mercurio, introducimos un termómetro centígrdo en hielo fundente y luego en vpor de gu hirviendo. El termómetro, ml grdudo, mrc

Más detalles

α = arctag ; como lo que hay que maximizar es α ya tenemos la función a

α = arctag ; como lo que hay que maximizar es α ya tenemos la función a Prolems resueltos de máimos mínimos J.M. mos González Un oservdor se encuentr frente un cudro colgdo de un pred verticl. El orde inferior del cudro está situdo un distnci sore el nivel de los ojos del

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

Transformaciones lineales en 3D

Transformaciones lineales en 3D Tem II Trnsformciones lineles en 3D Ricrdo Rmos Colbordores: Luis Jiméne de l Fuente, Alberto Góme Vicente, Jesús Moisés Peláe Nvrro, Emilio Gonále Gonále, Igncio Colom Gonále Antes de comenr estudir el

Más detalles

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio.

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio. Electromgnetismo olución Prueb 1 de Cátedr Profesor: José ogn C. 17 de Abril del 24 Ayudntes: Pmel Men. Felipe Asenjo Z. 1. Un distribución de crg esféricmente simétric de rdio tiene un densidd interior

Más detalles

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2012 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2012 Cuestiones (Un punto por cuestión). Exmen de Físic-1, 1 del Grdo en Ingenierí Químic Exmen finl. Sepiembre de 1 Cuesiones (Un puno por cuesión). Cuesión 1 (Primer prcil): Un rineo se deliz por un superficie horizonl cubier de nieve con un

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

NECESIDADES DE RIEGO EN LOS AGUACATES: APLICACIÓN PARA CÍTRICOS Y OLIVOS.

NECESIDADES DE RIEGO EN LOS AGUACATES: APLICACIÓN PARA CÍTRICOS Y OLIVOS. NECESIDADES DE RIEGO EN LOS AGUACATES: APLICACIÓN PARA CÍTRICOS Y OLIVOS. INTRODUCCIÓN. El riego es un práctic culturl consistente en proporcionr gu l suelo pr que desde éste ls ríces de ls plnts succionen

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Te. Sistes consevtivos Segn pte: Potenciles centles Un potencil U se enoin centl cno epene solente e l istnci n pnto fijo O. Tono n siste e efeenci cento en O, el potencil sólo epene e l cooen il U U (

Más detalles

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000 Solución Ejercicio 3: A. Registro de l vent. Vent de 6 frigoríficos 1.000 cd uno. Ls vents del ejercicio son ingresos. 5400 Bnco Clientes Vents de mercderís 0 (+) Bnco (-) (-) Resultdo Ejer (+) 0 (+) Clientes

Más detalles

Capítulo 6 Momentum lineal y colisiones

Capítulo 6 Momentum lineal y colisiones Capítulo 6 Moentu lineal y colisiones 10 Probleas de selección - página 87 (soluciones en la página 124) 9 Probleas de desarrollo - página 92 (soluciones en la página 125) 85 6.A PROBLEMAS DE SELECCIÓN

Más detalles

VECTORES PLANO Y ESPACIO

VECTORES PLANO Y ESPACIO TETO º 3 ECTOES PLAO ESPACIO Conceptos Básicos Ejercicios esueltos Ejercicios Propuestos Edict Arrigd D. ictor Perlt A Diciemre 008 Sede Mipú, Sntigo de Chile Introducción Este mteril h sido construido

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

5. TRABAJO Y ENERGÍA. 5. Trabajo y energía

5. TRABAJO Y ENERGÍA. 5. Trabajo y energía 5. TRABAJO Y ENERGÍA El concepto de energí es de enorme importnci en l Físic y sus lcnces exceden el contexto de l Mecánic Newtonin. En efecto l energí junto con l cntidd de movimiento juegn un rol primrio

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

(2132) Repuestos de maquinaria 80.000

(2132) Repuestos de maquinaria 80.000 3. Norms prticulres sobre el inmovilizdo mteril 80.000 25.000 800 (2131) Mquinri. Motores (75.000 + 5.000) (28132) Amortizción cumuld. Repuestos de mquinri (motores) (100.000/8) x 2 (472) Hciend Públic,

Más detalles

2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2

2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2 Epresiones lgebrics Unidd frccionris EN ESTA UNIDAD APRENDERÁS A: Interpretr ls epresiones lgebrics frccionris como un generlizción de l opertori con frcciones numérics. Reconocer pr qué vlores un epresión

Más detalles