Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea?

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea?"

Transcripción

1 82 Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (2y - 6x + ) dy = 0 Será ésta una ecuación diferencial reducible a homogénea? Si observamos la ecuación diferencial, tenemos que 2x 4y = 0 2y 6x + = 0 representan rectas. Por lo tanto, podría considerarse una ecuación diferencial reducible a homogénea. Qué debemos determinar para saber si podemos resolverla como una ecuación diferencial homogénea del Caso? Debemos determinar la posición relativa de las dos rectas involucradas. Muy bien. Cómo lo hacen? Buscando las pendientes de las rectas. Para la recta 2x 4y = 0, la pendiente es m = 2 ; para la recta 2y 6x + = 0, la pendiente es m2 = 2. Como m = m 2, resulta que las rectas son paralelas. Excelente. Observen que el procedimiento explicado anteriormente sólo funciona si las rectas se cortan, es decir, si tienen un punto en común. Cuando las rectas son paralelas Cómo son sus vectores normales? Los vectores normales de dos rectas paralelas son proporcionales. Correcto. Podrían decirme cuáles son los vectores de las rectas del ejemplo?

2 83 Los vectores normales son N = (2, -4) y N 2 = (-6,2) vectores? Cómo pueden expresar la relación de proporcionalidad entre los dos La relación de proporcionalidad entre N y N 2 se expresa como N 2 = -3 N, es decir, (-6,2) = -3 (2,-4). Si les pido escribir la ecuación de la recta 2y - 6x + = 0 usando el vector normal N.= (2,4) Cómo la escribirían? La escribiríamos -3(2x 4y) + = 0 Si sustituyen en la ecuación diferencial Cómo queda? La ecuación diferencial queda (2x 4y) dx + [(-3) (2x 4y) + ] dy = 0 Observen la ecuación diferencial que se obtuvo y díganme que característica común observan entre las funciones que multiplican a los diferenciales dx y dy respectivamente. Qué se repite el término 2x 4y. Exacto. Por eso se sugiere aquí realizar el cambio de variable: z = 2x 4y dz = 2dx 4dy dy = dx 2 dz 4

3 84 Cómo se transforma la ecuación diferencial con este cambio de variable? La ecuación diferencial se transforma en: zdx + (-3 z +) dx dz = Qué sugiere hacer ahora? Sacar factor común dx. Así se tiene 3 z z + dx = ( 3z + ) dz 0 o equivalentemente z + dx ( 3z + ) dz = 0 4 A qué tipo de ecuación diferencial hemos llegado? Hemos llegado a una ecuación diferencial de variable separable. Correcto. Por qué factor deben multiplicar para separar las variables? Se debe multiplicar por el factor z Cómo queda la ecuación al multiplicar por dicho factor? La ecuación queda.

4 85 o equivalentemente dx - 2 (3z ) dx + 4 dz = 0 ( z + ) 2 3z dz = 0 z Ya están separadas las variables Cuál es el siguiente paso? El siguiente paso es integrar cada término: dx - 3z 2 dz = C (#) z Cómo resuelven dx? Es inmediata dx = x 3z Cómo resuelven z dz? Cómo es un cociente de polinomios de igual grado, deberá efectuarse la división de polinomios, de donde resulta que integrando respecto de z ambas integrales inmediatas 3z 2 = 3 + z z 3z dz = z 3 dz + 2 dz z

5 86 3z dz = 3z + 2ln z z Muy bien. Ya resueltas las integrales Qué deben hacer? Debemos sustituir los resultados de las integrales en (#). Así: x - 2 [3z + 2 ln z - ] = C Correcto. Qué les falta hacer? Falta devolver el cambio de variables z = 2x 4y; al sustituir queda 2x 3(2x 4y) 2 ln 2x 4y = 2C esto es, 2x 6x + 2y ln 2x 4y 2 = 2C aplicando "e" de donde: e 2y 4x 2C = e 2 ln 2x 4y k e 4(3y x) = (2x 4y ) 2 Excelente. Cuál es la conclusión del problema? Que la función (2x 4y ) 2 = ke 4(3y x) es la solución general de la ecuación diferencial (2x 4y) dx + (2y 6x + ) dy = 0 Abran sus guías en la página 3 y leamos la información que allí aparece.

6 87 CASO 2: LA ECUACIÓN DIFERENCIAL TIENE LA FORMA (a x + b y + c ) dx + (a 2 x + b 2 y + c 2 ) dy = 0 CON a x + b y + c = 0 a 2 x + b 2 y + c 2 = 0 RECTAS PARALELAS Este tipo de ecuación diferencial es reducible a variable separable. Para transformar dicha ecuación diferencial en una de variable separable, se deben realizar los siguientes pasos: - Obtener la constante k tal que (a 2, b 2 ) = k (a, b ) 2- Escribir la ecuación diferencial como (a x + b y + c ) dx + [k(a x + b y) + c 2 ] dy = 0 z a = + = x z ax by y b 3- Realizar el cambio de variables dz a = dx dy b 4- Resolver la ecuación diferencial de variable separable que resulta en el paso 3 5- Devolver los cambios de variables 6- De ser posible despejar "y" A continuación disponer de 0 minutos para resolver el Problema 3 que aparece en sus guías en la página 3 PROBLEMA 3: Obtenga la solución general de la ecuación diferencial: (2x + 3y + 4) dx + (4x + 6y + ) dy = 0 Revisemos como resolvieron el Problema 3.

7 88 Qué es lo primero que deben hacer? Estudiar la posición relativa de las rectas involucradas en la ecuación diferencial 2x + 3y + 4 = 0 y 4x + 6y + = 0 Muy bien. Cómo lo hacen? Buscando sus vectores normales y chequeando si son o no proporcionales. Correcto. Qué obtenemos? El vector normal de la recta es N = (2,3) y el vector normal de la recta 2 es N 2 = (4,6). Se puede observar que N 2 = (4,6) = 2 N = 2 (2,3) Exacto. Cómo puede entonces escribir la ecuación diferencial? La ecuación diferencial puede escribirse: (2x + 3y + 4) dx + [2 (2x + 3y) + ] dy = 0 diferencial? Pueden identificar que expresión se repite en cada término de la ecuación Se repite el término 2x + 3y. Qué sugiere hacer en este caso? Se sugiere realizar un cambio de variable

8 89 z = 2z + 3y dz 2dx dy = 3 y = z 2x 3 se transforma? Muy bien. Sustituyan el cambio de variable en la ecuación diferencial Cómo Al sustituir el cambio de variable la ecuación diferencial se transforma en dz 2dx (z + 4) dx + (2z + ) = 0 3 Correcto. Cuál es el siguiente paso? El siguiente paso es sacar factor común dx, obteniendo o equivalentemente: esto es, 2 ( z + 4) (2z + ) dx + (2z + ) dz = (3z + 2 4z - 2) dx + (2z + ) dz = 0 (0-z) dx + (2z + ) dz = 0 Qué tipo de ecuación diferencial resultó? Resultó una ecuación diferencial de variables separables. separadas? Cuál es el factor por el cual se debe multiplicar para que las variables queden

9 90 Se debe multiplicar por el factor dx + obteniéndose así 0 z 2z + 0 z dz = 0 Ya están separadas las variables. Cuál es el siguiente paso? El siguiente paso es integrar cada término de la última ecuación dx + 2z + dz = C (#) 0 z Cómo resuelven? dx Es inmediata dx = x Cómo resuelven 2z + dz? 0 z Cómo es un cociente de polinomios de igual grado, deben dividirse los polinomios. Exacto. Una vez efectuada la división de polinomios Cómo puede escribirse 2z + el cociente? 0 z Se puede escribir 2z + 2 = z 0 z

10 9 Qué hacen ahora? Lo que hacemos es integrar cada término respecto de x. 2z + 0 z dz = - 2 dz + 2 dz 0 z = - 2z - 2 ln 0 z Resueltas ya las integrales. Cuál es el siguiente paso? Sustituir los resultados de las integrales en (#), obteniendo x 2z - 2 ln 0 z = C Qué falta por realizar? Falta devolver el cambio de variable z = 2x + 3y, así x 4x 6y 2 ln 0 2x 3y = C o equivalentemente: -3x 6y 2 ln 0 2x 3y = C Se podrá simplificar más? Si, se puede dividir todo entre 3 y sumar 3x + 6y, resultando así: o equivalentemente, aplicando "e": 7 ln 0 2x 3y = 3 C + x + 2y esto es, 0 2x 3y 7 = 3 C e e x+2y 0 2x 3y 7 = k e x+2y

11 92 Qué concluyen? Concluimos que la función 0 2x 3y 7 = k e x+2y es la solución general de la ecuación diferencial (2x + 3y +4) dx + (4x + 6y + ) dy = 0 El Problema 4 les queda como ejercicio. PROBLEMA 4: Obtenga la solución general de cada una de las siguientes ecuaciones diferenciales. - (x + y) dx + (3x + 3y 4) dy = 0 2- (2x + 2y + ) dx + (x + y + ) dy = 0 3- (x + y + ) y = (x + y ) 4- (2x + y) dx - (4x + 2y ) dy = 0 5- dy dx 2x 4y = 6x 2y CIERRE: Qué estudiamos en esta lección? Estudiamos un tipo de ecuación diferencial la cual puede reducirse a homogénea. Qué forma tiene este tipo de ecuación diferencial?

12 93 Tiene la forma (a x + b y + c ) dx + (a 2 x + b 2 y + c 2 ) dy = 0 donde a x + b y + c = 0 y a 2 x + b 2 y + c 2 = 0 son dos rectas que se cortan. diferencial? Podrían decirme que pasos se siguen para resolver dicha ecuación Lo primero que hacemos es buscar las coordenadas (h,k) del punto de intersección entre las dos rectas. Luego se realiza el cambio de variables: x = u + h dx = du y = v + k dy = dv obtiene? Al sustituir el cambio de variables Qué tipo de ecuación diferencial se Se obtiene una ecuación diferencial homogénea. Correcto. Qué otro aspecto estudiamos? Estudiamos las ecuaciones diferenciales de la forma (a x + b y + c ) dx + (a 2 x + b 2 y + c 2 ) dy = 0 donde a x + b y + c = 0 y a 2 x + b 2 y + c 2 = 0 son rectas paralelas. Qué debe hacerse en este caso? En este caso se debe escribir: a 2 x + b 2 y + c 2 = k (a x + b y) + c 2

13 94 donde k representa la constante de proporcionalidad entre los vectores normales de las dos rectas. Muy bien. Cuál es el siguiente paso? El siguiente paso es realizar el cambio de variable z = ax + by dz a = x dy b y = z a b : Al realizar este cambio Qué tipo de ecuación diferencial resulta? Resulta una ecuación diferencial de variables separables.

LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS.

LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS. 160 LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS. JUSTIFICACIÓN En esta lección centraremos nuestro estudio en aquellas ecuaciones diferenciales homogéneas mediante

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Expresiones algebraicas Las expresiones algebraicas Elementos de una expresión algebraica Números de cualquier tipo Letras Signos de operación: sumas, restas, multiplicaciones y

Más detalles

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es

Más detalles

3 Aplicaciones de ED de primer orden

3 Aplicaciones de ED de primer orden CAPÍTULO 3 Aplicaciones de E de primer orden 3.2 ecaimiento radioactivo Si observamos cierta cantidad inicial de sustancia o material radioactivo, al paso del tiempo se puede verificar un cambio en la

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

Inecuaciones en dos variables

Inecuaciones en dos variables Inecuaciones en dos variables Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,. Inecuaciones de primer grado

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

EJERCICIOS RESUELTOS DE ECUACIONES

EJERCICIOS RESUELTOS DE ECUACIONES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones EJERCICIOS RESUELTOS DE ECUACIONES 1. Determinar si cada una de las siguientes igualdades es una ecuación o una identidad:

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

UNIDAD IV CONTENIDO TEMÁTICO

UNIDAD IV CONTENIDO TEMÁTICO UNIDAD IV CONTENIDO TEMÁTICO OPERACIONES CON FRACCIONES ALGEBRAICAS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD IV Conceptos Mínimo común múltiplo OPERACIONES CON FRACCIONES

Más detalles

Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011

Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011 Combinación Lineal Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice.1. Introducción............................................... 1.. Combinación lineal entre vectores...................................

Más detalles

Integración por partes VIII INTEGRACIÓN POR PARTES. Supóngase que se tiene la función producto y = uv. Si se deriva con respecto de x se obtiene:

Integración por partes VIII INTEGRACIÓN POR PARTES. Supóngase que se tiene la función producto y = uv. Si se deriva con respecto de x se obtiene: VIII INTEGRACIÓN POR PARTES Área Supóngase que se tiene la función producto y = uv. Si se deriva con respecto de x se obtiene: dy d = uv dx dx dy dv du = u + v dx dx dx Multiplicando toda la igualdad por

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

Sistemas de Ecuaciones Lineales. Solución de Sistemas de Ecuaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Sistemas de Ecuaciones Lineales. Solución de Sistemas de Ecuaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Sistemas de Ecuaciones Lineales Solución de Sistemas de Ecuaciones Lineales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Sistemas de Ecuaciones Lineales 2

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II. dy 2

CALCULO DIFERENCIAL E INTEGRAL II. dy 2 CALCULO DIFERENCIAL E INTEGRAL II TEMA Nº 10 (Última modificación 8-7-015) ECUACIONES DIFERENCIALES En muchos problemas físicos, geométricos o puramente matemáticos, se trata de hallar una función = F()

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES EJERCICIOS PARA ENTRENARSE División y regla de Ruffini 5.26 Realiza estas divisiones. a) (12x 2 yz 6xy 3 8xyz 2 ) (2xy) b) (15x 4 3x 3 9x 2 ) (3x 2 ) c) (5a 3 b 2 10ab 2 15a 3 b 4 ) (5ab 2 ) a) (12x 2

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro)

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro) UNIDAD 4. INECUACIONES Y SISTEMAS (tema 4 del libro) 1. INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Definición: Se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por

Más detalles

Clase 8 Sistemas de ecuaciones no lineales

Clase 8 Sistemas de ecuaciones no lineales Clase 8 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta: T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Sistemas de ecuaciones Sistemas de ecuaciones Resolución de un sistema de dos ecuaciones lineales Un sistema de dos ecuaciones lineales es un conjunto de dos ecuaciones de primer grado con dos incógnitas

Más detalles

Lección 13: Resolución algebraica de sistemas de ecuaciones

Lección 13: Resolución algebraica de sistemas de ecuaciones GUÍA DE MATEMÁTICAS III Lección 1: Resolución algebraica de sistemas de ecuaciones En la lección anterior hemos visto cómo resolver gráficamente un sistema de ecuaciones. Si bien ese método es relativamente

Más detalles

9. Ecuaciones, parte III

9. Ecuaciones, parte III Matemáticas I, 202-I El concepto de información Ya hemos visto ejemplos de ecuaciones con una única solución y otras que admiten dos soluciones. Ahora veremos unos ejemplos más extraños. Ejemplo. Resuelve

Más detalles

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,

Más detalles

Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra

Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra Expresiones algebraicas y ecuaciones Melilla Qué es una expresión algebraica? Los padres de Iván le han encargado que vaya al mercado a comprar 4 kg de naranjas y 5 kg de manzanas. Pero no saben lo que

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

1 Unidad I: Ecuaciones Diferenciales de Primer Orden

1 Unidad I: Ecuaciones Diferenciales de Primer Orden ITESM, Campus Monterrey Departamento de Matemáticas MA-841: Ecuaciones Diferenciales Lectura #6 Profesor: Victor Segura 1 Unidad I: Ecuaciones Diferenciales de Primer Orden 1.3.4 Factores Integrantes Dentro

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor

Los números enteros. > significa mayor que. Ejemplo: 58 > 12 < significa menor que. Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +

Más detalles

Funciones constantes, lineales y afines 1.

Funciones constantes, lineales y afines 1. Funciones constantes, lineales y afines 1. 1.- Rectas horizontales y verticales. Ej.1.- A continuación tienes la gráfica de la recta y = 0. Qué puntos de corte tiene con los ejes? Qué posición tiene respecto

Más detalles

GEOMETRÍA: ESPACIO AFÍN

GEOMETRÍA: ESPACIO AFÍN GEOMETRÍA: ESPACIO AFÍN.- ECUACIONES DE LA RECTA EN EL PLANO..- Ecuación vectorial Sea Pab (, ) un punto de la recta r, v = ( v, v) dirección que r, y, sea (, ) en el siguiente dibujo: un vector, no nulo,

Más detalles

Sistemas de inecuaciones de primer grado con dos incógnitas

Sistemas de inecuaciones de primer grado con dos incógnitas SISTEMAS DE INECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS 1) (Selectividad 2005) Sea el siguiente sistema de inecuaciones: 3y 6; x 2y 4; x + y 8; x 0; y 0. Dibuje la región que definen y calcule sus

Más detalles

Capítulo 12. Sistemas de control

Capítulo 12. Sistemas de control Capítulo 12 Sistemas de control 1 Caso estacionario En un sistema de control el punto de equilibrio se determina resolviendo las ecuaciones que definen el sistema simultáneamente. Supondremos dos procesos

Más detalles

Clase 8 Sistemas de ecuaciones lineales

Clase 8 Sistemas de ecuaciones lineales Clase 8 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2014 con dos incógnitas Considere el siguiente sistema de dos ecuaciones lineales con dos incógnitas x e y:

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES Definición Un sistema lineal de dos ecuaciones con dos incógnitas es un par de expresiones algebraicas que se suelen representar de la siguiente forma: ax + by = p cx + dy = q donde

Más detalles

Líneas y Planos en el Espacio

Líneas y Planos en el Espacio Líneas y Planos en el Espacio Departamento de Matemáticas, CCIR/ITESM de enero de Índice..Introducción.................................................Ecuación paramétrica de la recta.....................................ecuación

Más detalles

7 Sistemas de ecuaciones

7 Sistemas de ecuaciones 89485 _ 0309-0368.qxd 1/9/0 15:3 Página 31 Sistemas de ecuaciones INTRODUCCIÓN Aunque no es el objetivo de este curso, los alumnos deben ser capaces de reconocer ecuaciones con dos incógnitas y obtener

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

GEOMETRÍA ANALÍTICA EN EL PLANO

GEOMETRÍA ANALÍTICA EN EL PLANO GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante

Más detalles

Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio.

Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio. Regla de Ruffini Teorema del resto Polinomios y fracciones algebraicas Dividir un polinomio por -a Regla de Ruffini Factorización de polinomios Divisibilidad de polinomios Fracciones algebraicas Operaciones

Más detalles

En efecto, todo natural, todo número entero, acepta una escritura en forma de fracción:

En efecto, todo natural, todo número entero, acepta una escritura en forma de fracción: Conjuntos Numerícos página 1 Números Racionales domingo, 21 de febrero de 2016 05:33 p.m. En líneas generales, el Conjunto de los Números Racionales, son todos los números que aceptan una escritura en

Más detalles

Método de Igualación

Método de Igualación Método de Igualación Ya vimos que la solución del S.E.L. debe ser tal que cuando sustituyamos los valores de las variables en cada ecuación obtengamos una igualdad verdadera. Entonces, el valor de x que

Más detalles

CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS

CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS Al concluir la unidad, el alumno conocerá y aplicará las propiedades relacionadas con el lugar geométrico llamado circunferencia, determinando los distintos

Más detalles

INSTITUTO TECNOLÓGICO DE TIJUANA ECUACIONES DIFERENCIALES. Portafolio Parte 2

INSTITUTO TECNOLÓGICO DE TIJUANA ECUACIONES DIFERENCIALES. Portafolio Parte 2 INSTITUTO TECNOLÓGICO DE TIJUANA DEPARTAMENTO DE SISTEMAS Y COMPUTACIÓN SEMESTRE ENERO JUNIO 2014 INGENIERÍA EN SISTEMAS COMPUTACIONALES ECUACIONES DIFERENCIALES Portafolio Parte 2 Indicadores 19-23, 25,

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Ecuaciones de primer grado º ESO - º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,

Más detalles

Lección 3: Introducción a la Factorización y Factorización por Factor Común y Agrupación. Dra. Noemí L. Ruiz Limardo 2009

Lección 3: Introducción a la Factorización y Factorización por Factor Común y Agrupación. Dra. Noemí L. Ruiz Limardo 2009 Lección 3: Introducción a la Factorización y Factorización por Factor Común y Agrupación Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Conocerán el

Más detalles

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES EJERCICIOS RESUELTOS DE SISTEMAS LINEALES 1. Dado el sistema de ecuaciones lineales: 2x + 3y 3 4x +5y 6 a) Escribir la expresión matricial del sistema. b) Discutir el sistema. c) Resolver el sistema por

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #3: jueves, 2 de junio de 2016. 3 Decimales 3.1 Sistema de numeración

Más detalles

Lección 6: Factorización de Casos Especiales. Dra. Noemí L. Ruiz Limardo 2009

Lección 6: Factorización de Casos Especiales. Dra. Noemí L. Ruiz Limardo 2009 Lección 6: Factorización de Casos Especiales Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán polinomios que representan una Diferencia de

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES 1.- ECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS Una ecuación como 2x + 3y = 7 es una ecuación de primer grado con dos incógnitas. Es de primer grado porque las letras

Más detalles

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA MATEMÁTICAS EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA GEOMETRÍA ANALÍTICA A Introducción teórica A Módulo y argumento de un vector A Producto escalar A3 Punto medio de un segmento A4 Ecuaciones de la

Más detalles

Convertir unidades de longitud Determinar el perímetro de triángulo y cuadrilátero Determinar el volumen de prismas rectos.

Convertir unidades de longitud Determinar el perímetro de triángulo y cuadrilátero Determinar el volumen de prismas rectos. Colegio Preuniversitario Dr. Luis Alfredo Duvergé Mejía Listado de contenidos en matemática a estudiar para ingresar al 6to Grado Nivel Básico. Números y operaciones. Leer y escribe los números de mayores

Más detalles

Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j,

Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j, Ecuaciones de rectas y planos. Coordenadas en el espacio. Planos coordenados. El vector OP tiene unas coordenadas( x, y, z ) respecto de la base B, que se pueden tomar como coordenadas del punto P respecto

Más detalles

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión.

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. FACTORIZACION Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. Al proceso de encontrar los factores o divisores a partir

Más detalles

VOCABULARIO HABILIDADES Y CONCEPTOS

VOCABULARIO HABILIDADES Y CONCEPTOS REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9.doc 1 DE 7 Nombre: Fecha: VOCABULARIO A. Valor absoluto de un número complejo B. Eje de simetría C. Completar el cuadrado D. Número complejo E. Plano de números

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Unidad 1. Las fracciones.

Unidad 1. Las fracciones. Unidad 1. Las fracciones. Ubicación Curricular en España: 4º, 5º y 6º Primaria, 1º, 2º y 3º ESO. Objetos de aprendizaje. 1.1. Concepto de fracción. Identificar los términos de una fracción. Escribir y

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES EJERCICIOS PROPUESTOS 5.1 Divide los siguientes monomios. a) 54x 5 9x 2 b) 63x 12 3x 5 c) 35xy 6 7y 3 d) 121x 2 y 6 11yx 4 a) 54x 5 9x 2 5 5 4x 2 5 4 x 5 9x 9 x 2 6x 3 c) 35xy 6 7y 3 3 6 5xy 3 3 5 x y

Más detalles

Ecuaciones diferenciales lineales con coeficientes constantes

Ecuaciones diferenciales lineales con coeficientes constantes Tema 4 Ecuaciones diferenciales lineales con coeficientes constantes Una ecuación diferencial lineal de orden n tiene la forma a 0 (x)y (n) + a 1 (x)y (n 1) + + a n 1 (x)y + a n (x)y = b(x) (41) Vamos

Más detalles

LECCIÓN 10 5 PROBLEMAS RESUELTOS

LECCIÓN 10 5 PROBLEMAS RESUELTOS LECCIÓN 10 PROBLEMAS RESUELTOS Problema 1. Cuál es el menor número de personas con las cuales, usándolas todas, se pueden formar grupos (exactos) de 6 personas o grupos (exactos) de 8 personas? A. 14 D.

Más detalles

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H. Producto cartesiano Motivación: Has oido hablar sobre gente que juega ajedrez sin tener que mirar nunca el tablero?. Esto es posible, y se debe a una herramienta llamada coordenadas de un punto. En un

Más detalles

SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE)

SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE) SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE) I. CONTENIDOS: 1. Ejercicios resueltos aplicando exponentes y logaritmos (2ª. Parte) 2. Derivación de funciones exponenciales y

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: RADICACION Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1

TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1 Capítulo 9 TRANSFORMACIONES DE f () = 2 9.1.1 9.1.2 A fin de lograr un buen dominio de la modelación de datos relaciones en situaciones cotidianas, los alumnos deben ser capaces de reconocer transformar

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES SISTEMAS DE ECUACIONES Dos ecuaciones de primer grado, que tienen ambas las mismas dos incógnitas, constituen un sistema de ecuaciones lineales. La forma

Más detalles

Apellidos Nombre DNI / NIE Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

Apellidos Nombre DNI / NIE Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE DE 2012 Resolución de 27 de abril de 2012 (DOCM de 30 de abril) Instrucciones Generales PARTE COMÚN

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

Ecuaciones de primer y segundo grado

Ecuaciones de primer y segundo grado Ecuaciones de primer y segundo grado Las ecuaciones de primer y segundo grado es una ecuación porque es una igualdad entre expresiones algebraicas. Ecuaciones de primer grado con una incógnita Ejemplo

Más detalles

Sistemas de Ecuaciones y Matrices

Sistemas de Ecuaciones y Matrices Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

d. x 1 e. Ninguna de las anteriores b. 1 c. 3 d. 2 e. Ninguna de las anteriores d. ( 3; 2) e. Ninguna de las anteriores d.

d. x 1 e. Ninguna de las anteriores b. 1 c. 3 d. 2 e. Ninguna de las anteriores d. ( 3; 2) e. Ninguna de las anteriores d. UNIVERSIDAD DE PUERTO RICO, RECINTO DE MAYAGUEZ DEPARTAMENTO DE CIENCIAS MATEMATICAS EXAMEN DEPARTAMENTAL FINAL: PRE-CALCULO I, MATE 7 NOMBRE: NUM. DE ESTUDIANTE: SECCION: PROFESOR: El plagio no está permitido.

Más detalles

Ecuación de la Recta en el Espacio

Ecuación de la Recta en el Espacio PreUnAB Clase # 21 Octubre 2014 Definición Un sistema de coordenadas rectangulares en el espacio está determinado por tres planos mutuamente perpendiculares, Los ejes generalmente son identificados por

Más detalles

Sabes cómo simplificar una expresión con fracciones utilizando propiedades? Echa un vistazo a este dilema.

Sabes cómo simplificar una expresión con fracciones utilizando propiedades? Echa un vistazo a este dilema. Materia: Matemática de Octavo Tema: Propiedades de la Adición y la Multiplicación en Q Sabes cómo simplificar una expresión con fracciones utilizando propiedades? Echa un vistazo a este dilema. Para simplificar

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA Año escolar: 2do.y 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

Sugerencias al Profesor. RAZÓN DE CAMBIO DE UNA FUNCIÓN

Sugerencias al Profesor. RAZÓN DE CAMBIO DE UNA FUNCIÓN Sugerencias al Profesor. La siguiente es una manera que te sugerimos llevar a cabo para iniciar el desarrollo de la Unidad. Después de señalar algunos conceptos clave, se presentan unos ejemplos desde

Más detalles

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación.

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación. FRACCIONES TEMA 2 INTRODUCCIÓN Para aplicar esta unidad didáctica es conveniente que ya se hayan estudiado las fracciones en clase de forma tradicional, es decir, empleando la pizarra, el papel y el lápiz.

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.

Más detalles

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden Lección 11 Ecuaciones Diferenciales de Segundo Orden 1 En forma normal: Ejemplo: Ecuaciones de segundo orden x = f (t, x, x ) 2tx x + 1 x = 0 x = (x ) 2 1 2tx Casos Particulares Ecuaciones en las que no

Más detalles

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección Matemáticas Tema 5: Conceptos básicos sobre matrices y vectores Objetivos Lección 5.: y determinantes Philippe Bechouche Departamento de Matemática Aplicada Universidad de Granada 3 4 phbe@ugr.es 5 Qué

Más detalles

1.4 SISTEMAS HOMOGÉNEOS DE ECUACIONES. 36 CAPÍTULO 1 Sistemas de ecuaciones lineales y matrices

1.4 SISTEMAS HOMOGÉNEOS DE ECUACIONES. 36 CAPÍTULO 1 Sistemas de ecuaciones lineales y matrices 36 CAPÍTULO Sistemas de ecuaciones lineales y matrices Escriba, en un comentario, la ecuación del polinomio cúbico que se ajusta a los cuatro puntos. Sea x el vector columna que contiene las coordenadas

Más detalles

GEOMETRÍA ANALÍTICA: CÓNICAS

GEOMETRÍA ANALÍTICA: CÓNICAS GEOMETRÍA ANALÍTICA: CÓNICAS 1.- GENERALIDADES Se define lugar geométrico como el conjunto de puntos que verifican una propiedad conocida. Las cónicas que estudiaremos a continuación se definen como lugares

Más detalles

Profr. Efraín Soto Apolinar. Productos notables

Profr. Efraín Soto Apolinar. Productos notables Productos notables Cuando realizamos operaciones entre polinomios con el fin de resolver problemas, es muy frecuente encontrar algunas operaciones que por su naturaleza, aparecen en muchos fenómenos. Debido

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

2.- Sistemas de ecuaciones Lineales

2.- Sistemas de ecuaciones Lineales .- Sistemas de ecuaciones Lineales..- Definición, Clasificación de los sistemas lineales y tipos de solución. Definición Una ecuación lineal con las variables escribirse en la forma,..., n es una ecuación

Más detalles

Sucesiones (páginas 511 515)

Sucesiones (páginas 511 515) A NMRE FECHA PERÍD Sucesiones (páginas 5 55) Una sucesión es una lista de números en un cierto orden. Cada número se llama término de la sucesión. En una sucesión aritmética, la diferencia entre cualquier

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden. Ecuaciones diferenciales de variables separables El primer tipo de E que presentamos es el de variables separables, porque con frecuencia se intenta separar

Más detalles

Funciones Exponenciales y Logarítmicas

Funciones Exponenciales y Logarítmicas Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,

Más detalles

Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos

Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M.

Más detalles