Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios"

Transcripción

1 Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl ilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 4 La política conómica: impustos y subvncions por unidad vndida y controls d prcios Ejrcicio 7: Las curvas d dmanda y d ofrta dl mrcado dl bin vinn dadas por y 2.000, rspctivamnt. El gobirno considra qu l prcio d quilibrio s dmasiado alto y dcid intrvnir para rducirlo a la mitad. Tin dos posibilidads: stablcr un prcio máximo o concdr a los productors una subvnción por unidad vndida. a) Calcul l prcio y la cantidad intrcambiada n l mrcado sin intrvnción y con cada una d las dos mdidas d intrvnción gubrnamntal. Rprsnt las trs situacions n un mismo gráfico. b) Calcul la cuantía d la subvnción, la xprsión matmática d la nuva curva d ofrta, así como l porcntaj d la subvnción qu rprcut sobr los consumidors y l porcntaj qu rprcut sobr los productors. c) Expliqu qué mdida convin más a los consumidors y qué mdida convin más a los productors. d) Calcul l cost para l gobirno d ambas mdidas. olución: a) Calcul l prcio y la cantidad intrcambiada n l mrcado sin intrvnción y con cada una d las dos mdidas d intrvnción gubrnamntal. Rprsnt las trs situacions n un mismo gráfico. - Equilibrio d mrcado sin intrvnción gubrnamntal: ; Establciminto d un prcio máximo: i l prcio d quilibrio sin intrvnción gubrnamntal s 2 y l gobirno quir rducirlo a la mitad a través dl stablciminto d un prcio máximo, ést db fijars n. A st prcio s gnra un xcso d dmanda, pro al sr ilgal cualquir intrcambio por ncima d st prcio, las furzas dl mrcado no gnrarán un nuvo quilibrio y los intrcambios s ralizan n situación d dsquilibrio. Máximo Intrcambi o

2 Introducción a la Toría Económica Ejrcicios rsultos dl Tma 4 La cantidad intrcambiada la dtrmina l lado corto dl mrcado, qu, n st caso, s la ofrta. ara calcular sta cantidad basta sustituir l prcio máximo n la xprsión d la curva d ofrta: Máximo Intrcambiada Como pud obsrvars, l stablciminto d un prcio mínimo tin como fcto una rducción n l prcio d intrcambio y una rducción d la cantidad intrcambiada. - Establciminto d una subvnción: La subvnción por unidad vndida dsplazará vrticalmnt hacia abajo la curva d ofrta. Como l nunciado nos informa d cuál db sr l fcto, n cuanto a prcios s rfir, d sta mdida gubrnamntal (rducir a la mitad l prcio d quilibrio inicial), no s ncsario conocr la cuantía d la subvnción. Es más, ésta podría calculars y constituy part d la rspusta al apartado b) dl jrcicio. El nuvo prcio d quilibrio tras la subvnción db sr, por tanto: La nuva cantidad d quilibrio s calcula sustituyndo n la xprsión d la curva d dmanda st prcio, ya qu no conocmos la xprsión d la nuva curva d ofrta Como pud obsrvars l stablciminto d la subvnción tin como fcto una rducción dl prcio d quilibrio y un incrmnto d la cantidad d quilibrio. Gráficamnt: Máximo b) Calcul la cuantía d la subvnción, la xprsión matmática d la nuva curva d ofrta, así como l porcntaj d la subvnción qu rprcut sobr los consumidors y l porcntaj qu rprcut sobr los productors. Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 2

3 Introducción a la Toría Económica Ejrcicios rsultos dl Tma 4 ara calcular la cuantía d la subvnción por unidad vndida basta dspjar s d la xprsión d la nuva curva d ofrta: La curva d ofrta inicial (n forma dircta) vin dada por la xprsión: La curva invrsa d ofrta s: La nuva curva d ofrta tras l stablciminto d la subvnción s: s, ya qu la curva d ofrta s dsplaza vrticalmnt hacia abajo. or lo tanto: s Como s conoc un punto d sta curva d ofrta (l nuvo punto d quilibrio), al sustituirlo n sta xprsión s pud dspjar l valor d s s s s, Una vz conocido l valor d la subvnción, la xprsión d la nuva curva d ofrta s calcula sustituyndo st valor n la xprsión gnérica antrior: s, El porcntaj d la subvnción qu rprcut sobr los consumidors s calcula d la siguint manra: 2 s 0% 0% 67% s 67% C C s,5 or lo tanto, l porcntaj d la subvnción qu rprcut sobr los productors s: 67% % s 0% s % c) Expliqu qué mdida convin más a los consumidors y qué mdida convin más a los productors. ara dtrminar qué mdida convin más a los consumidors y qué mdida convin más a los productors s ncsario comparar sus rspctivas situacions ants y dspués d la intrvnción gubrnamntal: - Consumidors: a éstos ls convin más la subvnción, ya qu, aunqu con las dos mdidas l prcio d intrcambio s rduc a la mitad rspcto d la situación inicial, con la subvnción pudn comprar una mayor cantidad dl bin: roductors: para dtrminar qué mdida ls convin más s ncsario comparar sus ingrsos, I, n las trs situacions: Máximo Álvarz, Bcrra, Cácrs, Osorno, Rodríguz

4 Introducción a la Toría Económica Ejrcicios rsultos dl Tma 4 I u.m. I Máximo Máximo Máximo I ubvnción s, u.m Los ingrsos d los productors cuando rcibn la subvnción incluyn l ingrso obtnido por las vntas d los bins al nuvo prcio d mrcado, más l import total d la subvnción por la cantidad d bins qu vndn. Comparando los ingrsos qu obtndrían con ambas mdidas y los qu obtinn n la situación inicial, s obsrva qu l prcio máximo haría rducir los ingrsos d los productors mintras qu la subvnción prmitiría incrmntarlos, por lo qu prfrirían la subvnción por unidad vndida. d) Calcul l cost para l gobirno d ambas mdidas. u.m. El cost dl gobirno,c, d ambas mdidas s obtin d la siguint manra: - El cost para l gobirno d stablcr la subvnción s calcula multiplicando l valor d ésta por la cantidad d quilibrio (cantidad intrcambiada) tras stablcr la subvnción: C s, C u.m. - El cost para l gobirno dl stablciminto dl prcio máximo s cro, ya qu no ha tnido qu ralizar ningún gasto montario para su imposición. Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 4

5 Introducción a la Toría Económica Ejrcicios rsultos dl Tma 4 Ejrcicio 8: En l mrcado d bbidas nrgéticas xistn 250 consumidors idénticos y 0 productors idénticos. q 2 ; i,..., 250 y i q ; j,..., 0 son, rspctivamnt, las j 25 curvas d dmanda y ofrta individuals. a) uponga qu l gobirno s propon como objtivo rducir l consumo d st tipo d bbidas mdiant l stablciminto d un impusto d por cada nvas vndido. Indiqu l fcto qu tndrá dicho impusto sobr l quilibrio dl mrcado. b) trmin l rparto dl impusto ntr los consumidors y los vnddors. c) Considr qu, para lograr l objtivo propusto, l gobirno opta por imponr un prcio mínimo. Calcul cuál db sr l valor d dicho prcio mínimo para qu, partindo dl quilibrio inicial, la rducción n la cantidad intrcambiada sa la misma qu n l apartado a). d) Calcul la rcaudación qu obtndría l gobirno con l stablciminto dl impusto. Asimismo, obtnga l cost qu l supondría l imponr l prcio mínimo si s compromt a comprar l xcdnt qu s gnra. olución: a) uponga qu l gobirno s propon como objtivo rducir l consumo d st tipo d bbidas mdiant l stablciminto d un impusto d por cada nvas vndido. Indiqu l fcto qu tndrá dicho impusto sobr l quilibrio dl mrcado. ara rsolvr st apartado, lo primro qu s db calcular s l quilibrio d mrcado. Es ncsario conocr la situación inicial, ants d la intrvnción dl gobirno, para lugo obtnr los fctos d la política conómica llvada a cabo por ést. El quilibrio d mrcado s obtin igualando las curvas d dmanda y ofrta d mrcado. or lo tanto, s ncsario obtnr las xprsions d stas curvas a partir d la información suministrada n l nunciado: Curva d dmanda d mrcado: ncqi Curva d ofrta d mrcado: n pq j (n c y n p son l númro d consumidors y d productors, rspctivamnt). Equilibrio d mrcado: ; Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 5

6 Introducción a la Toría Económica Ejrcicios rsultos dl Tma 4 Gráficamnt: Mínimo Cuando s stablc un impusto d /u.v., la xprsión d la nuva curva d ofrta s obtin d la siguint manra: t, ya qu la ofrta s dsplaza vrticalmnt hacia arriba. La curva d dmanda sigu sindo la misma qu ants dl impusto: Calculmos l nuvo quilibrio d mrcado, tras l stablciminto dl impusto: ; Est nuvo quilibrio stá rprsntado n la gráfica antrior. Como pud obsrvars, l stablciminto d un impusto d por unidad vndida tin como conscuncia un incrmnto dl prcio d quilibrio (n mnor cuantía qu l valor dl impusto) y una rducción d la cantidad d quilibrio. or lo tanto, l gobirno consigu su objtivo d rducir l consumo d st tipo d bbidas. b) trmin l rparto dl impusto ntr los consumidors y los vnddors. El rparto dl impusto ntr compradors y vnddors dl bin s l siguint: - orcntaj dl impusto qu rca sobr los consumidors, t C : t 0% 0% 50% C t Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 6

7 Introducción a la Toría Económica Ejrcicios rsultos dl Tma 4 - orcntaj dl impusto qu rca sobr los productors: t 0% 50% 50% El impusto rca, d manra fctiva, por igual sobr productors y consumidors, a psar d qu s l productor quin paga l impusto a Hacinda. c) Considr qu, para lograr l objtivo propusto, l gobirno opta por imponr un prcio mínimo. Calcul cuál db sr l valor d dicho prcio mínimo para qu, partindo dl quilibrio inicial, la rducción n la cantidad intrcambiada sa la misma qu n l apartado a). i l gobirno opta por imponr un prcio mínimo con l objtivo d rducir l consumo tanto como con l impusto, l valor dl prcio mínimo db coincidir con l nuvo prcio d quilibrio obtnido n l apartado b), sto s: Mínimo 25. En st caso, s produciría un dsquilibrio (concrtamnt un xcso d ofrta d 0 unidads), ya qu al prcio mínimo la cantidad qu s quir vndr s mayor qu la qu s quir comprar. El lado corto dl mrcado, n st caso la dmanda, s quin dtrmina la cantidad fctivamnt intrcambiada, por lo qu ésta srá d 250 unidads y l prcio d mrcado srá l prcio mínimo, sto s 25. Mínimo Mínimo El xcso d ofrta srá: E. O. Mínimo 25 Mínimo d) Calcul la rcaudación qu obtndría l gobirno con l stablciminto dl impusto. Asimismo, obtnga l cost qu l supondría l imponr l prcio mínimo si s compromt a comprar l xcdnt qu s gnra. ara calcular la rcaudación dl gobirno, R, si stablc un impusto d /u.v. basta multiplicar l impusto por la cantidad d quilibrio (cantidad intrcambiada) tras stablcr l impusto: R t 250 R ara calcular l cost qu supon para l gobirno imponr un prcio mínimo y comprar l xcdnt qu s gnra, basta multiplicar l xcso d ofrta, E.O., por l prcio al qu s compromt comprarlo, qu s al prcio mínimo, ya qu ést s l prcio lgal dl bin. C Mínimo E. O. 250 C El cost para l gobirno sría l mismo con ambas políticas. Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 7

8 Introducción a la Toría Económica Ejrcicios rsultos dl Tma 4 Ejrcicio 9: an y las curvas d ofrta y dmanda, rspctivamnt, dl mrcado d un dtrminado bin. a) El gobirno considra qu l consumo d s bin s xcsivo y prtnd rducirlo n part. ara llo dcid gravar la producción dl bin con un impusto por unidad vndida ( t ). Calcul a cuánto db ascndr t para lograr tal objtivo. b) Calcul la xprsión matmática d la nuva curva d ofrta tras l stablciminto dl impusto y rprsnt gráficamnt la situación ants y dspués dl impusto. c) Calcul qué porcntaj dl impusto rprcut sobr los consumidors y qué porcntaj rprcut sobr los productors. olución: a) El gobirno considra qu l consumo d s bin s xcsivo y prtnd rducirlo n part. ara llo dcid gravar la producción dl bin con un impusto por unidad vndida ( t ). Calcul a cuánto db ascndr t para lograr tal objtivo. ara calcular la cuantía dl impusto, t, s ncsario calcular ants l quilibrio d mrcado sin intrvnción gubrnamntal, ya qu uno d los fctos d sta mdida s qu la cantidad d quilibrio inicial s rduc n part. Equilibrio d mrcado sin intrvnción gubrnamntal: ; = 4, El stablciminto dl impusto rduc la cantidad intrcambiada n part, por lo qu la nuva cantidad d quilibrio tras l impusto s: El nuvo prcio d quilibrio s pud calcular simplmnt sustituyndo sta cantidad n la curva d dmanda inicial, qu no ha variado: Esta nuva cantidad d quilibrio y st nuvo prcio d quilibrio constituyn un punto d la nuva curva d ofrta. or lo tanto, para calcular la cuantía dl impusto basta dspjart d la xprsión d la nuva curva d ofrta: La curva d ofrta inicial (n forma dircta) vin dada por la xprsión: La curva invrsa d ofrta s:. La nuva curva d ofrta tras l stablciminto dl impusto s: t. or lo tanto: t. Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 8

9 Introducción a la Toría Económica Ejrcicios rsultos dl Tma 4 ustituyndo l nuvo punto d quilibrio n sta xprsión s pud dspjar l valor d t : t t t b) Calcul la xprsión matmática d la nuva curva d ofrta tras l stablciminto dl impusto y rprsnt gráficamnt la situación ants y dspués dl impusto. La xprsión matmática d la nuva curva d ofrta s obtin sustituyndo l valor dl impusto n la xprsión gnérica antrior: Gráficamnt: 9 6 * 4, c) Calcul qué porcntaj dl impusto rprcut sobr los consumidors y qué porcntaj rprcut sobr los productors. El porcntaj dl impusto qu rca sobr los consumidors s calcula d la siguint manra: 6 4,5 t 0% 0% 50% t C C 50% t or lo tanto, l porcntaj dl impusto qu rca sobr los productors s: t 0% 50% 50% t 50% El impusto rca, d manra fctiva, por igual sobr productors y consumidors, a psar d qu s l productor quin paga l impusto a Hacinda. Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 9

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

Tema 3 La economía de la información

Tema 3 La economía de la información jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

Tema 7 El modelo IS-LM / O.A.-D.A: análisis macroeconómico

Tema 7 El modelo IS-LM / O.A.-D.A: análisis macroeconómico Tma 7 El modlo IS-LM / O.A.-D.A: un marco gnral para l análisis macroconómico (Curva IS La rcta IS, rcog los pars d puntos, tipos d intrés y producción r )los cuals l mrcado d bins stá n quilibrio.,, para

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM

LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM Est capitulo xamina l fcto qu tin sobr l ingrso d quilibrio un cambio n la ofrta d dinro, n l gasto gubrnamntal y/o n los ingrsos ntos por impustos.

Más detalles

Solución a la práctica 6 con Eviews

Solución a la práctica 6 con Eviews Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj

Más detalles

PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES

PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES Licnciatura n Administración y Dircción d Emprsas (LADE) Facultad d Cincias Jurídicas y ocials (FCJ) Univrsidad Ry Juan Carlos (URJC) PROBLEMA CÁLCULO INTEGRAL Y ECUACIONE DIFERENCIALE Matmáticas Primr

Más detalles

Dinámica macroeconómica con metas de inflación y déficit fiscal.

Dinámica macroeconómica con metas de inflación y déficit fiscal. Dinámica macroconómica con mtas d inflación y déficit fiscal. Waldo Mndoza Bllido Dpartamnto d Economía-PUCP XXVII Encuntro d Economistas BCRP Lima, 13 d novimbr d 2009 Contnido. 1. Antcdnts y objtivos.

Más detalles

12 Representación de funciones

12 Representación de funciones Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )

Más detalles

Curso: 2º Bachillerato Examen VIII. donde m representa un número real.

Curso: 2º Bachillerato Examen VIII. donde m representa un número real. Nombr: Nota Curso: º Bachillrato Eamn VIII Fcha: d Fbrro d 06 La mala o nula plicación d cada jrcicio implica una pnalización d hasta l % d la nota..- Dada la matriz m dond m rprsnta un númro ral. m a)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs

Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs Doctorado n Economía y Mastría n T. y P. Económica Avanzada FACES UCV Microconomía I Prof. Angl García Banchs contact@anglgarciabanchs.com Clas/Smana Toría dl uilibrio dl mrcado d bins Balancar l ingrso

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions

Más detalles

METODOLOGÍAS DE EVALUACIÓN SOCIOECONÓMICA DE PROYECTOS RELACIONADOS CON UN SISTEMA INTERCONECTADO DE ENERGIA ENTRE DOS PAÍSES

METODOLOGÍAS DE EVALUACIÓN SOCIOECONÓMICA DE PROYECTOS RELACIONADOS CON UN SISTEMA INTERCONECTADO DE ENERGIA ENTRE DOS PAÍSES METODOLOGÍS DE EVLUCIÓN SOCIOECONÓMIC DE POYECTOS ELCIONDOS CON UN SISTEM INTECONECTDO DE ENEGI ENTE DOS PÍSES por Claudia Botton y Coloma Frrá Univrsidad Nacional d Cuyo gosto 00 METODOLOGÍS DE EVLUCIÓN

Más detalles

MÉTODOS DE INTEGRACIÓN. x x x. x x. dx dx x. dx x 2)( Lnx. x dx x. x x

MÉTODOS DE INTEGRACIÓN. x x x. x x. dx dx x. dx x 2)( Lnx. x dx x. x x http://www.damasorojas.com.v/ damasorojas8@gmail.com damasorojas8@hotmail.com, damasorojas8@galon.com MÉTODOS DE INTEGRACIÓN.-Sustitución Simpl. d d d d d d d d d d d d d d d d d d d d d d d d a d d d

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8 Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula

Más detalles

Representación esquemática de un sistema con tres fases

Representación esquemática de un sistema con tres fases 6 APLICACIONES 6.1 Sistma con varias fass Una vz consguido l modlo para simular una mmbrana, s planta su uso para simular procsos con más d una. Uno d stos procsos podría sr un sistma con varias fass.

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

Andrés Maroto Sánchez

Andrés Maroto Sánchez Sánchz Organización Industrial Grado: Economía (2º smstr) Código 669 Part I: El análisis dl quilibrio parcial Tma 2.El monopolio. 2. Análisis dl quilibrio. 2.2 Discriminación d prcios y rgulación. 2 2.

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

5) dx. 9) x. dx 11) 4x dx. x e 27)

5) dx. 9) x. dx 11) 4x dx. x e 27) .. Antidrrivadas: Evalú las intgrals siguints: Wilfrdo Saravia Maradiaga UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS DET-8, MÉTODODOS CUANTITATIVOS III GUÍA DE EJERCICIOS,

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: 171 LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales.

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales. c Rafal R. Boix y Francisco Mdina 1 Cálculo d furzas y pars d furza mdiant l principio d los dsplazamintos virtuals. Considrmos un conjunto d N conductors cargados con cargas Q i (i = 1,...,N). San V i

Más detalles

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación Química TEM 3 º d achillrato Trmoquímica. La ntalpía d combustión dl butano s d º 875,8 /mol. Si qurmos calntar l air d una habitación d xx3 m con una stua d butano, dsd º hasta 5º, qué masa d butano dbrmos

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

Una onda es una perturbación que se propaga y transporta energía.

Una onda es una perturbación que se propaga y transporta energía. Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

MATERIA: Matemáticas VI, AREA III y IV CICLO ESCOLAR PROFESOR Víctor Manuel Armendáriz González

MATERIA: Matemáticas VI, AREA III y IV CICLO ESCOLAR PROFESOR Víctor Manuel Armendáriz González Ciudad d Méico Fundadora y Dirctora Gnral: Profra. Alina Mirya Sánchz Martínz MATERIA: Matmáticas VI, AREA III y IV CICLO ESCOLAR 014-015 PROFESOR Víctor Manul Armndáriz Gonzálz Progrsions Rsulv los siguints

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

Tema 3. LA COMPETENCIA PERFECTA PROBLEMA RESUELTO

Tema 3. LA COMPETENCIA PERFECTA PROBLEMA RESUELTO Mcroconomía AE Tma 3. LA COMPETENCIA PERFECTA PROBLEMA REUELTO uponga qu cada una d las 144 mprsas qu forman una ndustra prfctamnt compttva tnn una curva d costs totals a corto plazo déntca qu vn dada

Más detalles

TEMA 4: LA OFERTA AGREGADA

TEMA 4: LA OFERTA AGREGADA TEMA 4: LA OFERTA AGREGADA Análisis d los ciclos conómicos INTRODUCCIÓN Abandono supusto rigidz n prcios Con prcios flxibls l modlo IS-LM sirv para drivar la curva d Dmanda Agrgada Ncsidad d analizar la

Más detalles

Paso de los diagramas de grafos a los diagramas de bloques

Paso de los diagramas de grafos a los diagramas de bloques Capíítullo T Paso d los diagramas d graos a los diagramas d bloqus.. INTODUCCIÓN Uno d los lnguajs d simulación más antiguo y más utilizado s l d los diagramas d bloqus. D hcho, aún n la actualidad s l

Más detalles

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS Tma Límits, continuidad y asíntotas Matmáticas I º Bachillrato TEMA LÍMITES, CONTINUIDAD ASÍNTOTAS CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f), halla : 8 8 8 f f c) f f ) f f f c) f f )

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones 8 Límits d sucsions y d funcions ACTIVIDADES INICIALES 8.I. Calcula l término gnral, l término qu ocupa l octavo lugar y la suma d los ocho primros términos para las sucsions siguints., 6, 0, 4,..., 6,

Más detalles

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral: APLICACIONES DE LA INTEGRAL UNIDAD VI Eistn muchos campos dl conociminto n qu istn aplicacions d la intgral. Por la naturalza d st concpto, pud aplicars tanto n Gomtría, n Física, n Economía incluso n

Más detalles

PROCEDIMIENTO NORMALIZADO DE OPERACIÓN DE RETIRO DE PRODUCTO DEL MERCADO

PROCEDIMIENTO NORMALIZADO DE OPERACIÓN DE RETIRO DE PRODUCTO DEL MERCADO Próxima rvisión: cada 30 días. Página 1 d 8 DEL MERCADO Contnido 1. Objtivo 2. Alcanc 3. Rsponsabilidads 4. Procdiminto 5. Rfrncias Bibliográficas 6. Anxos 7. Diagrama d Flujo Auxiliar d Farmacia d Rsponsabl

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

TÉRMINOS DE REFERENCIA CONCURSO PÚBLICO PARA LA CONTRATACIÓN DE CAPACITACIONES BASES ADMINISTRATIVAS Y TÉCNICAS

TÉRMINOS DE REFERENCIA CONCURSO PÚBLICO PARA LA CONTRATACIÓN DE CAPACITACIONES BASES ADMINISTRATIVAS Y TÉCNICAS TÉRMINOS DE REFERENCIA CONCURSO PÚBLICO PARA LA CONTRATACIÓN DE CAPACITACIONES A. BASES ADMINISTRATIVAS BASES ADMINISTRATIVAS Y TÉCNICAS 1. Gnralidads: Estas bass técnicas stán rfridas a la contratación

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017 Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular

Más detalles

Implementación de un Regulador PID

Implementación de un Regulador PID Tma 3 Implmntación d un Rgulador PID Gijón - Marzo 22 .4 Accions d Control Clásicas.2 x(t).8.6 x(t) (t) _ P I D 2 3 u(t) Sistma.4.8.6.4.2-5 5 5 2 25 3 (t) -.2 -.4-5 5 5 2 25 3 2.8 - Proporcional ( t) =

Más detalles

Model de precios rígidos Profesor: J. Marcelo Ochoa Otoño 2007

Model de precios rígidos Profesor: J. Marcelo Ochoa Otoño 2007 . Ba dl modlo Modl d prcio rígido Profor: J. Marclo Ochoa Otoño 2007.. Dmanda Agrgada y Política Montaria El lado d la dmanda dl modlo rum n la iguint cuacion: Curva IS: Y = A0 PMG Ir+Xǫǫr PMG r Rgla d

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN

RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN SEMANA 1 POTENCIACIÓN Y RADICACIÓN 1. Si l numral aann s un cuadrado prfcto; Calcul la suma d cifras d su raíz cuadrada? A) 15 B) 1 C) 19 D) 1 E) 1 aann K 11 aann difrncia s cro; ntoncs s múltiplo d 11

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1 CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4 º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS PLÁSTICAS

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

Trabajador por cuenta ajena y autónomo a la vez. Es posible?

Trabajador por cuenta ajena y autónomo a la vez. Es posible? Trabajador por cunta ajna y autónomo a la vz. Es posibl? ES POSIBLE SER TRABAJADOR POR CUENTA AJENA Y AUTÓNOMO A LA VEZ? MERECE LA PENA ESPERAR A ENERO 2018? QUÉ OPCIONES TENGO? PUEDO ACOGERME A LA TARIFA

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD FÓRMULA AT07 NOMBREdlINDICADOR Porcntaj d población n la scula con un avanc rgular por dad. FÓRMULAdCÁLCULO PPR = PPR A + inf A

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 d fbrro d 006 Timpo: horas 30 minutos Cada problma db ntrgars n hojas d xamn

Más detalles

( ) 2 2 ( ) RESOLUCIÓN * RESOLUCIÓN 2. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN N K.

( ) 2 2 ( ) RESOLUCIÓN * RESOLUCIÓN 2. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN N K. SEMANA 1 POTENCIACIÓN Y RADICACIÓN 1. Si l numral aann s un cuadrado prfcto; Calcul la suma d cifras d su raíz cuadrada? A) 15 B) 1 C) 19 D) 1 E) 1 aann = K 11 aann difrncia s cro; ntoncs s múltiplo d

Más detalles

Modelos Matemáticos para la optimización y reposición de maquinarias: Caso la Empresa Eléctrica de Milagro

Modelos Matemáticos para la optimización y reposición de maquinarias: Caso la Empresa Eléctrica de Milagro Modlos Matmáticos para la optimización y rposición d maquinarias: Caso la Emprsa Eléctrica d Milagro Edwin Lón Plúas, Csar Gurrro Loor 2 Ingniro n Estadística Informática, 2003 2 Dirctor d Tsis, Matmático,

Más detalles

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas ap. Ecuacions Difrncials d Primr ordn. Introducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions actas.7 Factor Intgrant.8 Estabilidad dinámica dl quilibrio.9

Más detalles

3ª Colección Tema 3 La elasticidad y sus aplicaciones

3ª Colección Tema 3 La elasticidad y sus aplicaciones Cuestiones y problemas de Introducción a la Teoría Económica Carmen olores Álvarez Albelo Miguel Becerra omínguez Rosa María Cáceres Alvarado María del Pilar Osorno del Rosal Olga María Rodríguez Rodríguez

Más detalles

CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo

CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo CAPITULO 3 TENSIONES Y DEFORMACIONES. REVISIÓN DE PRINCIPIOS FÍSICOS CASO DE ESTUDIO N 3 Aplicacions d los concptos d intrfrncia y trmolasticidad para ncajar un j a un núclo 1. Introducción En la Figura

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

LA INTEGRAL DEFINIDA: UNA HERRAMIENTA COGNITIVA PODEROSA PARA MODELAR Y RESOLVER PROBLEMAS ECONÓMICOS.

LA INTEGRAL DEFINIDA: UNA HERRAMIENTA COGNITIVA PODEROSA PARA MODELAR Y RESOLVER PROBLEMAS ECONÓMICOS. LA INTEGRAL DEFINIDA: UNA HERRAMIENTA COGNITIVA PODEROSA PARA MODELAR Y RESOLVER PROBLEMAS ECONÓMICOS. Ana Ida Vilir ivilir@cug.co.cu Rafal Cardoza Gámz cardoza@fc.cug.co.cu Univrsidad d Guantánamo Rsumn:

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La

Más detalles