Transformaciones lineales Definición Ejemplos Propiedades

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Transformaciones lineales Definición Ejemplos Propiedades"

Transcripción

1 Transformaciones lineales Definición Ejemplos Propiedades c Jana Rodriguez Hertz p. 1/1

2 transformaciones lineales Dados V y W e.v. sobre K, c Jana Rodriguez Hertz p. 2/1

3 transformaciones lineales Dados V y W e.v. sobre K, llamamos transformación lineal c Jana Rodriguez Hertz p. 2/1

4 transformaciones lineales Dados V y W e.v. sobre K, llamamos transformación lineal a cualquier función T : V W que verifique c Jana Rodriguez Hertz p. 2/1

5 transformaciones lineales Dados V y W e.v. sobre K, llamamos transformación lineal a cualquier función T : V W que verifique T(v 1 + v 2 ) = T(v 1 ) + T(v 2 ) para todo v 1,v 2 V c Jana Rodriguez Hertz p. 2/1

6 transformaciones lineales Dados V y W e.v. sobre K, llamamos transformación lineal a cualquier función T : V W que verifique T(v 1 + v 2 ) = T(v 1 ) + T(v 2 ) para todo v 1,v 2 V T(λv) = λt(v) para todo v V y λ K c Jana Rodriguez Hertz p. 2/1

7 Ejemplo 1 - producto por una matriz Sea V = K n c Jana Rodriguez Hertz p. 3/1

8 Ejemplo 1 - producto por una matriz Sea V = K n y W = K m. c Jana Rodriguez Hertz p. 3/1

9 Ejemplo 1 - producto por una matriz Sea V = K n y W = K m. Entonces A M m n (K) determina c Jana Rodriguez Hertz p. 3/1

10 Ejemplo 1 - producto por una matriz Sea V = K n y W = K m. Entonces A M m n (K) determina A : K n K m c Jana Rodriguez Hertz p. 3/1

11 Ejemplo 1 - producto por una matriz Sea V = K n y W = K m. Entonces A M m n (K) determina A : K n K m A.(X + Y ) = A.X + A.Y X,Y K n c Jana Rodriguez Hertz p. 3/1

12 Ejemplo 1 - producto por una matriz Sea V = K n y W = K m. Entonces A M m n (K) determina A : K n K m A.(X + Y ) = A.X + A.Y A.(λX) = λa.x X,Y K n X K n y λ K c Jana Rodriguez Hertz p. 3/1

13 Ejemplo 1 - producto por una matriz Sea V = K n y W = K m. Entonces A M m n (K) determina A : K n K m A.(X + Y ) = A.X + A.Y A.(λX) = λa.x X,Y K n X K n y λ K A es una transformación lineal c Jana Rodriguez Hertz p. 3/1

14 Ejemplo 2 - coordenadas Dado V e.v. sobre K de dimensión n, c Jana Rodriguez Hertz p. 4/1

15 Ejemplo 2 - coordenadas Dado V e.v. sobre K de dimensión n, y dada B = {v 1,...,v n } base de V c Jana Rodriguez Hertz p. 4/1

16 Ejemplo 2 - coordenadas Dado V e.v. sobre K de dimensión n, y dada B = {v 1,...,v n } base de V para cada v V teníamos c Jana Rodriguez Hertz p. 4/1

17 Ejemplo 2 - coordenadas Dado V e.v. sobre K de dimensión n, y dada B = {v 1,...,v n } base de V para cada v V teníamos coord B (v) = (λ 1,...,λ n ) K n c Jana Rodriguez Hertz p. 4/1

18 Ejemplo 2 - coordenadas Dado V e.v. sobre K de dimensión n, y dada B = {v 1,...,v n } base de V para cada v V teníamos si coord B (v) = (λ 1,...,λ n ) K n v = λ 1 v λ n v n c Jana Rodriguez Hertz p. 4/1

19 Ejemplo 2 - coordenadas Dado V e.v. sobre K de dimensión n, y dada B = {v 1,...,v n } base de V para cada v V teníamos coord B (v) = (λ 1,...,λ n ) K n si v = λ 1 v λ n v n la transformación es lineal coord B : V K n c Jana Rodriguez Hertz p. 4/1

20 Ejemplo 2 - coordenadas Dado V e.v. sobre K de dimensión n, y dada B = {v 1,...,v n } base de V para cada v V teníamos coord B (v) = (λ 1,...,λ n ) K n si v = λ 1 v λ n v n la transformación es lineal coord B : V K n c Jana Rodriguez Hertz p. 4/1

21 Ejemplo 3 - derivada Sean V = C 1 (R) y W = C 0 (R), c Jana Rodriguez Hertz p. 5/1

22 Ejemplo 3 - derivada Sean V = C 1 (R) y W = C 0 (R), la transformación verifica d : C 1 (R) C 0 (R) f df c Jana Rodriguez Hertz p. 5/1

23 Ejemplo 3 - derivada Sean V = C 1 (R) y W = C 0 (R), la transformación verifica d : C 1 (R) C 0 (R) f df d(f + g)(x) = df(x) + dg(x) c Jana Rodriguez Hertz p. 5/1

24 Ejemplo 3 - derivada Sean V = C 1 (R) y W = C 0 (R), la transformación verifica d : C 1 (R) C 0 (R) f df d(f + g)(x) = df(x) + dg(x) d(λf)(x) = λdf(x) c Jana Rodriguez Hertz p. 5/1

25 Ejemplo 3 - derivada Sean V = C 1 (R) y W = C 0 (R), la transformación verifica d : C 1 (R) C 0 (R) f df d(f + g)(x) = df(x) + dg(x) d(λf)(x) = λdf(x) es lineal c Jana Rodriguez Hertz p. 5/1

26 Ejemplo 4 - integral definida Sean V = C 0 (R) y W = C 1 (R), c Jana Rodriguez Hertz p. 6/1

27 Ejemplo 4 - integral definida Sean V = C 0 (R) y W = C 1 (R), dado a R, la transformación. a : C0 (R) C 1 (R) f x a f(t)dt verifica c Jana Rodriguez Hertz p. 6/1

28 Ejemplo 4 - integral definida Sean V = C 0 (R) y W = C 1 (R), dado a R, la transformación. a : C0 (R) C 1 (R) f x a f(t)dt verifica x a (f + g)(t)dt = x a f(t)dt + x a g(t)dt c Jana Rodriguez Hertz p. 6/1

29 Ejemplo 4 - integral definida Sean V = C 0 (R) y W = C 1 (R), dado a R, la transformación. a : C0 (R) C 1 (R) f x a f(t)dt verifica x a (f + g)(t)dt = x a f(t)dt + x a g(t)dt x a λf(t)dt = λ x a f(t)dt c Jana Rodriguez Hertz p. 6/1

30 Ejemplo 4 - integral definida Sean V = C 0 (R) y W = C 1 (R), dado a R, la transformación. a : C0 (R) C 1 (R) f x a f(t)dt verifica x a (f + g)(t)dt = x a f(t)dt + x a g(t)dt x a λf(t)dt = λ x a f(t)dt es lineal c Jana Rodriguez Hertz p. 6/1

31 Otros ejemplos producto escalar (con un vector fijo) c Jana Rodriguez Hertz p. 7/1

32 Otros ejemplos producto escalar (con un vector fijo) producto vectorial (con un vector fijo) c Jana Rodriguez Hertz p. 7/1

33 Otros ejemplos producto escalar (con un vector fijo) producto vectorial (con un vector fijo) determinante (respecto de una columna) c Jana Rodriguez Hertz p. 7/1

34 Otros ejemplos producto escalar (con un vector fijo) producto vectorial (con un vector fijo) determinante (respecto de una columna) vector proyección sobre un versor c Jana Rodriguez Hertz p. 7/1

35 Proposición Dados V y W e.v. sobre K, la función T : V W es lineal c Jana Rodriguez Hertz p. 8/1

36 Proposición Dados V y W e.v. sobre K, la función T : V W es lineal T(αv 1 + βv 2 ) = αt(v 1 ) + βt(v 2 ) c Jana Rodriguez Hertz p. 8/1

37 Proposición T : V W transformación lineal c Jana Rodriguez Hertz p. 9/1

38 Proposición T : V W transformación lineal T(O V ) = O W c Jana Rodriguez Hertz p. 9/1

39 Demostración T(O V ) c Jana Rodriguez Hertz p. 10/1

40 Demostración T(O V ) = T(0.O V ) c Jana Rodriguez Hertz p. 10/1

41 Demostración T(O V ) = T(0.O V ) = 0.T(O V ) c Jana Rodriguez Hertz p. 10/1

42 Demostración T(O V ) = T(0.O V ) = 0.T(O V ) = O W c Jana Rodriguez Hertz p. 10/1

43 Teorema Una transformación lineal queda completamente determinada por los valores que toma en una base. c Jana Rodriguez Hertz p. 11/1

44 Teorema Una transformación lineal queda completamente determinada por los valores que toma en una base. Es decir, si conocemos T(B) para alguna base B de V c Jana Rodriguez Hertz p. 11/1

45 Teorema Una transformación lineal queda completamente determinada por los valores que toma en una base. Es decir, si conocemos T(B) para alguna base B de V entonces hay una única t.l. T : V W que en B vale T(B) c Jana Rodriguez Hertz p. 11/1

46 demostración - hay una Si B = {v 1,...,v n } c Jana Rodriguez Hertz p. 12/1

47 demostración - hay una Si defino T(v) = B = {v 1,...,v n } c Jana Rodriguez Hertz p. 12/1

48 demostración - hay una Si B = {v 1,...,v n } defino T(v) = T(λ 1 v 1 + +λ n v n ) c Jana Rodriguez Hertz p. 12/1

49 demostración - hay una Si defino B = {v 1,...,v n } T(v) = T(λ 1 v 1 + +λ n v n ) def = λ 1 T(v 1 )+ +λ n T(v n ) c Jana Rodriguez Hertz p. 12/1

50 demostración - hay una Si defino B = {v 1,...,v n } T(v) = T(λ 1 v 1 + +λ n v n ) def = λ 1 T(v 1 )+ +λ n T(v n ) T es lineal (Verificar) c Jana Rodriguez Hertz p. 12/1

51 demostración - es única Si hay otra t.l. S que coincide con T en B, entonces c Jana Rodriguez Hertz p. 13/1

52 demostración - es única Si hay otra t.l. S que coincide con T en B, entonces T(v) c Jana Rodriguez Hertz p. 13/1

53 demostración - es única Si hay otra t.l. S que coincide con T en B, entonces T(v) = T(λ 1 v λ n v n ) c Jana Rodriguez Hertz p. 13/1

54 demostración - es única Si hay otra t.l. S que coincide con T en B, entonces T(v) = T(λ 1 v λ n v n ) = λ 1 T(v 1 ) + + λ n T(v n ) c Jana Rodriguez Hertz p. 13/1

55 demostración - es única Si hay otra t.l. S que coincide con T en B, entonces T(v) = T(λ 1 v λ n v n ) = λ 1 T(v 1 ) + + λ n T(v n ) = λ 1 S(v 1 ) + + λ n S(v n ) c Jana Rodriguez Hertz p. 13/1

56 demostración - es única Si hay otra t.l. S que coincide con T en B, entonces T(v) = T(λ 1 v λ n v n ) = λ 1 T(v 1 ) + + λ n T(v n ) = λ 1 S(v 1 ) + + λ n S(v n ) = S(λ 1 v λ n v n ) c Jana Rodriguez Hertz p. 13/1

57 demostración - es única Si hay otra t.l. S que coincide con T en B, entonces T(v) = T(λ 1 v λ n v n ) = λ 1 T(v 1 ) + + λ n T(v n ) = λ 1 S(v 1 ) + + λ n S(v n ) = S(λ 1 v λ n v n ) = S(v) c Jana Rodriguez Hertz p. 13/1

58 demostración - es única Si hay otra t.l. S que coincide con T en B, entonces T(v) = T(λ 1 v λ n v n ) = λ 1 T(v 1 ) + + λ n T(v n ) = λ 1 S(v 1 ) + + λ n S(v n ) = S(λ 1 v λ n v n ) = S(v) c Jana Rodriguez Hertz p. 13/1

59 Proposición T : V W transformación lineal biyectiva c Jana Rodriguez Hertz p. 14/1

60 Proposición T : V W transformación lineal biyectiva T lleva bases de V en bases de W c Jana Rodriguez Hertz p. 14/1

61 Proposición T : V W transformación lineal biyectiva T lleva bases de V en bases de W c Jana Rodriguez Hertz p. 14/1

Operaciones con transformaciones lineales Suma y Producto por un escalar Composición e Inversa Matriz asociada

Operaciones con transformaciones lineales Suma y Producto por un escalar Composición e Inversa Matriz asociada Operaciones con transformaciones lineales Suma y Producto por un escalar Composición e Inversa Matriz asociada c Jana Rodriguez Hertz p. 1/1 transformaciones lineales Dados V y W e.v. sobre el cuerpo K,

Más detalles

Tema II: Aplicaciones lineales

Tema II: Aplicaciones lineales Definiciones y ejemplos. Matriz asociada a una aplicación lineal. Núcleo e imagen. Cambios de base. Espacio vectorial cociente.teoremas de isomorfía. El espacio de las aplicaciones lineales. Ejemplos de

Más detalles

Producto escalar. Longitudes, distancias y ángulos en R 3. c Jana Rodriguez Hertz p. 1/2

Producto escalar. Longitudes, distancias y ángulos en R 3. c Jana Rodriguez Hertz p. 1/2 Producto escalar Longitudes, distancias y ángulos en R 3 c Jana Rodriguez Hertz p. 1/2 Producto escalar - definición Dados X = (x 1,x 2,x 3 ) Y = (y 1,y 2,y 3 ) c Jana Rodriguez Hertz p. 2/2 Producto escalar

Más detalles

Núcleo e imagen Transformaciones inyectivas y sobreyectivas Teorema de las dimensiones

Núcleo e imagen Transformaciones inyectivas y sobreyectivas Teorema de las dimensiones Núcleo e imagen Transformaciones inyectivas y sobreyectivas Teorema de las dimensiones c Jana Rodriguez Hertz p. 1/1 clase pasada Si T : (V, B) (W, A) c Jana Rodriguez Hertz p. 2/1 clase pasada Si T :

Más detalles

Matemática 2. Transformaciones lineales y Determinantes

Matemática 2. Transformaciones lineales y Determinantes Matemática 2 Primer Cuatrimestre de 2014 Práctica 4 Transformaciones lineales y Determinantes Transformaciones lineales Ejercicio 1 Mostrar que las siguientes funciones son transformaciones lineales (i

Más detalles

Matriz asociada a una transformación lineal respecto a un par de bases

Matriz asociada a una transformación lineal respecto a un par de bases Matriz asociada a una transformación lineal respecto a un par de bases Objetivos Definir la matriz asociada a una transformación lineal respecto a un par de bases y estudiar la representación matricial

Más detalles

la matriz de cambio de base de B 1 en B 2. = M 1 B 2,B 1 [1 + x + x 2 ] B1 = M B2.

la matriz de cambio de base de B 1 en B 2. = M 1 B 2,B 1 [1 + x + x 2 ] B1 = M B2. Práctica 2. Álgebra Lineal. Cambio de Base.Transformaciones Lineales. Matrices asociadas a una transformación lineal. 2do año: Lic. en Matemática y Profesorado. 1. (a) Sean B 1 = {(1, 0), (1, 1)} y B 2

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C..... El espacio vectorial de los vectores Definición. Vectores fijos Dado dos puntos cualesquiera A e del espacio nos

Más detalles

El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos

El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos c Jana Rodriguez Hertz p. 1/1 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo

Más detalles

Independencia lineal y rango Ejemplos. Rango. Rango y matriz inversa Teorema de Rouché-Frobenius revisitado

Independencia lineal y rango Ejemplos. Rango. Rango y matriz inversa Teorema de Rouché-Frobenius revisitado Independencia lineal y rango Ejemplos. Rango. Rango y matriz inversa Teorema de Rouché-Frobenius revisitado c Jana Rodriguez Hertz p. /2 Independencia lineal Si el sistema x A + x 2 A 2 + + x n A n = O

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO 1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos

Más detalles

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario CÁLCULO III Pablo Torres Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario Funciones definidas en R n. INTRODUCCIÓN Sean n,m N y A R n. Una función f : A R m se denomina

Más detalles

Algebra Lineal XI: Funciones y Transformaciones Lineales

Algebra Lineal XI: Funciones y Transformaciones Lineales Algebra Lineal XI: Funciones y Transformaciones Lineales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Tema 11: Diferenciabilidad en varias variables.

Tema 11: Diferenciabilidad en varias variables. Tema 11: Diferenciabilidad en varias variables. José M. Salazar Noviembre de 2016 Tema 11: Diferenciabilidad en varias variables. Lección 14. Diferenciabilidad en varias variables. Lección 15. Aplicaciones

Más detalles

Vectores de Coordenadas y Cambio de Base

Vectores de Coordenadas y Cambio de Base Vectores de Coordenadas y Cambio de Base Departamento de Matemáticas CCIR/ITESM 9 de febrero de Índice 7..Introducción............................................... 7..Vector de coordenadas.........................................

Más detalles

Material para exámen final

Material para exámen final Cálculo 3, FAMAT-UG, aug-dic, 2006 Material para exámen final Fecha del exámen: 5 dic, 2006 Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

Curso de Álgebra Lineal

Curso de Álgebra Lineal Curso de Álgebra Lineal 1. NÚMEROS COMPLEJOS 1.1 Definición, origen y operaciones fundamentales con números complejos Definición. Un número complejo, z, es una pareja ordenada (a, b) de números reales

Más detalles

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo.

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. Operaciones Binarias: Observamos las siguientes operaciones: ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. ( 1 0 2

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

Cálculo de la matriz asociada a una transformación lineal (ejemplos)

Cálculo de la matriz asociada a una transformación lineal (ejemplos) Cálculo de la matriz asociada a una transformación lineal ejemplos Objetivos Estudiar con ejemplos cómo se calcula la matriz asociada a una transformación lineal Requisitos Transformación lineal, definición

Más detalles

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO.

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. ESPACIO AFÍN 1.- CONCEPTO DE ESPACIO AFÍN. 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. 4.- PROBLEMAS DE INCIDENCIA. 5.- POSICIONES RELATIVAS

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES

Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES Espacios vectoriales DEFINICIÓN. PRIMERAS PROPIEDADES Definición 47. Se dice que un conjunto E, a cuyos elementos llamaremos vectores, es un espacio vectorial sobre el cuerpo (IK, +, ), cuyos elementos

Más detalles

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c,

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c, PROPUESTA A 1A. Dada la función f(x) = x 3 + ax 2 + bx + c, calcula los parámetros a, b, c R sabiendo que: La recta tangente a la gráfica de f(x) en el punto de abcisa x = 1 tiene pendiente 3. f(x) tiene

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA.1 Definición de Aplicación Lineal. FUNDAMENTOS MATEMÁTICOS 8. APLICACIONES LINEALES Sean

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 30 mayo 2006 Tema 1

FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 30 mayo 2006 Tema 1 FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 0 mayo 006 Tema Apellido y nombres:... 4 5 Calificación final ) Dadas las rectas : x y + z = r : r : ( x, y, z) = (,,) + λ(, ) x z + k = 0 k para que las rectas sean

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 1. CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 1. CÁLCULO DIFERENCIAL EN VARIAS VARIABLES TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 1 CÁLCULO DIFERENCIAL EN VARIAS VARIABLES 11 CONCEPTOS BÁSICOS Definición La norma de un vector x =

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 8-2 4. Transformaciones lineales 4.. Introducción SEMANA 8: TRANSFORMACIONES LINEALES Sea la matriz

Más detalles

Espacio de n-uplas. Operaciones. Propiedades. Combinaciones lineales. Interpretación geométrica. Independencia lineal. c Jana Rodriguez Hertz p.

Espacio de n-uplas. Operaciones. Propiedades. Combinaciones lineales. Interpretación geométrica. Independencia lineal. c Jana Rodriguez Hertz p. Espacio de n-uplas Operaciones. Propiedades. Combinaciones lineales. Interpretación geométrica. Independencia lineal. c Jana Rodriguez Hertz p. /4 Operaciones con filas Al realizar T.E. lo que hicimos

Más detalles

CÁLCULO II Grados en Ingeniería

CÁLCULO II Grados en Ingeniería CÁLCULO II Grados en Ingeniería Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez Capítulo 1. Cálculo diferencial 1.1 Funciones. Límites y continuidad

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Prueba de Evaluación Continua Grupo A 9-04-14 ESPACIOS VECTORIALES-DIAGONALIZACIÓN (parte sin DERIVE) 1. a) Definir sistema ligado de vectores de un espacio vectorial V. b) Demostrar que si un sistema

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador

OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador Sea V un espacio con producto interno y sea T : V V un operador lineal. Un operador T * : V V se dice que es un adjunto de T

Más detalles

1. Funciones diferenciables

1. Funciones diferenciables 1. diferenciables Volvamos sobre el significado de la derivada de una función real de una variable real, Como vimos en el capítulo anterior, f : (a, b) R derivable en x 0, equivale a que f(x) f(x 0 ) =

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales 1. (a) Compruebe que el conjunto de matrices de orden p q a coeficientes reales R p q es un espacio vectorial real con

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE:

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA PROGRAMA: ALGEBRA LINEAL CÓDIGO ASIGNATURA: 1272-521 PRE-REQUISITO: 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: 90-II UNIDADES DE CRÉDITO:

Más detalles

Transformaciones lineales

Transformaciones lineales Semana 8 [1/62] 8 de septiembre de 27 Definiciones básicas Semana 8 [2/62] Definición Transformación lineal U, V dos espacios vectoriales sobre el mismo cuerpo Ã. T : U V es una transformación (o función)

Más detalles

Álgebra Lineal. Hoja 6. Transformaciones lineales y matrices

Álgebra Lineal. Hoja 6. Transformaciones lineales y matrices Álgebra Lineal Hoja 6. Transformaciones lineales y matrices Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S.

Más detalles

Geometría Vectorial y Anaĺıtica

Geometría Vectorial y Anaĺıtica Geometría Vectorial y Anaĺıtica Tema 3 - Geometría de las Transformaciones Lineales del Plano Daniel Cabarcas Jaramillo Escuela de Matemáticas Universidad Nacional de Colombia, Sede Medelĺın Medelĺın,

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4 Universidad Nacional de Colombia Departamento de Matemáticas - Álgebra Lineal - Grupo Taller () Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio vectorial?

Más detalles

Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad

Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba, S. 2014. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1: 6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 3

Geometría afín y proyectiva, 2016 SEMANA 3 Geometría afín y proyectiva, 2016 SEMANA 3 Sonia L. Rueda ETS Arquitectura. UPM September 20, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores)

Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores) Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores). Listas de vectores. Listas de vectores son personajes típicos de Álgebra Lineal. Una lista de

Más detalles

Rango de una matriz. Jana Rodriguez Hertz GAL 1. 2 de abril de 2013 IMERL

Rango de una matriz. Jana Rodriguez Hertz GAL 1. 2 de abril de 2013 IMERL Rango de una matriz Jana Rodriguez Hertz GAL IMERL 2 de abril de 203 rango rango recordemos: rango si A = {A, A 2,..., A n } conjunto de vectores de K n llamamos rango(a) a la máxima cantidad de vectores

Más detalles

TEMA 4. APLICACIONES LINEALES

TEMA 4. APLICACIONES LINEALES TEMA 4. APLICACIONES LINEALES 1.- Definición y propiedades. 2.- Aplicaciones lineales inyectivas y Suprayectivas. 3.- Núcleo, imagen, matriz asociada y rango de una aplicación lineal. 4.- Operaciones con

Más detalles

Matemática Avanzada. Clase Nro. 1. Octavio Miloni. Clase Nro. 1. Facultad de Cs. Astronómicas y Geofísicas - Universidad Nacional de La Plata

Matemática Avanzada. Clase Nro. 1. Octavio Miloni. Clase Nro. 1. Facultad de Cs. Astronómicas y Geofísicas - Universidad Nacional de La Plata Facultad de Cs. Astronómicas y Geofísicas - Universidad Nacional de La Plata 1. Repaso de Espacios Vectoriales Dado un conjunto V de elementos y un conjunto numérico (que sea cuerpo) K (en general vamos

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de innovación didáctica Departamento de Matemáticas Universidad de Extremadura Índice Puntos y vectores en En R 3, conviene distinguir

Más detalles

Empezaremos por el Álgebra lineal porque:

Empezaremos por el Álgebra lineal porque: Empezaremos por el Álgebra lineal porque: Las soluciones de una ecuación diferencial, como la ecuación de Schroedinger, son base de algún espacio vectorial. Las operaciones de simetría son transformaciones

Más detalles

10. 1 Definición de espacio euclídeo.

10. 1 Definición de espacio euclídeo. ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS 10. 1 Definición de espacio euclídeo. Producto escalar

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

Transformaciones Anes

Transformaciones Anes Transformaciones Anes Denición 1. Una transformación del plano R 2 es una función biyectiva T : R 2 R 2 que es continua y cuya inversa también es continua. Denición 2. Transformaciones anes Una transformación

Más detalles

Topología de R n. Beatriz Porras

Topología de R n. Beatriz Porras Producto escalar, métrica y norma asociada. Topología de R n Beatriz Porras 1 Producto escalar, métrica y norma asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores

Más detalles

Parte II - Prácticas 8 a 9. Álgebra A 62 ÁLGEBRA A 62 (INGENIERÍA)

Parte II - Prácticas 8 a 9. Álgebra A 62 ÁLGEBRA A 62 (INGENIERÍA) Parte II - Prácticas 8 a 9 Álgebra A 62 Ingeniería 2015 CICLO BÁSICO COMÚN UBA ÁLGEBRA A 62 (INGENIERÍA) Práctica 8 Introducción a las transformaciones lineales Definiciones y propiedades Transformaciones

Más detalles

Líneas y Planos en el Espacio

Líneas y Planos en el Espacio Líneas y Planos en el Espacio Departamento de Matemáticas, CCIR/ITESM de enero de Índice..Introducción.................................................Ecuación paramétrica de la recta.....................................ecuación

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2010 2011) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

Problemas de Aplicaciones Lineales

Problemas de Aplicaciones Lineales Problemas de Aplicaciones Lineales Natalia Boal Francisco José Gaspar María Luisa Sein-Echaluce Universidad de Zaragoza 1. En los siguientes ejercicios determina si la aplicación f : IR 2 IR 2 es lineal:

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

COMPLEMENTOS DE MATEMATICA 3 - Segundo cuatrimestre de 2007 Práctica 3 - Transformaciones lineales

COMPLEMENTOS DE MATEMATICA 3 - Segundo cuatrimestre de 2007 Práctica 3 - Transformaciones lineales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 COMPLEMENTOS DE MATEMATICA 3 - Segundo cuatrimestre de 27 Práctica 3 - Transformaciones lineales Ejercicio 1. Determinar cuáles

Más detalles

Matrices triangulares y matrices ortogonales

Matrices triangulares y matrices ortogonales Matrices triangulares y matrices ortogonales Problemas para examen Matrices diagonales 1. Sea a R n. Se denota por diag(a) la matriz diagonal con entradas a 1,..., a n : diag(a) = [ a j δ j,k ] n j,k=1.

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO DEF.- Se llama vector fijo de extremos A y B al segmento orientado AB, y se representa por Todo vector fijo queda caracterizado por { Dos vectores fijos se dice que son equivalentes,

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordinación de Matemática II (MAT022) Guía de ejercicios N 6 parte Complementos Espacios Vectoriales En los ejercicios que siguen utilizamos la siguientes notaciones: R n [x es el espacio vectorial sobre

Más detalles

v (a), f 2 r(v) (a) + r(v), con lim

v (a), f 2 r(v) (a) + r(v), con lim 1. Funciones Diferenciables Definición 1.1. Sea f = (f 1, f 2, f 3,..., f n ) : U R m R n una función y U un subconjunto abierto en R m. Diremos que f es una función diferenciable en un punto a U si las

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales CAPíTULO 5 Espacios vectoriales y aplicaciones lineales 1 Espacios y subespacios Sea K un cuerpo Diremos que un conjunto V tiene estructura de espacio vectorial sobre K si 1) en V hay una operación + de

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 2

Geometría afín y proyectiva, 2016 SEMANA 2 Geometría afín y proyectiva, 2016 SEMANA 2 Sonia L. Rueda ETS Arquitectura. UPM September 20, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

ESPACIOS Y SUBESPACIOS VECTORIALES

ESPACIOS Y SUBESPACIOS VECTORIALES ESPACIOS Y SUBESPACIOS VECTORIALES. ESPACIO VECTORIAL REAL Un espacio vectorial real V es un conjunto de objetos llamados vectores, junto con dos operaciones, llamadas suma y multiplicación por un escalar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Álgebra Lineal 2015 Práctica 5: Diagonalización.

Álgebra Lineal 2015 Práctica 5: Diagonalización. Álgebra Lineal 2015 Práctica 5: Diagonalización. 1. Sean T (a, b) = (4a b, b+2a), B = {(1, 0), (0, 1)} y C = {(1, 3), (2, 5)}. (a) Hallar la matriz camio de base de B a C, la matriz cambio de base de C

Más detalles

Transformaciones Lineales

Transformaciones Lineales Capítulo 10 Transformaciones Lineales EL tema central de este capítulo es el estudio de una clase de funciones especiales, llamadas transformaciones lineales Una de las características importantes de las

Más detalles

5. Aplicaciones lineales

5. Aplicaciones lineales 5. Aplicaciones lineales Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2010 Contents 5 Aplicaciones lineales 7 5.1 Definición y propiedades..............................

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ximo Beneyto Tema: Pàgina : 49 APLICACIONES LINEALES Definición : Sean (E(K), +, A) y (F(K), +, A), Espacios Vectoriales construídos sobre un mismo cuerpo K, una aplicación f:e 6

Más detalles

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 7 de abril de 08 hora y 5 minutos. NOMBRE Y APELLIDOS CALIFICACIÓN. Se considera el sistema lineal de ecuaciones, dependiente del parámetro real

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................

Más detalles

Análisis Matemático I. Tema 11: Teorema de la función inversa de diciembre de 2017

Análisis Matemático I. Tema 11: Teorema de la función inversa de diciembre de 2017 Análisis Matemático I Tema 11: Teorema de la función inversa 7-13-14-15-20 de diciembre de 2017 1 Regla de diferenciación 2 Teorema local 3 Aplicaciones 4 Teorema global Regla de derivación de la función

Más detalles

A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva

A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva Asignatura: ÁLGEBRA LINEAL Fecha: 6 de Julio de Fecha publicación notas: 6 de Julio de Fecha revisión examen: de Julio de Duración del examen: horas y media APELLIDOS Y NOMBRE: DNI: Titulación:. ( punto:,

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. Tema 4. ÁLGEBRA APLICACIONES LINEALES. Curso 2017-2018 José Juan Carreño Carreño Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones Escuela Técnica Superior de

Más detalles

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Definición 1. Sea V un espacio vectorial sobre un cuerpo K. Llamamos forma bilineal a toda aplicación f : V V K ( x, y) f( x, y) que verifica: 1. f(

Más detalles