Formulación de un Modelo de Programación Lineal

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Formulación de un Modelo de Programación Lineal"

Transcripción

1 Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para su elaboración: materia prima de la cual hay una disponibilidad diaria de 180 libras, espacio de almacenamiento del cual se dispone de 230 pies cúbicos y un tiempo de producción de 8 horas/día. Para elaborar una unidad de cada uno de los productos se necesitan los siguientes insumos: Producto Materia prima lbs/unidad Espacio pies 3 /unidad Tasa producción unidades/hora Utilidades $/unidad La gerencia desea determinar cuántas unidades de cada producto deben fabricarse para maximizar el beneficio. Solución A partir de esta descripción cualitativa del problema se va a convertir en una forma matemática que se pueda resolver, este proceso se llama formulación del problema y tiene los siguientes pasos con sus características claves. I) Identificación de las variables de decisión. Identificar las variables de decisión y obtener sus valores proporciona la solución del problema. Como los valores de estos elementos son desconocidos se les da un símbolo. La elección de estas variables no es única y no existen reglas fijas, sin embargo se pueden formular algunas preguntas que son útiles en la identificación de un conjunto adecuado de variables de decisión. Diana Cobos 8

2 CARACTERÍSTICAS CLAVES Qué elementos afectan los costos y/o ganancias como objetivo global? Qué elementos se pueden elegir y/o controlar? Qué decisiones se tienen que tomar? Qué valores posibles constituyen una solución para el problema? La respuesta a estas preguntas es fabricar cuatro tipos de productos simbolizados por: X 1 = cantidad de unidades a producir del producto 1 X 2 = cantidad de unidades a producir del producto 2 X 3 = cantidad de unidades a producir del producto 3 X 4 = cantidad de unidades a producir del producto 4 II) Identificación de los datos del problema La finalidad de resolver un problema es proporcionar los valores reales para las variables de decisión. Para esto se requiere determinar los recursos disponibles. Para nuestro ejemplo: Cantidad de materia prima disponible (180 lbs/día) Cantidad de espacio disponible (230 pies 3 ) Tiempo de producción disponible (8 hrs/día). CARACTERÍSTICA CLAVE. La necesidad de determinar los datos del problema para lograr el objetivo al desarrollar el problema y verificar si se necesita información adicional para determinar las variables de decisión. Diana Cobos 9

3 III) Identificación de la función objetivo En esta parte se pretende expresar el objetivo organizacional en forma matemática usando las variables de decisión y los datos conocidos. Se puede considerar que cada una de las variables de decisión tiene una función especifica dentro del contexto del objetivo general (optimizar), con el fin de obtener un único valor. Para el caso: Maximizar las utilidades a partir de los aportes o beneficios de cada unidad fabricada ( por ejemplo, $5 el producto 1 (X 1 )), y totalizar todos los aportes para las respuestas de las variables de decisión. La función objetivo será entonces: Maximizar Z = 5X X 2 + 5X X 4 CARACTERÍSTICA CLAVE La función objetivo depende de: El enunciado del objetivo de manera verbal. Descomponer el objetivo en una suma, diferencia y/o producto de términos individuales (combinación lineal) Expresar los términos individuales usando las variables decisorias y los datos. IV) Identificación de las restricciones. Las restricciones son condiciones que las variables de decisión deben satisfacer para constituir una solución aceptable de un problema. Estas pueden ser de limitaciones físicas (horas de trabajo de una planta), restricciones administrativas (satisfacer una demanda de un cliente especial), restricciones externas que las puede dar el mercado, restricciones lógicas sobre las variables (respuestas enteras). Diana Cobos 10

4 Considerando nuestro ejercicio se pueden dar restricciones por los recursos disponibles como son, por ejemplo, la materia prima, ya que se disponen únicamente 180 libras para los cuatro productos, de modo que: 2X 1 + 2X X 3 +X 4 180, Además se dispone de 230 pies 3 de espacio de almacenamiento, lo que puede traducirse como: 2X X 2 + 2X X y la tasa de producción que está expresadas en unidades por hora, por lo que tenemos que convertirla primero en horas por cada unidad, por ejemplo, si 15 unidades del producto 1 se producen en una hora, una unidad en cuánto tiempo se producirá?. Entonces se tiene que las horas/ unidad de cada producto son: 1/15 =.067 para el producto 1, 1/30 = para el producto 2, 1/10 = 0.1 para el producto 3 y 1/15 = para el producto 4. De este modo la restricción del tiempo de producción se puede expresar como: 1/15 X 1 + 1/30 X 2 +1/10 X 3 + 1/15 X 4 8 Las limitaciones son lógicas cuando la respuesta de las variables de decisión debe ser positiva o sea la restricción de no negatividad. CARACTERÍSTICA CLAVE. X 1 0, X 2 0, X 3 0, X 4 0. Es importante tener en cuenta las variables de decisión y los datos del problema para definir cada una de las restricciones. Expresarlas como una suma, diferencia o producto de cantidades individuales. Establecer la magnitud de la dirección, teniendo en cuenta las limitaciones formuladas. Diana Cobos 11

5 Una vez reunidos todos estos elementos descritos se hace una formulación matemática del problema de acuerdo a : Sujeta a: Maximizar: 5X X 2 + 5X X 4 (ganancia) 2X 1 + 2X X 3 + X (materia prima) 2X X 2 +2X X (espacio) 1/15 X 1 + 1/30 X 2 +1/10 X 3 + 1/15 X 4 8 (tasa de producción) X i 0 i = 1,2,3,4 Donde X i representa el número de unidades a fabricar del producto i para i=1,2,3,4 Diana Cobos 12

6 Modelo general de la PL Del ejemplo anterior, puede inducirse el siguiente modelo matemático general de la PL Optimizar: X 0 = C 1 X 1 + C 2 X C n X n (0) Sujeta a a 11 X 1 + a 12 X a 1n X n (, = ) b 1 (1) a 21 X 1 + a 22 X a 2n X n (, = ) b 2 (2) a m11 X 1 + a m2 X a mn X n (, = ) b m (m) X 1, X 2, X n 0 (*) Donde: X 0 = función objetivo, la cual pude maximizarse o minimizarse X j = variable de decisión (actividad) j = 1, 2,..., n C j = coeficiente de la variable X j en la función objetivo, o más brevemente, coeficiente objetivo de X j a ij = consumo del recurso i por la actividad j, o alternativamente, coeficiente tecnológico de Xj en la restricción i b i = constante del lado derecho (generalmente recurso disponible) en la restricción i llamada también coeficiente de recurso Diana Cobos 13

7 El modelo matemático general de la PL suele dividirse en: el objetivo (0), las restricciones tecnológicas o estructurales [de (1) a (m)] y las condiciones técnicas o de no-negatividad (*) EJEMPLO 1 Una fábrica de juguetes fabrica dos tipos de juguetes de madera: soldados y trenes. Se vende un soldado a 27 dólares y se usan 10 de dólares de materia prima. Cada soldado que se produce aumenta los costos variables de mano de obra y los costos generales en 14 dólares. Se vende un tren a 21 dólares y se usan 9 dólares de materia prima. Cada tren producido aumenta los costos variables de mano de obra y los costos generales en 10 dólares. La producción de soldados y trenes de madera necesita dos tipos de trabajo especializado: carpintería y acabado. Un soldado requiere 2 horas de acabado y 1 hora de carpintería. Un tren requiere 1 hora de acabado y 1 hora de carpintería. Cada semana, la fábrica puede conseguir toda la materia prima que se necesita, pero solamente dispone de 100 horas de acabado y 80 horas de carpintería. La demanda de los trenes no tiene límite, pero se pueden vender a lo más 40 soldados semanalmente. La fábrica quiere maximizar su ganancia semanal (ingresos costos). Formule un modelo matemático que se pueda utilizar para maximizar las ganancias de la fábrica. Tomado de: Investigación de Operaciones, Aplicaciones y algoritmos Wayne L. Winston Grupo Editorial Iberoamérica Diana Cobos 14

8 Solución (1) Resumen de datos Precio de Materia Otros Carpintería Acabado Demanda venta ($) prima ($) costos ($) (hr) (hr) Soldados a lo más 40 Trenes ilimitada Disponibilidad de recurso ilimitada (2) Variables de decisión X 1 = el número de soldados producidos cada semana X 2 = el número de trenes producidos cada semana (3) Función objetivo Se deben expresar las ganancias y los costos semanales de la fábrica en función de las variables de decisión X 1 y X 2. Entonces Ingresos semanales = 27X X 2 Costos semanales de materia prima = 10X 1 + 9X 2 Costos semanales variables = 14X X 2 Entonces la fábrica quiere maximizar: (27X X 2 ) (10X 1 + 9X 2 ) (14X X 2 ) = 3X 1 + 2X 2 De modo que el objetivo de la fábrica es elegir X 1 y X 2 para maximizar 3X 1 + 2X 2. Si representamos el valor de la función objetivo por X 0 la función objetivo de la fábrica es: Maximizar X 0 = 3X 1 + 2X 2 Diana Cobos 15

9 (4) Restricciones Restricción 1. No se pueden usar más de 100 horas de acabado por semana Restricción 2. No se pueden usar más de 80 horas de carpintería por semana. Restricción 3. No se deben producir más de 40 soldados por semana La restricción 1 se puede expresar como: La restricción 2 es: La restricción 3 debe expresarse como: 2X 1 + X X 1 + X 2 80 X 1 40 Así el modelo completo es: Maximizar X 0 = 3X 1 + 2X 2 Sujeto a 2X 1 + X X 1 + X 2 80 X 1 40 X 1, X 2 0 Diana Cobos 16

10 EJEMPLO 2 Una compañía que fabrica automóviles de lujo y camiones lanzó una campaña ambiciosa de publicidad por televisión y decidió comprar comerciales de 1 minuto en dos tipos de programas: series cómicas y juegos de fútbol. 7 millones de mujeres y 2 millones de hombres ven cada comercial en series cómicas. 2 millones de mujeres y 12 millones de hombres ven cada comercial en juegos de fútbol. Un comercial de 1 minuto en una serie cómica, cuesta dólares, y un comercial de 1 minuto en un juego de fútbol cuesta dólares. La compañía que por lo menos 20 millones de mujeres y 24 millones de hombres vieran los comerciales. Utilice la PL para determinar cómo la fábrica puede alcanzar sus requerimientos publicitarios a un costo mínimo. Tomado de: Investigación de Operaciones, Aplicaciones y algoritmos Wayne L. Winston Grupo Editorial Iberoamérica Solución (1) Resumen de datos Mujeres (millones) Hombres (millones) Costo del comercial (miles de $/min) Series cómicas Juegos de futbol Audiencia esperada (millones de personas) Por lo menos 28 Por lo menos 24 (2) Variables de decisión (3) Función objetivo X 1 = Número de comerciales de un minuto en series cómicas X 2 = Número de comerciales de un minuto en juegos de fútbol La fábrica quiere minimizar el costo total de la publicidad (en miles de dólares) Costo total de publicidad = costo de anuncios en series cómicas + costo de los anuncios en juegos de fútbol. Diana Cobos 17

11 Así la función objetivo de la fábrica es: (4) Restricciones Minimizar X 0 = 50X X 2 Restricción 1. Los anuncios tienen que llegar a por lo menos 28 millones de mujeres Restricción 2. Los anuncios tienen que llegar a por lo menos 24 millones de hombres La restricción 1 se puede expresar como: La restricción 2 es: Así el modelo completo es: 7X 1 + 2X X X 2 24 Minimizar X 0 = 50X X 2 Sujeta a 7X 1 + 2X X X 2 24 X 1, X 2 0 Diana Cobos 18

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta a

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

Requisitos para formular un problema de programación lineal UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS

Requisitos para formular un problema de programación lineal UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS Tema 3.1 y método simplex Es una técnica matemática que se ha usado con éxito en la solución de problemas referentes a la asignación personal,

Más detalles

PROBLEMAS de Programación Lineal : Resolución Gráfica

PROBLEMAS de Programación Lineal : Resolución Gráfica PROBLEMAS de Programación Lineal : Resolución Gráfica Ej. (1.1) Mostrar gráficamente porque los 2 PL siguientes no tienen una Solución Optima y explicar la diferencia entre los dos. (C) (A) Max z = 2x

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

www.klasesdematematicasymas.com

www.klasesdematematicasymas.com 1. Resolver el siguiente problema por el sistema dual simplex Max Z = 0,50X 1 + 0,40X 2 2X 1 + X 2 120 2X 1 + 3X 2 240 X 1, X 2 0 El modelo estándar es: Z 0,5X 1 0,40X 2 + 0S 1 + 0S 2 = 0 2X 1 + X 2 +

Más detalles

optimización: programación lineal y entera

optimización: programación lineal y entera UNIVERSIDAD PERUANA LOS ANDES Facultad de Ciencias i Administrativas i ti y Contables METODOS CUANTITATIVOS DE NEGOCIOS capítulo 2. modelos de optimización: programación lineal y entera Objetivos de Aprendizaje:

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Breeding Manufacturing Inc. Mezcla de productos 2 La Breeding Manufacturing Inc., fabrica y vende dos tipos de

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

Análisis y Diseño de Sistemas Departamento de Sistemas - Facultad de Ingeniería

Análisis y Diseño de Sistemas Departamento de Sistemas - Facultad de Ingeniería Objetivos: DESARROLLO DE SOFTWARE - ESTUDIO DE FACTIBILIDAD 1. Determinar la factibilidad técnica, económica, operativa y jurídica (y de ser necesarias otras) del proyecto. 2. Lograr el conocimiento general

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI Estelí, 13 de Agosto del 2012 EL METODO SIMPLEX El método simplex es el más generalizado para resolver problemas de programación lineal. Se puede utilizar para cualquier número razonable de productos y

Más detalles

El Método Simplex. H. R. Alvarez A., Ph. D. 1

El Método Simplex. H. R. Alvarez A., Ph. D. 1 El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com PROGRAMACIÓN LINEAL 1- Un deportista solamente puede tomar para desayunar barritas de chocolate y barritas de cereales. Cada barrita de chocolate proporciona 40 gramos de hidratos de carbono, 30 gramos

Más detalles

Instituto tecnológico de Minatitlán. Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal

Instituto tecnológico de Minatitlán. Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal Instituto tecnológico de Minatitlán Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal Alejandra de la cruz francisco Ingeniería en sistemas computacionales

Más detalles

Problemas de Programación Lineal: Método Simplex

Problemas de Programación Lineal: Método Simplex Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con

Más detalles

Consideraciones para un estudio de factibilidad. M.C. Juan Carlos Olivares Rojas

Consideraciones para un estudio de factibilidad. M.C. Juan Carlos Olivares Rojas Consideraciones para un estudio de factibilidad M.C. Juan Carlos Olivares Rojas Agenda Determinación de la factibilidad Recursos de los estudios de factibilidad Presentación de un estudio de factibilidad

Más detalles

Clasificación de los planes:

Clasificación de los planes: Tipos de Planes Plan Es el producto de la planeación, el evento intermedio entre el proceso de planeación y el proceso de implementación del mismo. El propósito de los planes se encuentra en: La previsión,

Más detalles

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003 SOLUCIÓN PRÁCTIC Nº 0 Programación Lineal MTEMÁTICS º VETERINRI Curso 00-00 Supongamos que se quiere elaborar una ración que satisfaga unas condiciones mínimas de contenidos vitamínicos diarios por ejemplo

Más detalles

Programación Matemática. Profesor: Juan Pérez Retamales

Programación Matemática. Profesor: Juan Pérez Retamales Programación Matemática Profesor: Juan Pérez Retamales Capítulo 2: Optimización Lineal en la Práctica Programación Matemática Procesos de Toma de Decisiones Marco de Trabajo: Decisiones Estratégicas Decisiones

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO M. En C. Eduardo Bustos Farías 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta

Más detalles

PROBLEMAS DE OPTIMIZACIÓN LINEAL

PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMA DE LA PRODUCCIÓN 1.- Una fábrica elabora dos tipos de productos, A y B. El tipo A necesita 2 obreros trabajando un total de 20 horas, y se obtiene un beneficio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos:

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: Solución óptima a los problemas de transporte La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: a) Calcular los

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura

Más detalles

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250 Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.

Más detalles

DERIVADAS PARCIALES. El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función.

DERIVADAS PARCIALES. El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función. Funciones de dos o más Variables DERIVADAS PARCIALES Existen magnitudes que dependen de dos o más variables independientes por ejemplo el área del rectángulo depende de la longitud de cada uno de sus lados,

Más detalles

Qué es la programación lineal?

Qué es la programación lineal? Qué es la programación lineal? En infinidad de aplicaciones de la industria, la economía, la estrategia militar, etc... Se presentan situaciones en las que se exige maximizar o minimizar algunas funciones

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2 Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores

Más detalles

Carrera: INB-0406 4-0-8. Participantes. Representante de las academias de ingeniería industrial de Institutos Tecnológicos.

Carrera: INB-0406 4-0-8. Participantes. Representante de las academias de ingeniería industrial de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Investigación de operaciones I Ingeniería Industrial INB-0406 4-0-8 2.- HISTORIA

Más detalles

Contabilidad de costos. Tema 1. Introducción a la contabilidad. Tipos de costos LAR

Contabilidad de costos. Tema 1. Introducción a la contabilidad. Tipos de costos LAR CONTABILIDAD DE COSTOS La contabilidad de costos es un sistema de información para predeterminar, registrar, acumular, distribuir, controlar, analizar, interpretar e informar de los costos de producción,

Más detalles

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250 EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 3, 0 y 40 millones

Más detalles

INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal Capitulo 2 Modelación y formulación

INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal Capitulo 2 Modelación y formulación INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal 3 Introducción 1 1.1 Concepto de solución óptima 4 1.2 Investigación de operaciones 6 1.2.1 Evolución

Más detalles

los requerimientos y al mismo tiempo lograr reducir o minimizar el costo de dicha operación.

los requerimientos y al mismo tiempo lograr reducir o minimizar el costo de dicha operación. UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS Tema 3.2 El modelo de transporte es un problema de optimización de redes donde debe determinarse como hacer llegar los productos desde los

Más detalles

TEMA III MÉTODO SIMPLEX. CONCEPTOS BÁSICOS

TEMA III MÉTODO SIMPLEX. CONCEPTOS BÁSICOS TEMA III MÉTODO SIMPLE. CONCEPTOS BÁSICOS MÉTODOS CUANTITATIVOS I TEMA III. MÉTODO SIMPLE. CONCEPTOS BÁSICOS INDICE.- FACTORES PRODUCTIVOS (A i )....- VECTOR EISTENCIAS (P o )....- TÉCNICA... 4.- PROCESO

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE PROBLEMA DE FLUJO DE COSTO MINIMO. 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Suscripciones Administración Reclamos Formule un modelo de programación lineal.

Suscripciones Administración Reclamos Formule un modelo de programación lineal. EJERCICIOS DE APLICACIÓN 1) Par, Inc. es un pequeño fabricante de equipo y material de golf. El distribuidor de Par cree que existe un mercado tanto para una bolsa de golf de precio moderado, llamada modelo

Más detalles

Campañas de Publicidad

Campañas de Publicidad Campañas de Publicidad 1 Sesión No. 2 Planeación de campañas publicitarias. Segunda parte. Objetivo: El alumno identificará los elementos que incluye el presupuesto para la realización e implementación

Más detalles

Problemas de PL con varias variables Análisis de Sensibilidad

Problemas de PL con varias variables Análisis de Sensibilidad UNIVERSIDAD NACIONAL DE INGENIERIA UN-NORTE SEDE-ESTELI Asignatura: Investigación de Operaciones I Problemas de PL con varias variables Análisis de Sensibilidad M.C. Ing. Julio Rito Vargas Avilés 1 P.

Más detalles

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita: RELACIÓN DE EJERCICIOS TEMA 4.- Inecuaciones 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

Más detalles

DIAGRAMA MATRICIAL EN "L"

DIAGRAMA MATRICIAL EN L DIAGRAMA MATRICIAL El diagrama matricial (DM) es una herramienta cuyo objetivo es establecer puntos de conexión lógica entre grupos de características, funciones o actividades, reapretándolos gráficamente.

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal

Más detalles

Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte.

Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte. Dirección de Operaciones SESIÓN # 5: El método simplex. Segunda parte. Contextualización Qué más hay que conocer del método simplex? En la sesión anterior dimos inicio a la explicación del método simplex.

Más detalles

Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual

Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual 7. Programación lineal y SIMPLEX Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual Programación Lineal

Más detalles

La ecuación de segundo grado para resolver problemas.

La ecuación de segundo grado para resolver problemas. La ecuación de segundo grado para resolver problemas. Como bien sabemos, una técnica potente para modelizar y resolver algebraicamente los problemas verbales es el uso de letras para expresar cantidades

Más detalles

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados.

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. Programación lineal La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. El nombre de programación no se refiere a la

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA PROBLEMAS RESUELTOS DE PROGRAMACIÒN LINEAL POR METODO GRAFICO CON POM-QM. Profesor: MSc. Julio Rito Vargas Avilés Elaborado por: Yucep Gutiérrez Baltodano. Carlos Reynaldo Guevara.

Más detalles

ACTIVIDADES TEMA 1. LA ECONOMÍA: LA NECESIDAD DE ELEGIR

ACTIVIDADES TEMA 1. LA ECONOMÍA: LA NECESIDAD DE ELEGIR 1. Contesta brevemente y con tus palabras a las siguientes cuestiones: a) Define con tus palabras qué entiendes por economía. b) Cuál es la característica más importante que presentan las necesidades humanas

Más detalles

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y 4 1 5 6 C = 2 8 9 3.

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y 4 1 5 6 C = 2 8 9 3. UNIVERSIDAD DE MANAGUA CURSO: PROGRAMACIÓN LINEAL TAREA # 2 Problemas de Transporte, transbordo y asignación Prof. : MSc. Julio Rito Vargas Avilés III C 2015 1. Considerar el problema de transporte definido

Más detalles

15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN

15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN 15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN Problema 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Solución 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1. Una empresa fabrica dos tipos de juguetes de

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Programación Lineal Departamento de Matemáticas ITESM Programación Lineal Ma130 - p. 1/27 ducción En esta lectura daremos una introducción a la modelación de problemas

Más detalles

EL MERCADO Y LOS PRONÓSTICOS. MSc. Freddy E. Aliendre España

EL MERCADO Y LOS PRONÓSTICOS. MSc. Freddy E. Aliendre España EL MERCADO Y LOS PRONÓSTICOS MSc. Freddy E. Aliendre España 2011 MERCADO (A.M.A.) define el mercado como la suma de las fuerzas o condiciones dentro de las cuales los compradores y vendedores toman decisiones

Más detalles

PLANTEAMIENTO DEL PROBLEMA DE INVESTIGACIÓN DE MERCADOS LICDA. NATHALI OROZCO BRAVO

PLANTEAMIENTO DEL PROBLEMA DE INVESTIGACIÓN DE MERCADOS LICDA. NATHALI OROZCO BRAVO PLANTEAMIENTO DEL PROBLEMA DE INVESTIGACIÓN DE MERCADOS LICDA. NATHALI OROZCO BRAVO La primera etapa de cualquier proyecto de investigación de mercados es la definición del problema, para ello como investigadores

Más detalles

Optimización de Problemas de Producción

Optimización de Problemas de Producción Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de

Más detalles

Problemas de I.O. con mas de dos variables

Problemas de I.O. con mas de dos variables UNIVERSIDAD NACIONAL DE INGENIERIA UN-NORTE SEDE-ESTELI Curso de Investigación de Operaciones I Problemas de I.O. con mas de dos variables M.C. Ing. Julio Rito Vargas Avilés 1 1. Orsini. Fabrica tres tipos

Más detalles

PROGRAMACIÓN LINEAL ENTERA

PROGRAMACIÓN LINEAL ENTERA PROGRAMACIÓN LINEAL ENTERA Programación lineal: hipótesis de perfecta divisibilidad Así pues decimos que un problema es de programación lineal entera, cuando prescindiendo de las condiciones de integridad,

Más detalles

Programación Lineal. Departamento de Matemáticas, CSI/ITESM. 28 de abril de 2010

Programación Lineal. Departamento de Matemáticas, CSI/ITESM. 28 de abril de 2010 Programación Lineal Departamento de Matemáticas, CSI/ITESM 28 de abril de 2010 Índice 16.1.Introducción............................................... 1 16.2.Ejemplo 1................................................

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios Resuelva cada Integral Problemas de Aplicación 1. El costo marginal ( en dólares) de una compañía que fabrica zapatos esta dado por, en donde x es el

Más detalles

Problema 1. Problema 1. Problema 1. Problema 1. Problema 1. Modelos Lineales

Problema 1. Problema 1. Problema 1. Problema 1. Problema 1. Modelos Lineales Modelos Lineales ANALISIS DE SENSIBILIDAD PROTAC Inc. produce dos líneas de maquinaria pesada. Una de sus líneas de productos, llamada equipo de excavación, se utiliza de manera primordial en aplicaciones

Más detalles

RESPUESTAS: OPCIÓN B. www.profes.net es un servicio gratuito de Ediciones SM

RESPUESTAS: OPCIÓN B. www.profes.net es un servicio gratuito de Ediciones SM RESPUESTAS: OPCIÓN B 1. Explique cuál es la función del organigrama en una organización (1 punto). La función del organigrama es representar gráficamente la estructura organizativa de la empresa. En esta

Más detalles

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1 Ejercicios de Dualidad y Análisis de Sensibilidad 1. Radioco fabrica dos tipos de radios. El único recurso escaso que se necesita para producir los radios es la mano de obra. Actualmente, la compañía tiene

Más detalles

El punto de equilibrio. Apalancamiento operativo Apalancamiento financiero

El punto de equilibrio. Apalancamiento operativo Apalancamiento financiero El punto de equilibrio Apalancamiento operativo Apalancamiento financiero PUNTO DE EQUILIBRIO Es el volumen de ventas al cual los costos operativos totales son iguales a los ingresos totales, y el ingreso

Más detalles

6.2 OBSERVACIONES IMPORTANTES AL UTILIZAR MÉTODO SIMPLEX

6.2 OBSERVACIONES IMPORTANTES AL UTILIZAR MÉTODO SIMPLEX 6. MÉTODO SIMPLEX El Método Simplex es un método analítico de solución de problemas de programación lineal capaz de resolver modelos más complejos que los resueltos mediante el método gráfico sin restricción

Más detalles

DISEÑO DE ESTRUCTURAS ADMINISTRATIVAS. CAPITULO II

DISEÑO DE ESTRUCTURAS ADMINISTRATIVAS. CAPITULO II CAPITULO II 1 ANSI ASME CAPITULO II SIMBOLOGA USADA PARA LA ELABORACIN DE DIAGRAMAS DE FLUJO EN MANUALES ADMINISTRATIVOS 2 ELABORACIN DE DIAGRAMAS DE FLUJO 2.1.- DIAGRAMAS DE FLUJO. Los diagramas de flujo

Más detalles

El Punto de Equilibrio como herramienta de Planeación Táctica (Corto Plazo)

El Punto de Equilibrio como herramienta de Planeación Táctica (Corto Plazo) TEMARIO El Punto de Equilibrio como herramienta de Planeación Táctica (Corto Plazo) Además del estudio del Análisis e Interpretación de Estados Financieros, el Punto de Equilibrio (PE), nos sirve para

Más detalles

Matemáticas

Matemáticas a la a la Matemáticas a la En esta lectura daremos una introducción a la modelación de problemas mediante programación lineal; pondremos énfasis en las etapas que componen la modelación. Cerraremos estos

Más detalles

Optimización lineal con R José R. Berrendero

Optimización lineal con R José R. Berrendero Optimización lineal con R José R. Berrendero Introducción Veamos cómo se pueden resolver problemas de optimización lineal con R a través de algunos ejemplos sencillos. La mayor parte de las funciones necesarias

Más detalles

Opción A. Alumno. Fecha: 23 Noviembre 2012

Opción A. Alumno. Fecha: 23 Noviembre 2012 Fecha: 3 Noviembre 0 Opción A Alumno. Ejercicio nº.- a) Resuelve el siguiente sistema, utilizando el método de Gauss: +=3 3+ = 3 3+3=9 +4 4= 3 3 3 3 4+ 5 0 0 0 3 3 9 5 0 0 0 5 0 0 3 0 6 5 0 0 0 Rango A

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

Instituto Tecnologico Metropolitano Metodo simplex Ejercicios

Instituto Tecnologico Metropolitano Metodo simplex Ejercicios Instituto Tecnologico Metropolitano Metodo simplex Ejercicios April 16, 2016 Contenido 1 Contenido 2 Envases S.A 3 Grangero 4 Televisores 5 Agua Mineral 6 Problema de la Dieta Envases S.A Una empresa desea

Más detalles

UNIDAD II. PROGRAMACIÓN LINEAL

UNIDAD II. PROGRAMACIÓN LINEAL UNIDAD II. PROGRAMACIÓN LINEAL OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Introducción

Más detalles

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr Nombre: UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS METODOS CUANTITATIVOS II EXAMEN PARCIAL I /3/7 Sección # Cuenta: Catedrático: Desarrolle en forma clara y ordenada lo que a continuación se le pide:.-

Más detalles

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN Asignatura: Investigación de Operaciones 1 Periodo Académico: Julio - Diciembre de 2009 TALLER MÉTODO GRÁFICO 1. PROBLEMA DE PLANEACIÓN DE

Más detalles

3. Métodos clásicos de optimización lineal

3. Métodos clásicos de optimización lineal 3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado IO04001 Investigación de Operaciones I Tema # 6 Introducción al método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex Matricial para

Más detalles

Diagramas de flujo. Actividad de aprendizaje 9. Realiza la siguiente lectura:

Diagramas de flujo. Actividad de aprendizaje 9. Realiza la siguiente lectura: Actividad de aprendizaje 9 Realiza la siguiente lectura: Diagramas de flujo El diagrama de flujo es la representación gráfica de cada paso del algoritmo, utilizando símbolos, en el que se representan todas

Más detalles

PAUTAS PARA LA REALIZACIÓN DE PREINFORMES Y DEL INFORMES DEL LABORATORIO DE CIRCUITOS II

PAUTAS PARA LA REALIZACIÓN DE PREINFORMES Y DEL INFORMES DEL LABORATORIO DE CIRCUITOS II PAUTAS PARA LA REALIZACIÓN DE PREINFORMES Y DEL INFORMES DEL LABORATORIO DE CIRCUITOS II La preparación de una guía única para las prácticas de laboratorios de la materia circuitos II, tiene como finalidad

Más detalles

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes

Más detalles

PRESENTADO POR: NORA ALCANTARA

PRESENTADO POR: NORA ALCANTARA DESARROLLO DE PRODUCTOS AGROINDUSTRIALES PARA LA EXPORTACION INTRODUCCION AL DESARROLLO DE PRODUCTOS PRESENTADO POR: NORA ALCANTARA Cuando la empresa ha logrado entender el comportamiento de compra del

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

APLICACIONES DE AS: EJEMPLOS

APLICACIONES DE AS: EJEMPLOS APLICACIONES DE AS: EJEMPLOS ELISA SCHAEFFER Programa de Posgrado en Ingeniería de Sistemas (PISIS) elisa@yalma.fime.uanl.mx INVESTIGACIÓN DE OPERACIONES EJEMPLO: TRANSPORTE Tenemos dos fábricas farmaceúticas.

Más detalles

APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA

APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA Valor promedio Problemas de Aplicación 1. Suponga que el costo en dólares de un producto está dado por C(x)= 400+x+0.3x 2, donde

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

MEZCLA DE LA MERCADOTECNIA PLAZA. MM. Verónica Bolaños López

MEZCLA DE LA MERCADOTECNIA PLAZA. MM. Verónica Bolaños López MEZCLA DE LA MERCADOTECNIA PLAZA DISTRIBUCIÓN Función comercial de poner los productos al alcance del mercado CANALES DE DISTRIBUCIÓN Son las líneas a través de las que se efectúa la función de distribución

Más detalles

Ejemplo : PROGRAMACIÓN LINEAL

Ejemplo : PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL Los problemas de Programación Lineal son aquellos donde se trata de encontrar el óptimo de una función, por ejemplo máximo de beneficios, o mínimo de costos, siendo esta función lineal.

Más detalles

4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte

4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte 4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co En PL un sistema de producción se representa

Más detalles

Fundamentos de la programación lineal. Función Objetivo (F.O.): Para seleccionar qué función objetivo debe elegirse se toma en cuenta lo siguiente:

Fundamentos de la programación lineal. Función Objetivo (F.O.): Para seleccionar qué función objetivo debe elegirse se toma en cuenta lo siguiente: Fundamentos de la programación lineal Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la situación siguiente: Optimizar (maximizar o minimizar) una función objetivo,

Más detalles

Programación Lineal con Matlab

Programación Lineal con Matlab Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 22 Contenido 1 Programación Lineal Método gráfico

Más detalles

Tema # 7. método simplex matricial o revisado

Tema # 7. método simplex matricial o revisado IO04001 Investigación de Operaciones I Tema # 7 Solución de problemas mediante el método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex

Más detalles

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9

Más detalles

El análisis de la relación costo-volumen-utilidad utilidad se aplica no solo a las proyecciones de utilidades, es útil también en la toma de decisione

El análisis de la relación costo-volumen-utilidad utilidad se aplica no solo a las proyecciones de utilidades, es útil también en la toma de decisione COSTO-VOLUMEN-GANANCIA El análisis de la relación costo-volumen-utilidad utilidad se aplica no solo a las proyecciones de utilidades, es útil también en la toma de decisiones con respecto al producto,

Más detalles

Guía - Funciones de Varias Variables (II)

Guía - Funciones de Varias Variables (II) Universidad de Talca Cálculo (Contador público y auditor) Instituto de Matemática y Física Mayo de 2015 Guía - Funciones de Varias Variables (II) Regla de la cadena 1. En los siguientes problemas, obtenga

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ECONOMÍA ESTRUCTURA ECONÓMICA DE VENEZUELA

UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ECONOMÍA ESTRUCTURA ECONÓMICA DE VENEZUELA UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ECONOMÍA ESTRUCTURA ECONÓMICA DE VENEZUELA Prof. Lisbeth Gallardo Guillén UNIDAD I FUNDAMENTOS DE ECONOMÍA Objetivo: Identificar

Más detalles

Dirección de operaciones. SESIÓN # 2: Programación lineal

Dirección de operaciones. SESIÓN # 2: Programación lineal Dirección de operaciones SESIÓN # 2: Programación lineal Contextualización Dentro de la sesión anterior conocimos el concepto y alcance de la administración de operaciones, dicho de otro modo el qué, ahora

Más detalles

PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1

PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1 M. en C. Héctor Martínez Rubin Celis PROGRAMACION ENTERA En muchos problemas prácticos, las variables de decisión son realistas únicamente si estas son enteras. Hombres, máquinas y vehículos deben ser

Más detalles