Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta"

Transcripción

1 Distribución Normal La distribución normal (O Gaussiana) se define como sigue: En donde y >0 son constantes arbitrarias. Esta función es en realidad uno de las más importantes distribuciones de probabilidad continua. Los diagramas siguientes muestran los cambios en f a medida que y varían. En particular, observe que estas figuras en forma de campana son simétricas alrededor de x= 1

2 Algunas propiedades de la distribución normal son (Teorema): Distribución Normal Media Varianza 2 Desviación Estándar En lo sucesivo, denotaremos a la distribución normal con media y varianza 2 por medio de: N(, 2 ) Si hacemos la sustitución normal estandarizada en la fórmula anterior para N(, 2 ) obtenemos la distribución Que tiene media =0 y varianza 2 =1. El gráfico de esta distribución aparece a continuación. Note que para -1 z 1 obtenemos el 68.2% del área bajo la curva, y para -2 z 2 tenemos el 95.4% del área bajo la curva. La simetría de la curva alrededor de z=0 nos permite obtener el área entre dos valores cualesquiera de z. 2

3 Ahora, sea X una variable aleatoria continua con distribución normal. Frecuentemente diremos que X se encuentra normalmente distribuida. Calcularemos la probabilidad de que X caiga entre a y b, a lo que denotaremos como P(a X b) como sigue. Primero, cambiaremos a y b a unidades estándar: Respectivamente. Entonces, escribiremos P(a X b) = P(a X* b ) = área bajo la curva normal estandarizada entre a y b. Aquí, X* es la variable aleatoria estandarizada que corresponde a X, y por lo tanto X* tiene una distribución normal estándar N(0,1) 3

4 Distribución Exponencial Las distribuciones exponenciales son toda una clase de distribuciones de probabilidad continua que describen el tiempo transcurrido entre eventos de un proceso Poisson, es decir, un proceso en el cual los eventos ocurren de manera continua e independiente, y a una tasa promedio constante. La función de densidad de probabilidad de la distribución exponencial es: Donde >0 es el parámetro de la distribución, también llamado el parámetro de la tasa o porcentaje. La distribución se basa en el intervalo [0, ). Si una variable aleatoria X tiene esta distribución, la describiremos con X~. Su función de distribución acumulada de probabilidad es: La distribución exponencial ocurre de manera natural cuando nos encontramos analizando fenómenos en los que describimos la longitud de los intervalos de, por ejemplo, tiempos de espera, de un proceso Poisson homogéneo. La distribución exponencial puede ser vista como la contraparte de la distribución hipergeométrica. En la vida real, el supuesto de tasa constante (o probabilidad constante por unidad de tiempo) se satisface solo ocasionalmente. Por ejemplo, la tasa de llamadas telefónicas a un call center difiere de acuerdo a la hora del día. Pero si nos interesa solo un intervalo de tiempo en el cual la tasa de llamadas es relativamente constante, por ejemplo de las 2 a las 4 pm durante los días laborales, la distribución exponencial puede ser utilizada como una buena aproximación para el tiempo real que, en promedio, deberemos esperar para que la próxima llamada. Otros ejemplos en los que se puede usar la distribución exponencial: El tiempo que toma para que la radioactividad de una partícula decaiga. El tiempo que tardará la próxima llamada telefónica. El tiempo que tardará un cliente en entrar en "default", en pagos por ejemplo a una compañía bancaria. Las variables exponenciales también pueden ser usadas como modelos de simulación de ciertos eventos que ocurren con una probabilidad constante por unidad de tiempo, tales como las distancias entre mutaciones en una cadena de DNA. Es decir, básicamente para el mismo tipo de situaciones en que usamos la distribución Poisson, solo que la distribución exponencial describe el caso continuo (a diferencia de la distribución Poisson, que es discreta) 4

5 Algunas propiedades de la distribución Exponencial son (Teorema): Media Distribución Exponencial Varianza Desviación Estándar 5

6 6

7 7

Distribución de Probabilidad Normal

Distribución de Probabilidad Normal Distribución de Probabilidad Normal Departamento de Estadística-FACES-ULA 22 de Diciembre de 2013 Introducción La distribución normal es quizás la distribución de probabilidad para variables aleatorias

Más detalles

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN)

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) VARIABLE ALEATORIA: un experimento produce observaciones numéricas que varían de muestra a muestra. Una VARIABLE ALEATORIA se define como una función con valores

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

LA DISTRIBUCIÓN NORMAL

LA DISTRIBUCIÓN NORMAL LA DISTRIBUCIÓN NORMAL En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad que con más frecuencia aparece

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Al igual que la distribución binomial, la distribución

Más detalles

La distribución t de student. O lo que es lo mismo: La relación entre la cerveza y los estudios de estadística

La distribución t de student. O lo que es lo mismo: La relación entre la cerveza y los estudios de estadística La distribución t de student O lo que es lo mismo: La relación entre la cerveza y los estudios de estadística La distribución t de student fue descubierta por William S. Gosset en 1908. Gosset era un estadístico

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

Distribuciones de Probabilidad Para Variables Aleatorias Continuas

Distribuciones de Probabilidad Para Variables Aleatorias Continuas Distribuciones de Probabilidad Para Variables Aleatorias Continuas Departamento de Estadística-FACES-ULA 20 de Diciembre de 2013 Introducción Recordemos la definición de Variable Aleatoria Continua. Variable

Más detalles

7. Distribución normal

7. Distribución normal 7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o

Más detalles

Distribuciones Dis de Probabilidad Pr Contínuas Jhon Jairo Jair Pa P dilla a Aguilar, Aguilar PhD. PhD

Distribuciones Dis de Probabilidad Pr Contínuas Jhon Jairo Jair Pa P dilla a Aguilar, Aguilar PhD. PhD Distribuciones de Probabilidad Contínuas Jhon Jairo Padilla Aguilar, PhD. Introducción En esta sección se estudiarán algunas distribuciones de probabilidad contínuas que son bastante utilizadas en ingeniería

Más detalles

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si La distribución normal La distribución normal o gaussiana es la distribución continua más importante. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si f(x) = 1

Más detalles

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO Anejo Análisis estadístico de temperaturas Análisis estadístico de temperaturas - 411 - D.1 INTRODUCCIÓN Y OBJETIVO El presente anejo tiene por objeto hacer un análisis estadístico de los registros térmicos

Más detalles

El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo.

El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo. El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo. El supermercado cuenta con 3 departamentos: Abarrotes, Embutidos y. Solamente el Departamento

Más detalles

EJERCICIOS RESUELTOS TEMA 7

EJERCICIOS RESUELTOS TEMA 7 EJERCICIOS RESUELTOS TEMA 7 7.1. Seleccione la opción correcta: A) Hay toda una familia de distribuciones normales, cada una con su media y su desviación típica ; B) La media y la desviaciones típica de

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 8 Distribución normal estándar y distribuciones relacionadas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar los conceptos de la distribución

Más detalles

La distribución Normal

La distribución Normal La distribución Normal Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística, Investigación Operativa Aplicadas y Calidad

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

Propiedades en una muestra aleatoria

Propiedades en una muestra aleatoria Capítulo 5 Propiedades en una muestra aleatoria 5.1. Conceptos básicos sobre muestras aleatorias Definición 5.1.1 X 1,, X n son llamadas una muestra aleatoria de tamaño n de una población f(x) si son variables

Más detalles

Tema 5. Variables aleatorias continuas

Tema 5. Variables aleatorias continuas Tema 5. Variables aleatorias continuas Cuestiones de Verdadero/Falso 1. Muchas medidas numéricas de diversos fenómenos, como por ejemplo errores de medida o medidas antropométricas, pueden modelarse mediante

Más detalles

Probabilidad. Distribuciones binomial y normal

Probabilidad. Distribuciones binomial y normal Tema 7 Probabilidad. Distribuciones binomial y normal 7.1. Introducción En este tema trataremos algunas cuestiones básicas sobre Probabilidad. Tanto la Probabilidad como la Estadística son dos campos de

Más detalles

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%. Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,

Más detalles

Probabilidades y la curva normal

Probabilidades y la curva normal Probabilidades y la curva normal Las distribuciones reales y las distribuciones teóricas Por Tevni Grajales Guerra Tal cual estudiamos en nuestro tercer tema. Cuando registramos los valores de una variable

Más detalles

Distribución de Probabilidades con Nombre Propio Problemas Propuestos

Distribución de Probabilidades con Nombre Propio Problemas Propuestos Distribución de Probabilidades con Nombre Propio Problemas Propuestos DISTRIBUCIÓN BINOMIAL (BERNOULLI) 2.167 Hallar la probabilidad de que al lanzar una moneda honrada 6 veces aparezcan (a) 0, (b) 1,

Más detalles

x R F (x) := P (X 1 (, x]) = P ({e Ω : X(e) x}) = P (X x) salvo que en este caso esta función es siempre una función continua.

x R F (x) := P (X 1 (, x]) = P ({e Ω : X(e) x}) = P (X x) salvo que en este caso esta función es siempre una función continua. PROBABILIDAD Tema 2.3: Variables aleatorias continuas Objetivos Distinguir entre variables aleatorias discretas y continuas. Dominar el uso de las funciones asociadas a una variable aleatoria continua.

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

3. VARIABLES ALEATORIAS

3. VARIABLES ALEATORIAS . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad

Más detalles

Distribuciones de probabilidad. El teorema central del límite

Distribuciones de probabilidad. El teorema central del límite 8 Distribuciones de probabilidad. El teorema central del límite Neus Canal Díaz 8.1. Introducción La distribución de frecuencias es uno de los primeros pasos que debemos realizar al inicio del análisis

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1 1. DATOS INFORMATIVOS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS MATERIA: ESTADISTICA CODIGO: 11715 CARRERA: INGENIERIA DE SISTEMAS NIVEL: TERCERO

Más detalles

Un experimento binomial posee las siguientes características: 1. El experimento consiste de n ensayos repetidos.

Un experimento binomial posee las siguientes características: 1. El experimento consiste de n ensayos repetidos. Experimento Binomial Experimento que consiste en ensayos independientes repetidos, cada uno con dos posibles resultados que se denominan éxito y fracaso, donde la probabilidad de éxito es la misma en cada

Más detalles

Yenny Bayona Sambrano, Edwin Cerna Figueroa, Kelva Llanos Miranda, Luis Montesinos Ruiz, Silvia Pajuelo Rojas

Yenny Bayona Sambrano, Edwin Cerna Figueroa, Kelva Llanos Miranda, Luis Montesinos Ruiz, Silvia Pajuelo Rojas Estadística I: desde un enfoque por competencias / Yenny Bayona Sambrano, Edwin Cerna Figueroa, Kelva Llanos Miranda, Luis Montesinos Ruiz,Silvia Pajuelo Rojas. -- 2a ed. -- Lima: Universidad San Ignacio

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Bloque A JUNIO 2007 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................

Más detalles

C. Distribución Binomial

C. Distribución Binomial Objetivos de aprendizaje 1. Definir los resultados binomiales 2. Calcular la probabilidad de obtener X éxitos en N pruebas 3. Calcular probabilidades binomiales acumulativas 4. Encontrar la media y la

Más detalles

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones

Más detalles

Unidad III Variables Aleatorias Unidimensionales

Unidad III Variables Aleatorias Unidimensionales Unidad III Variables Aleatorias Unidimensionales En el capítulo anterior se examinaron los conceptos básicos de probabilidad con respecto a eventos que se encuentran en un espacio muestral. Los experimentos

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág.

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág. ÍNDICE CAPITULO UNO Pág. Concepto de Estadística 1 Objetivo 1 Diferencia entre estadísticas y estadística 1 Uso de la estadística 1 Divisiones de la estadística 1 1. Estadística Descriptiva 1 2. Estadística

Más detalles

CAPÍTULO 9 DISTRIBUCIONES DE PROBABILIDAD DISCRETAS Y CONTINUAS 1.- DISTRIBUCIONES DISCRETAS 2.- DISTRIBUCIONES CONTINUAS

CAPÍTULO 9 DISTRIBUCIONES DE PROBABILIDAD DISCRETAS Y CONTINUAS 1.- DISTRIBUCIONES DISCRETAS 2.- DISTRIBUCIONES CONTINUAS CAPÍTULO 9 DISTRIBUCIONES DE PROBABILIDAD DISCRETAS Y CONTINUAS 1.- DISTRIBUCIONES DISCRETAS 2.- DISTRIBUCIONES CONTINUAS 3.- R COMO ALTERNATIVA A LAS TABLAS ESTADÍSTICAS CLÁSICAS CAPÍTULO 9 1 2 1.- DISTRIBUCIONES

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Generación de eventos en Procesos de Poisson

Generación de eventos en Procesos de Poisson Generación de eventos en Procesos de Poisson Georgina Flesia FaMAF 26 de abril, 2012 Proceso de Poisson homogéneo N(t), t 0, es un proceso de Poisson homogéneo de razón λ, λ > 0, si: N(0) = 0 proceso comienza

Más detalles

Análisis de Decisiones II. Tema 18 Generación de variables aleatorias discretas, continuas y su aplicación. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Tema 18 Generación de variables aleatorias discretas, continuas y su aplicación. Objetivo de aprendizaje del tema Tema 18 Generación de variables aleatorias discretas, continuas y su aplicación Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Emplear la generación de números aleatorios con distribución

Más detalles

La Distribución Normal y su uso en la Inferencia Estadística

La Distribución Normal y su uso en la Inferencia Estadística La Distribución Normal y su uso en la Inferencia Estadística Los conceptos básicos de Probabilidad y de Distribuciones Muestrales sirven como introducción al método de Inferencia Estadística; esta se compone

Más detalles

MODELO DE RESPUESTAS Objetivos del 1 al 9

MODELO DE RESPUESTAS Objetivos del 1 al 9 PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ

Más detalles

La más famosa de las campanas

La más famosa de las campanas La más famosa de las campanas Dice el diccionario que una campana es un dispositivo simple que emite un sonido. Pero una campana puede ser muchas cosas más. Creo que hay hasta una planta con ese nombre

Más detalles

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249 Hoja 3: robabilidad y variables aleatorias 1. La probabilidad de que un enfermo se recupere tomando un nuevo fármaco es 0.95. Si se les administra a 8 enfermos, hallar: a La probabilidad de que se recuperen

Más detalles

Distribución normal. Cajón de Ciencias. www.cajondeciencias.com. Qué es una variable estadística?

Distribución normal. Cajón de Ciencias. www.cajondeciencias.com. Qué es una variable estadística? Distribución normal Cajón de Ciencias Qué es una variable estadística? Una variable estadística es un parámetro que puede variar de manera aleatoria dentro de un rango de valores. Por ejemplo, la variable

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas 0.0 16 Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas 0.0 16 Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del 19 de noviembre de 2008 PROBABILIDAD

Más detalles

6. ESTIMACIÓN DE PARÁMETROS

6. ESTIMACIÓN DE PARÁMETROS PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza

Más detalles

Unidad 6. Distribuciones probabilísticas contínuas

Unidad 6. Distribuciones probabilísticas contínuas Unidad 6 Distribuciones probabilísticas contínuas Distribuciones probabilísticas continuas Objetivos del capítulo Después de estudiar este capítulo, se deberá estar en condiciones de: 1. Enunciar las diferencias

Más detalles

Carrera: SCC - 0424 4-2-10. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: SCC - 0424 4-2-10. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y estadística Ingeniería en Sistemas Computacionales SCC - 0424 4-2-10

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

Por ejemplo, lanzar al aire un dado o una moneda son experimentos aleatorios. Los experimentos aleatorios pueden ser simples o compuestos.

Por ejemplo, lanzar al aire un dado o una moneda son experimentos aleatorios. Los experimentos aleatorios pueden ser simples o compuestos. .- CONCEPTOS BÁSICOS DE PROBABILIDAD Experimento aleatorio: Es aquel cuyo resultado depende del azar y, aunque conocemos todos los posibles resultados, no se puede predecir de antemano el resultado que

Más detalles

Probabilidades. 11 de noviembre de 2013. Felipe Bravo Márquez

Probabilidades. 11 de noviembre de 2013. Felipe Bravo Márquez Felipe José Bravo Márquez 11 de noviembre de 2013 Motivación Las probabilidades son el lenguaje de la incertidumbre que a la vez es la base de la inferencia estadística. El problema estudiado en probabilidades

Más detalles

Clase 6: Algunas Distribuciones de Probabilidad Discreta

Clase 6: Algunas Distribuciones de Probabilidad Discreta Clase 6: Algunas Distribuciones de Probabilidad Discreta Distribución Uniforme discreta La más simple de todas las distribuciones de probabilidad discreta es una donde la v.a. toma cada uno de sus valores

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UCM Función de distribución y función de densidad Ejercicio. Sea X una variable aleatoria con función de distribución dada

Más detalles

Ingeniería en Innovación Agrícola Sustentable

Ingeniería en Innovación Agrícola Sustentable 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Estadística Ingeniería en Innovación Agrícola Sustentable ASF-1010 (Créditos) SATCA: 3-2-5 2.- PRESENTACIÓN Caracterización

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones

Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Teoría de Colas. Investigación Operativa II. Javier Alarcón Rafael Cáceres Jenny Martínez Pamela Quijada Grupo N 9

Teoría de Colas. Investigación Operativa II. Javier Alarcón Rafael Cáceres Jenny Martínez Pamela Quijada Grupo N 9 Teoría de Colas Investigación Operativa II Javier Alarcón Rafael Cáceres Jenny Martínez Pamela Quijada Grupo N 9 Profesor: Milton Ramírez 31 de Enero del 2012 ELEMENTOS BÁSICOS DE UN MODELO DE LÍNEA DE

Más detalles

TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL

TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL ESTADÍSTICA II TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL II.1.- Distribución chi-cuadrado. II.1.1.- Definición. II.1..- Función de densidad. Representación gráfica. II.1.3.- Media y varianza.

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: ESTADISTICA I CÓDIGO ASIGNATURA: 1215-311 PRE-REQUISITO: 1215209 SEMESTRE: 3 UNIDADES DE CRÉDITO:

Más detalles

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL 1) ASIMETRÍA MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL Es una medida de forma de una distribución que permite identificar y describir la manera como los datos tiende a reunirse de acuerdo con la

Más detalles

4.1. Qué ES UNA DISTRIBUCIÓN DE LA PROBABILIDAD?

4.1. Qué ES UNA DISTRIBUCIÓN DE LA PROBABILIDAD? 4.1. Qué ES UNA DISTRIBUCIÓN DE LA PROBABILIDAD? INTRODUCCIÓN. Una distribución de probabilidad indica toda la gama de valores que pueden representarse como resultado de un experimento. Una distribución

Más detalles

FACULTAD DE CIENCIAS ECONOMICAS Y ADMINISTRATIVAS PROGRAMA DE MERCADEO

FACULTAD DE CIENCIAS ECONOMICAS Y ADMINISTRATIVAS PROGRAMA DE MERCADEO FACULTAD DE CIENCIAS ECONOMICAS Y ADMINISTRATIVAS PROGRAMA DE MERCADEO I. IDENTIFICACIÓN DE LA ASIGNATURA NOMBRE: Estadística I CODIGO: 41A03 PRERREQUISITO: Matemática I SEMESTRE: III CRÉDITOS: 3 II. OBJETIVO

Más detalles

1 Variables aleatorias independientes

1 Variables aleatorias independientes 1 Variables aleatorias independientes El concepto de independencia es sumamente importante en teoría de probabilidad y su negación, la dependencia, es un importante objeto de estudio actualmente en diversas

Más detalles

1. Sistema de coordenadas polares.

1. Sistema de coordenadas polares. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Sistema de coordenadas polares. En esta sección estudiaremos las coordenadas polares y su relación con las coordenadas cartesianas. Un punto del plano tiene

Más detalles

SnapStat: Análisis de Una Muestra

SnapStat: Análisis de Una Muestra SnapStat: Análisis de Una Muestra Resumen La SnapStat Análisis de Una Muestra crea un resumen en una hoja de una sola columna de datos numéricos. Calcula estadísticas de resumen e intervalos de confianza,

Más detalles

1.- Dada la siguiente distribución de frecuencias. Calcular: a) Mediana b) Moda c) Media d) Varianza y desviación típica o estándar

1.- Dada la siguiente distribución de frecuencias. Calcular: a) Mediana b) Moda c) Media d) Varianza y desviación típica o estándar 1.- Dada la siguiente distribución de frecuencias. Calcular: a) Mediana b) Moda c) Media d) Varianza y desviación típica o estándar VARIABLE FRECUENCIA 37 2 38 1 39 3 40 4 41 6 42 2 43 3 2.- Con los datos

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas.

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas. Contenidos mínimos MI. 1. Contenidos. Bloque I: Aritmética y Álgebra. 1. Conocer las clases de números, los conjuntos numéricos: naturales, enteros, racionales, reales y complejos y las propiedades que

Más detalles

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Profesores: Mg. Cecilia Rosas Meneses Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Definición. La función de distribución acumulada F X de una v.a. X es definida para cada número real x como

Más detalles

Modelo EOQ con Demanda Incierta. Teoría de Inventarios Modelo Probabilísticos. Demanda durante el Lead Time 18/04/2009

Modelo EOQ con Demanda Incierta. Teoría de Inventarios Modelo Probabilísticos. Demanda durante el Lead Time 18/04/2009 Universidad Técnica Federico Santa María Teoría de Inventarios Modelo Probabilísticos Daniel Basterrica Modelo EOQ con Demanda Incierta Lead Time no nulo Demanda aleatoria durante

Más detalles

MATEMÁTICA III. Régimen de Cursada: Semestral Caracter: Obligatoria Correlativas: Matemática II Profesor: Beatriz Pintarelli Hs. semanales: 6 hs.

MATEMÁTICA III. Régimen de Cursada: Semestral Caracter: Obligatoria Correlativas: Matemática II Profesor: Beatriz Pintarelli Hs. semanales: 6 hs. MATEMÁTICA III Año 2015 Carrera/ Plan: Licenciatura en Informática Plan 2015-3º año Licenciatura en Sistemas Plan 2015 3º año Licenciatura en Informática Plan 2003-07 / Plan 2012-2º año Licenciatura en

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA 4: VARIABLES ALEATORIAS CONTINUAS Profesores: Jaime Arrué A. - Hugo S. Salinas. Primer Semestre

Más detalles

2. FRECUENCIAS. 2.1. Distribución de Frecuencias.

2. FRECUENCIAS. 2.1. Distribución de Frecuencias. 2. FRECUENCIAS 2.1. Distribución de Frecuencias. El manejo de la información requiere de la ordenación de datos de tal forma que permita la obtención de una forma más fácil la obtención de conclusiones

Más detalles

Contenidos Programáticos. PROGRAMA: VARIAS (Ingeniería, Administración, edufísica, M. veterinaria )

Contenidos Programáticos. PROGRAMA: VARIAS (Ingeniería, Administración, edufísica, M. veterinaria ) Página 1 de 4 FACULTAD: CIENCIAS BÁSICAS PROGRAMA: VARIAS (Ingeniería, Administración, edufísica, M. veterinaria ) DEPARTAMENTO DE: MATEMÁTICA CURSO : ESTADISTICA I CÓDIGO: 157011 ÁREA: MATEMÁTICA REQUISITOS:

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

Modelos de crecimiento.

Modelos de crecimiento. 1 Crecimiento Modelos de crecimiento. Tasa de reemplazo básica, R0, de una cohorte. A partir de las tablas de vida se obtiene el parámetro R0, o Tasa de reemplazo básica, parámetro que indica por cuántos

Más detalles

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Clasificar distintos tipos de números: naturales, enteros, racionales y reales. 2. Operar con números reales y aplicar las propiedades

Más detalles

Tema 2: Estadísticos

Tema 2: Estadísticos Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

2.5. Asimetría y apuntamiento

2.5. Asimetría y apuntamiento 2.5. ASIMETRÍA Y APUNTAMIENTO 59 variable Z = X x S (2.9) de media z = 0 y desviación típica S Z = 1, que denominamos variable tipificada. Esta nueva variable carece de unidades y permite hacer comparables

Más detalles

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes? . Círculo recta Matemáticas II, -II. Círculo recta Por qué el círculo la recta son tan importantes? Los dos objetos geométricos más importantes aparte del punto son sin duda la recta el círculo. La recta

Más detalles

VARIABLES ALEATORIAS Y DISCTRIBUCIÓN DE PROBABILIDAD

VARIABLES ALEATORIAS Y DISCTRIBUCIÓN DE PROBABILIDAD VARIABLES ALEATORIAS Y DISCTRIBUCIÓN DE PROBABILIDAD Autor: Clara Laguna 3.1 INTRODUCCIÓN En el tema de estadística descriptiva se revisaron las técnicas necesarias para la realización de un análisis descriptivo

Más detalles

Generación de Números Aleatorios. Modelos de Probabilidad. Introducción a la Simulación con EXCEL.

Generación de Números Aleatorios. Modelos de Probabilidad. Introducción a la Simulación con EXCEL. PRÁCTICAS DE ESTADÍSTICA 1º CURSO DE GRADO EN CC. AMBIENTALES Guión de la práctica 4: Curso 2009/2010 7/04/2010. Generación de Números Aleatorios. Modelos de Probabilidad. Introducción a la Simulación

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

PLANIFICACIÓN UNIDAD 5 MATEMÁTICA IV MEDIO BICENTENARIO. CMO Aprendizajes esperados Indicador Habilidad Contenido Clases

PLANIFICACIÓN UNIDAD 5 MATEMÁTICA IV MEDIO BICENTENARIO. CMO Aprendizajes esperados Indicador Habilidad Contenido Clases PLANIFICACIÓN UNIDAD 5 MATEMÁTICA IV MEDIO BICENTENARIO CMO Aprendizajes esperados Indicador Habilidad Contenido Clases 9 y aplicar los conceptos de función densidad y distribución de probabilidad para

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

Coordenadas polares. Representación de puntos con coordenadas polares. Por ejemplo

Coordenadas polares. Representación de puntos con coordenadas polares. Por ejemplo Instituto de Matemática Cálculo Integral Profesora Elisabeth Ramos Coordenadas polares El sistema de coordenadas polares es un sistema de coordenadas bidimensional en el cual cada punto o posición del

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Variables aleatorias: problemas resueltos

Variables aleatorias: problemas resueltos Variables aleatorias: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ bjglez@ull.es DOMINGO HERNÁNDEZ ABREU dhabreu@ull.es MATEO M. JIMÉNEZ PAIZ mjimenez@ull.es M. ISABEL MARRERO RODRÍGUEZ imarrero@ull.es

Más detalles

1. Distribución Normal estándar

1. Distribución Normal estándar Distribución Normal estándar y cuadrados mínimos Universidad de Puerto Rico ESTA 3041 Prof. Héctor D. Torres Aponte 1. Distribución Normal estándar En efecto, todas las distribuciones Normales son lo mismo

Más detalles

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 1.- Cómo utilizar la tabla de la distribución Binomial? Supongamos que lanzamos al aire una moneda trucada. Con esta moneda la probabilidad de obtener cara es del 30%. La probabilidad que salga cruz será,

Más detalles