4. Medidas de tendencia central

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4. Medidas de tendencia central"

Transcripción

1 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable estadística con valores x 1, x 2,..., x k y frecuencias n 1, n 2,..., n k. Media aritmética (x) x = x 1n 1 + x 2 n x k n k = k i=1 x in i = k x i f i La media es muy sensible a los valores extremos de la variable, por lo que no es conveniente usar la media aritmética como medida central en distribuciones muy asimétricas. El valor de la media aritmética puede no pertenecer al conjunto de valores que puede tomar una variable aleatoria discreta. Por ejemplo, el número medio de hijos en las familias españolas es x = 1,2. i=1 Media geométrica (x G ) Esto implica que: x G = x n 1 1 x n x n k k log x G = 1 k n i log x i Observamos que si i t.q. x i = 0 x G = 0. Media cuadrática (x Q ) 1 x Q = x 2 1 n 1 + x 2 2n x 2 k n k = k 1 x2 i n i 10

2 Media armónica (x A ) x A = k i=1 n i x i Esta media no tiene sentido si i t.q. x i = 0. Prop. x A x G x x Q Mediana (Me).- Es la medida central que, supuestos los valores de la variable ordenados en forma creciente, deja igual número de observaciones inferiores que superiores a ella. Veamos cómo calcularla: En caso de que la frecuencia de cada valor es 1. - n o impar de valores: la mediana es el valor central. Ej. {1, 3, 7, 10, 15}, Me=7. - n o par de valores: la mediana es la media aritmética de las dos centrales. Ej. X = {1, 3, 5, 10, 21, 27, 36, 42}, Me= =15.5 Mediana de una variable discreta. 1. Dividimos el número de observaciones entre 2, /2. 2. Comprobamos si /2 está en la tabla de frecuencias absolutas acumuladas. 11

3 3. Si no está, estará comprendido entre dos. La mediana es el valor de la variable que corresponde al mayor. 4. Si está, la mediana vendrá dada por: Me= x k+x k+1 2. Mediana de una variable agrupada. 1. Dividimos el número de observaciones entre 2, /2. 2. Comprobamos si /2 está en la tabla de frecuencias absolutas acumuladas. 3. Si no está, /2 estará entre k y k+1. Para conocer la posición exacta de la mediana hay que interpolar: a k+1 a k k+1 k = x /2 k Me = a k + x 4. Si está, /2 será la frecuencia absoluta acumulada de un cierto intervalo, y la mediana será el extremo superior del mismo. 12

4 Moda (Md).- Es el valor de la variable que tiene más frecuencia. o tiene por qué ser única. Si hay dos modas, la distribución se llama bimodal. Si hay tres, trimodal, etc. Cuando la variable viene agrupada en intervalos de clase se habla de intervalo modal, que es el intervalo tal que en su histograma es el intervalo al que le corresponde al rectángulo de mayor área por unidad de base. La situación puntual viene dada por: δ 1 Md = a + (b a) δ 1 + δ 2 Cuartiles.- Son tres valores de la variable que dividen las observaciones en cuatro partes iguales. 1. Primer cuartil (P 1 ): es el valor de la variable que deja la cuarta 4 parte de las observaciones menores o iguales a él y las tres cuartas partes superiores a él. Se calcula de manera análoga a la mediana. 2. Segundo cuartil (P 2 ): es la mediana Tercer cuartil (P 3 ): deja inferiores o iguales a él las tres cuartas partes de las observaciones, y la cuarta parte restante es 4 superior a él. Se calcula de manera análoga a la mediana. 13

5 Deciles.- El decil k ésimo (D k ) es el valor de la variable que deja inferiores o iguales a él las k partes de las observaciones. Es decir, 10 el 10 k por 100, donde k = 1, 2,..., 9. Se calcula de forma análoga a la mediana. Centiles o percentiles.- El percentil k ésimo (P k ) es el valor de la variable que deja inferiores o iguales a él las k partes de las 100 observaciones, es decir, el k por 100, donde k = 1, 2,..., 99. Su cálculo se realiza como el de la mediana, los cuartiles y deciles. 5. Medidas de dispersión o concentración Las medidas de tendencia central reducen la información de la muestra a un solo valor, pero este valor a veces estará más próximo a la realidad y a veces menos. Por ejemplo, consideremos la variable estadística X que toma los valores 0, 100, 200, cada uno de ellos con frecuencia absoluta 1. La media aritmética será: x = = 100. Si tomamos ahora otra variable Y que toma los valores 99, 101, cada una de ellas una sola vez. En este caso la media aritmética será: y = = 100. Vemos que la media aritmética de las dos variables es 100. Sin embargo, la variable X está mucho más dispersa que la Y, por lo que la representatividad de y es mayor que la de x. Las medidas de dispersión o concentración nos van a cuantificar la representatividad de los valores centrales. otemos que los términos concentración y dispersión pueden ser utilizados indistintamente, pues alta dispersión es equivalente a baja concentración y baja dispersión equivale a alta concentración. 14

6 Varianza y desviación típica Varianza.- Viene dada por σ 2 = k i=1 (x i x) 2 n i La varianza toma siempre valores positivos. En caso de ser σ 2 = 0, todos los x i coinciden con la media aritmética, es decir, todas las observaciones están concentradas en un mismo punto, por lo que la dispersión es nula. Como sus unidades son las del cuadrado de la variable, se suele usar su raíz cuadrada, como vemos a continuación. Desviación típica.- Se define como la raíz cuadrada positiva de la varianza: k σ = σ 2 = i=1 (x i x) 2 n i Propiedades: 1. La varianza y la desviación típica son sensibles a la variación de cada uno de los valores que toma la variable. Es decir, si una puntuación cambia, también ellas cambiarán. La razón es que la varianza es función de cada uno de los valores x i de la variable. 2. La desviación típica tiene la propiedad de que en el intervalo (x 2σ, x + 2σ) se encuentra, al menos, el 75 % de las observaciones. 3. o es recomendable el uso de ninguno de ellas cuando tampoco lo sea el de la media como medida de tendencia central. 15

7 Coeficiente de variación Estas medidas de dispersión vienen dadas por números concretos (unidades en las que viene medida la variable), por tanto no son útiles para comparar las dispersiones de dos muestras expresadas en unidades diferentes. Por ejemplo, si medimos la masa de dos poblaciones, pero una de ellas la medimos en kilogramos (para una población de felinos) y otra en miligramos (para una población de hormigas) se tiene que habrá una diferencia enorme entre las medias de ambas poblaciones. También puede ocurrir que queramos comparar dos variables distintas, como el peso y la altura de una población de elefantes. Para esos casos utilizaremos medidas de dispersión dadas por números abstractos. Coeficiente de variación de Pearson.- Elimina la dimensionalidad de las variables, y tiene en cuenta la proporción existente entre medias y desviación típica. Viene dado por Propiedades: C.V. = σ x 1. Sólo se debe calcular para variables con todos los valores positivos. Todo índice de variabilidad debe ser no negativo. Sólo trabajamos con variables positivas para tener la seguridad de que x > Este coeficiente no puede hallarse si x = Este coeficiente a veces aparece multiplicado por o es invariante frente a cambios de origen. Es decir, si a los resultados de una medida le sumamos una cantidad positiva, b > 0, para tener Y = X + b, entonces C.V. Y < C.V. X. 5. Es invariante a cambios de escala. Así por ejemplo el coeficiente de variación de una variable medida en kilogramos es una cantidad adimensional, que no cambiará si la medición se realiza en miligramos. 16

8 Tipificación.- Este proceso consiste en restar la media x y dividir por su desviación típica σ a una variable dada X. Así se obtiene una nueva variable Z = X x σ de media z = 0 y desviación típica σ Z = 1 denominada variable tipificada. La variable tipificada Z carece de unidades, y permite comparar medidas que no son directamente comparables. Por ejemplo, nos podemos preguntar si un elefante es más grueso que una hormiga determinada, cada uno en relación a su población. Los coeficientes de variación sirven para comparar las variabilidades de dos conjuntos de valores (muestras o poblaciones), mientras que si queremos comparar dos individuos de cada uno de estos conjuntos, es necesario usar los valores tipificados. 6. Medidas de asimetría y apuntamiento Estudiamos ahora cómo saber si los datos que tenemos están distribuidos de forma simétrica son respecto a un valor central, o bien si la gráfica que representa la distribución de frecuencias no es simétrica. En caso de tener una distribución simétrica, cabe preguntarnos si la distribución es más o menos apuntada (larga y estrecha). Este apuntamiento lo mediremos comparando con cierta distribución de frecuencias que se considera normal. 1. Asimetría Distribuciones simétricas.- Una distribución de frecuencias es simétrica cuando valores equidistantes de un valor central tienen las mismas frecuencias. Un buen candidato para ese valor central es la mediana, ya que para variables continuas divide al histograma de frecuencias en dos partes de igual área. 17

2.5. Asimetría y apuntamiento

2.5. Asimetría y apuntamiento 2.5. ASIMETRÍA Y APUNTAMIENTO 59 variable Z = X x S (2.9) de media z = 0 y desviación típica S Z = 1, que denominamos variable tipificada. Esta nueva variable carece de unidades y permite hacer comparables

Más detalles

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA 1. INTRODUCCIÓN En el tema 1 veíamos que la distribución de frecuencias tiene tres propiedades: tendencia central, variabilidad y asimetría. Las medidas de tendencia central las hemos visto en el tema

Más detalles

Medidas de Dispersión

Medidas de Dispersión Medidas de Dispersión Revisamos la tarea de la clase pasada Distribución de Frecuencias de las distancias alcanzadas por las pelotas de golf nuevas: Dato Frecuencia 3.7 1 4.4 1 6.9 1 3.3 1 3.7 1 33.5 1

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente.

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente. Página EJERCICIOS Y PROBLEMAS PROPUESTOS PARA PRACTICAR Deseamos hacer una tabla con datos agrupados a partir de datos, cuyos valores extremos son 9 y. a) Si queremos que sean 0 intervalos de amplitud,

Más detalles

Estadística descriptiva. Representación de datos descriptivos

Estadística descriptiva. Representación de datos descriptivos 6 Estadística descriptiva. Representación de datos descriptivos Alberto Rodríguez Benot Rodolfo Crespo Montero 6.1. Introducción Tal como vimos en la introducción, la estadística descriptiva comprende

Más detalles

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable.

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable. 3. MEDIDAS DE TENDENCIA CENTRAL Con estas medidas se persigue reducir en pocas cifras significativas el conjunto de observaciones de una variable y describir con ellas ciertas características de los conjuntos,

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

Tema 2: Estadísticos

Tema 2: Estadísticos Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL 1) ASIMETRÍA MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL Es una medida de forma de una distribución que permite identificar y describir la manera como los datos tiende a reunirse de acuerdo con la

Más detalles

CONCEPTOS BÁSICOS DE ESTADÍSTICA

CONCEPTOS BÁSICOS DE ESTADÍSTICA Organización de la información Presentación de datos Realizado el experimento o finalizada la investigación, el investigador ha recopilado un conjunto de datos u observaciones los cuales requieren ser

Más detalles

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión Estadística Descriptiva SESIÓN 12 Medidas de dispersión Contextualización de la sesión 12 En la sesión anterior se explicaron los temas relacionados con la desviación estándar, la cual es una medida para

Más detalles

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Sesión de Residentes 13 de febrero, 2012 ÍNDICE Diferencia entre población y muestra. Diferencia

Más detalles

Estadística para el análisis de los Mercados S2_A1.1_LECV1

Estadística para el análisis de los Mercados S2_A1.1_LECV1 5. Parámetros estadísticos. 5.1. Parámetros de centralización. Estos parámetros nos indican en torno a que puntos se encuentran los valores de la variable cuantitativa en estudio. Es la forma de representar

Más detalles

3. VARIABLES ALEATORIAS

3. VARIABLES ALEATORIAS . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad

Más detalles

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable.

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable. TEMA 3: ESTADÍSTICA DESCRIPTIVA 3.1 Conceptos fundamentales Es el conjunto de procedimientos y técnicas empleadas para recolectar, organizar y analizar datos, los cuales sirven de base para tomar decisiones

Más detalles

Tema 3. DESCRIPCIÓN DE UNA VARIABLE: MEDIDAS DE LOCALIZACIÓN

Tema 3. DESCRIPCIÓN DE UNA VARIABLE: MEDIDAS DE LOCALIZACIÓN Tema 3. DESCRIPCIÓN DE UNA VARIABLE: MEDIDAS DE LOCALIZACIÓN CONTENIDO: 1. MODA 2. MEDIANA 3. MEDIA ARITMÉTICA 4. CUANTILES 5. DIAGRAMA DE CAJA Lecturas recomendadas: PP. 13-18 de La Estadística en Cómic,

Más detalles

EJERCICIOS RESUELTOS TEMA 7

EJERCICIOS RESUELTOS TEMA 7 EJERCICIOS RESUELTOS TEMA 7 7.1. Seleccione la opción correcta: A) Hay toda una familia de distribuciones normales, cada una con su media y su desviación típica ; B) La media y la desviaciones típica de

Más detalles

Estadística. Estadística

Estadística. Estadística Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

Definiciones generales

Definiciones generales Deiniciones generales Objetivo Brindar al participante los conceptos teóricos básicos sobre Media Aritmética para datos no agrupados y agrupados En esta sesión Conceptos básicos de Media Aritmética para

Más detalles

Estadística Avanzada y Análisis de Datos

Estadística Avanzada y Análisis de Datos 1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son

Más detalles

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág.

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág. ÍNDICE CAPITULO UNO Pág. Concepto de Estadística 1 Objetivo 1 Diferencia entre estadísticas y estadística 1 Uso de la estadística 1 Divisiones de la estadística 1 1. Estadística Descriptiva 1 2. Estadística

Más detalles

TEMAS SELECTOS DE MATEMÁTICAS II

TEMAS SELECTOS DE MATEMÁTICAS II MATERIAL PARA PREPARAR EL EXAMEN DE TEMAS SELECTOS DE MATEMÁTICAS II Profesor: Rubén Oscar Costiglia Garino PREFECO David Alfaro Siqueiros MEDIAS 1. Dados los números 13 y 23 calcula: a. La media aritmética

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16

ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16 ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16 Es el conjunto sistemático de procedimientos para la observación, registro, organización, síntesis y análisis e interpretación de los fenómenos

Más detalles

7. Distribución normal

7. Distribución normal 7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o

Más detalles

UNIDAD Nº2 MEDIDAS DE TENDENCIA CENTRAL

UNIDAD Nº2 MEDIDAS DE TENDENCIA CENTRAL UIDAD º2 MEDIDAS DE TEDECIA CETRAL 1.- MEDIDAS DE TEDECIA CETRAL O POSICIÓ 1.1.- Definición.- Es un estadígrafo en donde el conjunto de la información tiende a concentrarse en el centro de la distribución,

Más detalles

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS I. CONTENIDOS: 1. Relación entre valores numéricos.. Cálculo de media, mediana y moda en datos agrupados y no agrupados. 3. La media, mediana y moda en variable

Más detalles

+ f 2. + f 3. p i. =h i 100. F i. = f i. H i. = h i. P i. = p i

+ f 2. + f 3. p i. =h i 100. F i. = f i. H i. = h i. P i. = p i OCIOES de ESTADÍSTICA En las tablas estadísticas se pueden tabular, entre otros, los siguientes aspectos: La frecuencia absoluta ( f i ), es decir, el número de veces que aparece un determinado valor en

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

TEMA 3. INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA

TEMA 3. INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA TEMA 3. INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA 1. Concepto de estadística 1.1. De acuerdo con el fin del análisis: estadística descriptiva vs. inferencial 1.2. De acuerdo con la metodología aplicada:

Más detalles

ANÁLISIS ESTADÍSTICO. Estadística descriptivos: Tablas, gráficos, estadísticos descriptivos. Jorge Fallas jfallas56@gmail,com

ANÁLISIS ESTADÍSTICO. Estadística descriptivos: Tablas, gráficos, estadísticos descriptivos. Jorge Fallas jfallas56@gmail,com ANÁLISIS ESTADÍSTICO Estadística descriptivos: Tablas, gráficos, estadísticos descriptivos Jorge Fallas jfallas56@gmail,com 2010 1 Describiendo el set de datos Conocer contexto de los datos Variable, nivel

Más detalles

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25 1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 24 Dada la siguiente tabla de ingresos: Ingresos mensuales Frecuencia Menos de 1000 35 [1000, 1100) 70 [1100,

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos.

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos. La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

Guía de Matemática Cuarto Medio

Guía de Matemática Cuarto Medio Guía de Matemática Cuarto Medio Aprendizaje Esperado: 1. Conocen distintas maneras de organizar y presentar información incluyendo el cálculo de algunos indicadores estadísticos, la elaboración de tablas

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL DEFINICIÓN DE VARIABLE Una variable estadística es cada una de las características o cualidades que poseen los individuos de una población. TIPOS DE VARIABLE ESTADÍSTICAS Ø Variable

Más detalles

Matemáticas y Estadística para Finanzas Prof.: H. Ernesto Sheriff, PhD(c) M.Sc.

Matemáticas y Estadística para Finanzas Prof.: H. Ernesto Sheriff, PhD(c) M.Sc. Matemáticas y Estadística para Finanzas Prof.: H. Ernesto Sheriff, PhD(c) M.Sc. Sesión 3 INTRODUCCIÓN A LA ESTADÍSTICA 1 Estadística Aplicada a los Negocios Motivación: usos de la estadística Encuestas

Más detalles

MODELO DE RESPUESTAS Objetivos del 1 al 9

MODELO DE RESPUESTAS Objetivos del 1 al 9 PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ

Más detalles

BASES ESTADÍSTICAS APLICADAS A LA PREVENCIÓN

BASES ESTADÍSTICAS APLICADAS A LA PREVENCIÓN Bases Estadísticas Aplicadas a la Prevención BASES ESTADÍSTICAS APLICADAS A LA PREVENCIÓN La estadística recoge, organiza, resume y analiza datos, obteniendo conclusiones válidas. En prevención de riesgos

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249 Hoja 3: robabilidad y variables aleatorias 1. La probabilidad de que un enfermo se recupere tomando un nuevo fármaco es 0.95. Si se les administra a 8 enfermos, hallar: a La probabilidad de que se recuperen

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA VICERRECTORADO ACADÉMICO ARAGUA VENEZUELA

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA VICERRECTORADO ACADÉMICO ARAGUA VENEZUELA REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA VICERRECTORADO ACADÉMICO ARAGUA VENEZUELA FACULTAD: ESCUELA: ASIGNATURA: CODIGO: CIENCIAS ADMINISTRATIVAS Y SOCIALES ADMINISTRACION

Más detalles

CAPITULO CAPITUL 2 MEDIDA MEDID S

CAPITULO CAPITUL 2 MEDIDA MEDID S UNIVERSIDAD PERUANA LOS ANDES Facultad de Ciencias Administrativas y Contables CAPITULO 2 MEDIDAS ESTADISTICAS estadística Ybnias Elí Grijalva Yauri ybnias@infonegocio.net.pe 2 Introducción En el capítulo

Más detalles

TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION

TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION 1. Percentiles, cuartiles y deciies. 2. Estadígrafos de Posición. 3. Sesgo y curtosis o de pastel. Pictogramas. OBJETIVOS DE UNIDAD GENERALES. Que el futuro

Más detalles

Tema 1 ESTADÍSTICA DESCRIPTIVA

Tema 1 ESTADÍSTICA DESCRIPTIVA Tema 1 ESTADÍSTICA DESCRIPTIVA Cuando coloquialmente se habla de Estadística, se suele pensar en una relación de datos numéricos presentada de forma ordenada y sistemática. Esta idea es la consecuencia

Más detalles

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas Datos no agrupados: x 1, x 2,...,x n x= x 1 +x 2 +... x n n n i=1 = n Ejemplo: dados los valores: X = 1, 4, 16, 11, 3, 6, su media es

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMERICA) MEDIDAS DE TENDENCIA CENTRAL 20/05/2008 Ing. SEMS 2.1 INTRODUCCIÓN En el capítulo anterior estudiamos de qué manera los

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Medidas de Variabilidad Trabajo a realizar de este tema: En Excel 2003 hoja 1, prepara un(os) cuadro(s) sinópticos o mapas conceptuales o mapas mentales que sinteticen éste capítulo. En la hoja 2 y en

Más detalles

CATEDRA DE EPIDEMIOLOGÍA

CATEDRA DE EPIDEMIOLOGÍA CATEDRA DE EPIDEMIOLOGÍA NOCIONES DE ESTADÍSTICA AÑO 2009 MATERIAL ELABORADO POR EL CUERPO DOCENTE DE LA CÁTEDRA. COORDINACIÓN: PROF. DRA. GRACIELA ETCHEGOYEN 1 NOCIONES DE ESTADÍSTICA ESTADISTICA Lic.

Más detalles

PROBABILIDAD. Unidad I Ordenamiento de la Información

PROBABILIDAD. Unidad I Ordenamiento de la Información 1 PROBABILIDAD Unidad I Ordenamiento de la Información 2 Captura de datos muestrales Conceptos básicos de la estadística 3 Población (o universo): Totalidad de elementos o cosas bajo consideración Muestra:

Más detalles

Yenny Bayona Sambrano, Edwin Cerna Figueroa, Kelva Llanos Miranda, Luis Montesinos Ruiz, Silvia Pajuelo Rojas

Yenny Bayona Sambrano, Edwin Cerna Figueroa, Kelva Llanos Miranda, Luis Montesinos Ruiz, Silvia Pajuelo Rojas Estadística I: desde un enfoque por competencias / Yenny Bayona Sambrano, Edwin Cerna Figueroa, Kelva Llanos Miranda, Luis Montesinos Ruiz,Silvia Pajuelo Rojas. -- 2a ed. -- Lima: Universidad San Ignacio

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

LA DISTRIBUCIÓN NORMAL

LA DISTRIBUCIÓN NORMAL LA DISTRIBUCIÓN NORMAL En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad que con más frecuencia aparece

Más detalles

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

Estadística descriptiva: problemas resueltos

Estadística descriptiva: problemas resueltos Estadística descriptiva: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1 Qué veremos 1. OBJECTIVOS DEL CURSO. DEFINICIONES IMPORTANTES 2. TIPOS DE VARIABLES 3 5 1. Estadísticos de tendencia central 2. Estadísticos de posición 3. Estadísticos de variabilidad/dispersión

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 2: Estadística descriptiva Tema 2: Estadísticos 1 Medidas La finalidad de las medidas de posición o tendencia central (centralización) es encontrar unos valores que sinteticen

Más detalles

Nociones de Estadística Descriptiva. Medidas de tendencia central y de variabilidad

Nociones de Estadística Descriptiva. Medidas de tendencia central y de variabilidad Nociones de Estadística Descriptiva. Medidas de tendencia central y de variabilidad Introducción a la estadística descriptiva La estadística descriptiva ayuda a describir las características de grupos

Más detalles

2. FRECUENCIAS. 2.1. Distribución de Frecuencias.

2. FRECUENCIAS. 2.1. Distribución de Frecuencias. 2. FRECUENCIAS 2.1. Distribución de Frecuencias. El manejo de la información requiere de la ordenación de datos de tal forma que permita la obtención de una forma más fácil la obtención de conclusiones

Más detalles

Distribución de Probabilidad Normal

Distribución de Probabilidad Normal Distribución de Probabilidad Normal Departamento de Estadística-FACES-ULA 22 de Diciembre de 2013 Introducción La distribución normal es quizás la distribución de probabilidad para variables aleatorias

Más detalles

Julio Deride Silva. 27 de agosto de 2010

Julio Deride Silva. 27 de agosto de 2010 Estadística Descriptiva Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de agosto de 2010 Tabla de Contenidos Estadística Descriptiva Julio Deride

Más detalles

Estadística Manual de teoría y problemas

Estadística Manual de teoría y problemas Dra. Josefa Marín Fernández Departamento de Estadística e Investigación Operativa Universidad de Murcia Estadística Manual de teoría y problemas Licenciatura en Documentación Curso 2010-11 Contenidos

Más detalles

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO Anejo Análisis estadístico de temperaturas Análisis estadístico de temperaturas - 411 - D.1 INTRODUCCIÓN Y OBJETIVO El presente anejo tiene por objeto hacer un análisis estadístico de los registros térmicos

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

Tema 3: Estadística Descriptiva

Tema 3: Estadística Descriptiva Tema 3: Estadística Descriptiva Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Estadística Descriptiva Curso 2008-2009 1 / 27 Índice

Más detalles

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1 Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

EJERCICIOS PARA PREPARAR EL CONTROL DE MATEMÁTICAS. a) Agrupa los datos en cuatro clases y escribe la tabla de frecuencias.

EJERCICIOS PARA PREPARAR EL CONTROL DE MATEMÁTICAS. a) Agrupa los datos en cuatro clases y escribe la tabla de frecuencias. EJERCICIOS PARA PREPARAR EL CONTROL DE MATEMÁTICAS Estos ejercicios se pueden presentar el día del examen, en hojas sueltas, no en el cuaderno. Además puedes añadir todos los ejercicios que tú realices

Más detalles

3. Análisis univariable y bivariable

3. Análisis univariable y bivariable FUOC P01/71039/00748 36 Investigación descriptiva: análisis de información 3. Análisis univariable y bivariable 3.1. Análisis univariable Como se ha visto, los métodos de análisis univariable se utilizan

Más detalles

a).- Si el número de los valores en un conjunto de datos no agrupados es impar, La mediana es determinada de la siguiente manera:

a).- Si el número de los valores en un conjunto de datos no agrupados es impar, La mediana es determinada de la siguiente manera: La mediana de un conjunto de valores es el valor del elemento central del conjunto. Para encontrar la mediana, Primero arreglar los valores en el conjunto de acuerdo a su magnitud; es decir arreglar los

Más detalles

Unidad III Variables Aleatorias Unidimensionales

Unidad III Variables Aleatorias Unidimensionales Unidad III Variables Aleatorias Unidimensionales En el capítulo anterior se examinaron los conceptos básicos de probabilidad con respecto a eventos que se encuentran en un espacio muestral. Los experimentos

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 8 Distribución normal estándar y distribuciones relacionadas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar los conceptos de la distribución

Más detalles

Tema 3. Introducción a la estadística descriptiva: Ejercicios

Tema 3. Introducción a la estadística descriptiva: Ejercicios Tema 3. Introducción a la estadística descriptiva: Ejercicios Profesora Esther Chiner Sanz BIBLIOGRAÍA Amón, J. (1999): Estadística para psicólogos I. Estadística descriptiva. Madrid, España: Pirámide.

Más detalles

Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud.

Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud. 1. TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística Es la ciencia que estudia conjunto de datos obtenidos de la realidad. Estos datos son interpretados mediante tablas, gráficas y otros parámetros tales como

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Bloque A JUNIO 2007 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

La distribución Normal

La distribución Normal La distribución Normal Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística, Investigación Operativa Aplicadas y Calidad

Más detalles

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula

Más detalles

Estadística Inga Patricia Juárez, 2017 MEDIDAS DE TENDENCIA CENTRAL

Estadística Inga Patricia Juárez, 2017 MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central nos proporcionan la descripción significativa de un conjunto de observaciones. Como su nombre lo indica, son datos de una variable que tienden

Más detalles

Sucesiones. Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro.

Sucesiones. Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. Sucesiones Concepto de sucesión Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. a 1, a 2, a 3,..., a n 3, 6, 9,..., 3n Los números a 1, a 2, a 3,...; se llaman términos

Más detalles

PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE.

PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE. PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE. ESPACIO CURRICULAR : PROBABILIDAD Y ESTADÍSTICA UNIDAD Nº I ESTADÍSTICA DESCRIPTIVA AÑO: 2010

Más detalles

Tema 1: Análisis de datos univariantes

Tema 1: Análisis de datos univariantes Tema 1: Análisis de datos univariantes 1 En este tema: Conceptos fundamentales: muestra y población, variables estadísticas. Variables cualitativas o cuantitativas discretas: Distribución de frecuencias

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

Capítulo 1. El caso del Método de Pesada

Capítulo 1. El caso del Método de Pesada Capítulo 1. El caso del Método de Pesada En uno de los viajes que realizaron Norberto y Daniel, profesores de Química Analítica y de Probabilidad y Estadística, respectivamente, Norberto le pidió a Daniel

Más detalles

Unidad Didáctica VII: Estadística Descriptiva Unidimensional

Unidad Didáctica VII: Estadística Descriptiva Unidimensional Unidad Didáctica VII: Estadística Descriptiva Unidimensional Variable estadística En sus orígenes, la Estadística era la "ciencia del Estado". El nombre de Estadística alude al enorme interés de esta rama

Más detalles

Datos de tipo cuantitativo

Datos de tipo cuantitativo Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 2: medidas de tipo paramétrico Documento Datos de tipo cuantitativo Son aquellos que están representados por números.

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

ESTADISTICA POR REGLA DE TRES

ESTADISTICA POR REGLA DE TRES ESTADISTICA POR REGLA DE TRES La Estadística no es otra cosa que la mensurabilidad de los hechos aleatorios, es tratar de sistematizar lo que de hecho no es un sistema, es crear un número de algo que no

Más detalles

(Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B)

(Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B) Estadística (Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B) 1. Conceptos Básicos La Estadística es la ciencia que se encarga de recopilar y ordenar datos referidos a diversos fenómenos

Más detalles

Estadística descriptiva

Estadística descriptiva Estadística descriptiva José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 Índice I 1 Introducción 1 Generalidades 2 Tipos de datos 3 Objetivos de la estadística descriptiva

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Seguro que alguna vez has tenido en tus manos algún cuadernillo de pasatiempos o has realizado algún test psicotécnico

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva ESTADÍSTICA DESCRIPTIVA 1 Sesión No. 8 Nombre: Medidas de centralización Contextualización En la sesión anterior has conocido una de las medidas de tendencia central denominada

Más detalles

UNIVERSIDAD DEL CARIBE UNICARIBE. Escuela de Educación. Programa de Asignatura

UNIVERSIDAD DEL CARIBE UNICARIBE. Escuela de Educación. Programa de Asignatura UNIVERSIDAD DEL CARIBE UNICARIBE Escuela de Educación Programa de Asignatura Nombre de la asignatura : Estadística I Carga académica : 4 créditos Modalidad : Semipresencial Clave : MAT-241 Pre-requisito

Más detalles