Capítulo 7. Distribución Binomial y de Poisson. 7.1 Distribución Binomial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo 7. Distribución Binomial y de Poisson. 7.1 Distribución Binomial"

Transcripción

1 Caítulo 7 Distribució Biomial y de oisso 7. Distribució Biomial E la física exerimetal, la distribució de Gauss es la más imortate de las distribucioes límites, si embargo existe otras distribucioes ue tiee gra imortacia ráctica y teórica. Tal es el caso de la distribució biomial, ue or su simlicidad es ua excelete itroducció a muchas roiedades de las distribucioes. Suogamos ue realizamos u exerimeto ue cosiste e arrojar dados y llamamos E (éxito) cuado se obtiee u y F (fracaso) cuado se obtiee cualuier otro úmero. Es bie coocido ue la robabilidad de obteer cada uo de los úmeros al arrojar u dado es /.Los resultados osibles de este exerimeto so: - ue o salga igú : FFF - ue salga u : EFF, FEF, FFE - ue salga dos : EEF, EFE, FEE - ue salga tres : EEE Si reetimos el exerimeto muchas eces, ecotraremos ua distribució límite ue os dará la robabilidad ue e ua tirada obtegamos tres co 0,, o Calculemos etoces la robabilidad de obteer cada uo de estos resultados. Comecemos rimero co la robabilidad de obteer tres arrojado tres dados. Como los dados so ideedietes la robabilidad de obteer tres será: ( ) 0.4%

2 Calculemos ahora la robabilidad de obteer dos. Cómo imos más arriba hay tres formas de obteer dos. Calculemos la robabilidad de ue ocurra ua de ellas, or ejemlo EEF. La robabilidad de ue el rimer dado muestre u es / y lo mismo ale ara el segudo. La robabilidad de ue el tercero o muestre u es 5/. Luego: ( ) %. 5 EEF La robabilidad ara las otras dos ocioes es la misma: ( ) ( ) %. 5.% 5 EFE EFE or lo tato la robabilidad de obteer dos será: ( ) %.9 5 De la misma maera odemos calcular la robabilidad de obteer u solo o iguo: ( ) % ( ) %

3 roiedades: Este exerimeto es u ejemlo de la distribució biomial orue osee las siguietes a- El exerimeto costa de esayos idéticos ( dados idéticos) b- Cada esayo tiee dos resultados osibles (ue salga el úmero ue uiero (E) o ue o salga(f)) c- La robabilidad de teer éxito es costate de u esayo a otro y la robabilidad de u fracaso es (- ) d- Los esayos so ideedietes (lo ue sale e u dado o deede de lo ue sale e otro) e- La ariable aleatoria es el úmero de éxitos ue se obtiee e esayos. or ejemlo el lazamieto de moedas es tambié u exerimeto biomial orue satisface las roiedades euciadas ateriormete. Deduzcamos etoces la distribució de robabilidad biomial. Imagiemos ue realizamos ideedietes ruebas tal como arrojar dados o moedas. Cada rueba uede teer arios resultados. U dado uede mostrar úmeros del al, las moedas uede mostrar la cara o seca. Vamos a llamar éxito (E) al resultado ue os iteresa y fracaso (F) a cualuier otro resultado. De este modo e el ejemlo aterior u éxito era obteer u, e las moedas el éxito uede ser obteer cara. Llamaremos a la robabilidad de éxito y ( ) a la robabilidad de falla. U resultado osible se uede reresetar de la siguiete maera: EEFFEEEFEEEE FFF osicioes Nos regutemos ahora cuál es la robabilidad de obteer éxitos e ruebas. Ua reresetació articular de esa situació es: EEEE..EEEE FFF..FFFF exitos - fracasos

4 Como los esayos so ideediete y la robabilidad de éxitos () es costate, la robabilidad de esta situació es: térmios - térmios Cualuier otra situació co éxitos aarecerá como u re-arreglo de letras E y F y tedrá la robabilidad ue acabamos de calcular. La reguta es etoces cuátos arreglos de letras E y ( - ) letras F so osibles. La resuesta es:!!( )! ue rereseta el úmero de formas e ue se uede extraer u subcojutos a artir de u cojuto dado. Resulta etoces ue la distribució de robabilidad biomial está dada or la siguiete exresió: ) B, ( ) ( () Esta distribució recibe el ombre de biomial or su coexió co la bie coocida exasió biomial. El coeficiete biomial aarece e la exresió biomial: ( + ) 0 Obsérese ue como +, la distribució de robabilidad biomial satisface la codició de ormalizació.

5 7. Valor medio y desiació estádar Si reetimos uestro exerimeto ue cosiste e ruebas muchas eces, es atural regutarse cual será el úmero romedio de éxitos. ara obteer este alor medio sumamos sobre todos los osibles alores de cada uo multilicado or su robabilidad. B 0 Como el rimer térmio de la suma es 0:!, ( ) 0 ( )!! ( )! (! ) (! ) ( )! (! ) (! ) y 0 ( y)! y!! y y De la misma forma se uede calcular la ariaza: σ ( ) caso: Cuado /, el úmero romedio de éxitos es / y es fácil demostrar ue e este ( ) ( ) B B,/,/ Esto uiere decir ue e este caso la distribució es simétrica. Alrededor del alor medio /. E geeral, es decir cuado, la distribució biomial o es simétrica. Esto sigifica ue, e geeral, o es el alor más robable.

6 Ejemlo: Suoga ue u comercio ue ede roductos electróicos recibe 000 fusible de A y sabe ue u 5 % so defectuosos. Si se toma aleatoriamete fusibles, cual es la robabilidad ue de ellos sea defectuosos? Es claro ue la robabilidad de éxito, es decir ue u fusible sea defectuoso es 0.05, or lo tato debo calcular: ( ) B 4 ( ) ( 0.05) ( 0.95) 0. 4,0.05 or lo tato hay ua robabilidad del 4, % de ue de los fusibles sea defectuosos. 7. Aroximació Gaussiaa a la distribució biomial B,05 () B,0.5() 0. A esar de sus diferecias, la distribució ormal y la biomial tiee ua coexió imortate. E la Figura 7. se muestra ua distribució biomial co /4 y tres alores distitos de (,, 48). E cada caso se muestra tambié, sueruesta, la corresodiete distribució ormal co la misma media y desiació estádar. Se obsera ue ara 48 las dos distribucioes so casi idistiguibles. Esto uiere decir ue ara u alor fijo de, cuado es grade, la biomial se aroxima a la ormal co el mismo alor medio y la misma desiació estádar: ( ) G ( ) lim B, X, σ B 48,05 () X σ ( ) Figura 7.: Distribució Biomial

7 Esta roiedad es muy útil ya ue hacer cálculos co la distribució biomial ara > 0 es bastate tedioso, mietras ue los cálculos co la fució Gaussiaa so siemre más simle. Ejemlo: Se uiere coocer la robabilidad de obteer 5 caras al arrojar 40 moedas, debemos calcular: B 40,/ 40! 5 5!5! ( ) 40 Que desués de u cálculo tedioso da. %. or el otro lado si ueremos usar la aroximació Gaussiaa sabemos ue: x 40 0 y σ 40, ( 4.5 < X < 5.5) (.4 < Z <.74).9% ara todo fi ráctico esta aroximació es excelete. 7.4 Distribució de oisso Suogamos ue se cueta co ua muestra radiactia y u detector caaz de cotar el úmero de artículas de decaimieto exulsadas e u iteralo de tiemo t. Si el detector es cofiable, o tedrá icertidumbre asociada. ero si se reite el exerimeto, seguramete se obtedrá u alor diferete de. Esta ariació e el úmero o refleja icertidumbres e el coteo sio ue refleja el carácter aleatorio del roceso de decaimieto radiactio. Cada úcleo radiactio tiee ua robabilidad defiida de decaimieto e cualuier iteralo de tiemo t. Si coociéramos esta robabilidad y el úmero de úcleos e la muestra se odría calcular el úmero romedio de decaimietos eserados e el tiemo t. Si embargo cada úcleo decae e u tiemo aleatorio y or lo tato e u dado iteralo de tiemo t el úmero de decaimietos uede diferir del úmero medio eserado.

8 Uo se reguta etoces ue asa si reetimos el exerimeto muchas eces. Es de eserar ue la distribució de resultados sea la distribució biomial. Si hay úcleos y la robabilidad de ue cada uo decaiga es, etoces la robabilidad de obteer decaimietos es la robabilidad de éxitos e ruebas. E estos exerimetos es muy grade ( ~ 0 0 ue es el úmero de úcleos) y la robabilidad de éxitos (decaimietos) es muy chica ( << ), lo ue hace muy difícil la ealuació de la distribució biomial. eor aú, e geeral i el úmero de eetos osibles i la robabilidad so coocidas. Lo ue se uede coocer usualmete es el úmero medio de eetos eserados () e u iteralo de tiemo o su estimació Calculemos etoces el límite de la distribució biomial cuado es ifiitamete grade, << y > 0 ermaece costate: B ( ),!!! ( )!! ( )! ( ) ( ) ara el segudo factor de este roducto se tiee: lim! ( ) lim! ( )( )...( x ) ues << e la regió de iterés. ara el cuarto factor resulta: lim 0 ( ) ( ) lim 0 ara el último factor: lim 0 / ( ) ( ) ( ) lim 0 / ( ) e lim 0 e

9 Combiado estas aroximacioes, ecotramos ue la distribució biomial tiee como límite a la distribució de oisso: lim B, 0!! ( ) ( ) e e ( ) La distribució de oisso es ua distribució límite ue describe los resultados de exerimetos e los cuales es ecesario cotar eetos ue ocurre de maera aleatoria ero a ua tasa romedio defiida. Obiamete esa fució distribució cumle co la codició de ormalizació: 0! ( ) e e e e 0! Valor medio y desiació estádar ara establecer el sigificado del arámetro, calculemos el úmero medio de coteo, ue se eseraría obteer desués de reetir el exerimeto muchas eces. e 0 0! ( ) El rimer térmio de esta suma es cero, or lo tato: ero: ( ) e ( )! e!!!

10 resultado fialmete: Esto uiere decir ue el arámetro ue caracteriza la distribució de oisso es el úmero medio de coteo eserado si se reite el exerimeto muchas eces. Calculemos ahora la desiació estádar asociada a los coteos. Se sabe ue: σ ( ) ( ) De la misma maera ue se calculo, es osible calcular + ue: σ, resultado fialmete Se uede demostrar ue si uo realiza u solo exerimeto y obtiee u alor ara el úmero de eetos e u iteralo T, la resuesta ara el coteo medio eserado e ese iteralo es: ± Alguas eces se cooce la tasa media R a la cual los eetos ue estamos cotado debería ocurrir. E este caso, el úmero medio de eetos eserados e u tiemo T es: tasa xtiemo RT Ejemlo: Decaimieto radiactio. Suogamos ue u cotador Geiger detecta a ua razó romedio de ulsos or miuto. Nos regutamos: - Cuál es el alor medio eserado ara el úmero de artículas emitidos e medio miutos? Como coocemos R, resulta: RT

11 - Cuál es la robabilidad de obserar a lo sumo artículas? 0! ( ) e e + e + e ! - Cuál es la robabilidad de obserar al meos artículas? ( ) ( ) Aroximació Gaussiaa a la distribució de oisso () Es fácilmete obserable de la Figura 7. ue a medida ue crece, la distribució de oisso aduiere ua forma de camaa, bastate simétrica alrededor de su alor medio Recuerde ue la fució solo está defiida ara alores eteros y ue las líeas ue coecta los utos so ua guía ara su ojo. De hecho se uede demostrar ue cuado tiee a ifiito, la distribució de oisso se aroxima a la Gaussiaa co el mismo alor medio y desiació estádar. Esto es: ( ) G ( ) lim X, σ X y σ Figura 7.: Fució distribució de oisso ara distitos. Esta aroximació, como e el caso de la distribució biomial, es útil ara realizar cálculos ue de otra maera sería tediosos.

12 Ejemlo: Tomemos 4 y calculemos Co la aroximació Gausiaa: 4 ( ) e.9% 7! G ( 7.5 X 7.5) G(0.97 Z.0) 0.0 % 4,8 7.7 Comaració de las distribucioes de oisso y biomial co la distribució ormal Biomial oisso Gaussiaa Variable Discreta Discreta Cotiua Simetría Sólo cuado / Es siemre asimétrica alrededor de su alor Siemre alrededor del alor medio medio Valor más No es el alor medio, No es el alor medio Siemre el alor medio robable exceto cuado ½ Queda esecificada or Dos arámetros: y U arámetro: Dos arámetros: y σ

Consideremos los siguientes experimentos aleatorios

Consideremos los siguientes experimentos aleatorios 69 Veremos e lo que sigue uevas variables aleatorias discretas. Estas variables y sus distribucioes se utiliza como modelos e muchas alicacioes estadísticas. Distribució Biomial Cosideremos los siguietes

Más detalles

Técnicas experimentales de Física General 1/11

Técnicas experimentales de Física General 1/11 La distribució de Itroducció. Ejemplo. Defiició geeral de. Grados de libertad. reducido. La distribució de. Probabilidades de. Ejemplos: 1. Distribució de Poisso.. Bodad de u ajuste. Técicas eperimetales

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

Recordemos para la distribución Binomial

Recordemos para la distribución Binomial U estimador utual atural de la roorció e u exerimeto biomial se ecuetra dado or el estadístico roorció =x/, dode x rereseta el úmero de éxitos e ruebas o exerimetos realiados. Etoces la roorció de la muestra

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles

5 Variables aleatorias bidimensionales y de mayor dimension.

5 Variables aleatorias bidimensionales y de mayor dimension. 5 Variables aleatorias bidimesioales de maor dimesio. Edgar Acua ESMA 4 Edgar Acua Sea S el esacio muestral de u eerimeto aleatorio. Sea s s dos ucioes que asiga u umero real a cada elemeto s de S. Etoces

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

VALUACIÓN DE BONOS. 2. Valuación de bonos con cupón de intereses

VALUACIÓN DE BONOS. 2. Valuación de bonos con cupón de intereses 1 VALUACIÓN DE BONOS 2. Valuació de boos co cuó de itereses El tíico boo del cual os ocuamos ahora osee las siguietes características básicas: 1. Tiee u valor omial o facial que es la suma que el emisor

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA TEMA 6. INTRODUCCIÓN A LA INFERENCIA ETADÍTICA 6.. Itroducció 6.. Coceptos básicos 6.3. Muestreo aleatorio simple 6.4. Distribucioes asociadas al muestreo 6.4.. Distribució Chi-Cuadrado 6.4.. Distribució

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. Població: El cojuto de todos los elemetos o idividuos que posee ua determiada característica o cualidad de iterés. Existe situacioes e las que o es posible aalizar

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios 1. Experimetos aleatorios U experimeto se llama aleatorio cuado o se puede predecir su resultado; además, si se repitiese el mismo experimeto e codicioes aálogas, los resultados puede diferir. a) El resultado

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL.

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. E estadística, la distribució biomial es ua distribució de probabilidad discreta que mide el úmero de éxitos e ua secuecia de esayos

Más detalles

Capítulo 3: Inferencia

Capítulo 3: Inferencia Caítulo 3: Iferecia I N T R O U C C I O N E S T I M A C I O N E M A X I M A V E R O S I M I L I T U C A S O G A U S S I A N O E S C O N O C I A E S T I M A C I O N B A Y E S I A N A Secció 3. Itroducció

Más detalles

DISTRIBUCIONES DISCRETAS. PROBABILIDAD BINOMIAL

DISTRIBUCIONES DISCRETAS. PROBABILIDAD BINOMIAL DISTRIBUCIONES DISCRETAS. ROBABILIDAD BINOMIAL. Hallar la media y la variaza de ua variable x que tiee la siguiete fució de robabilidad: X 7 5 Media o Eseraza matemática. µ x i i ' + ' + 7 '5 4' i Variaza

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS PROYECTO DE CARRERA: INGENIERÍA INDUTRIAL AIGNATURA: ETADÍTICA II UNIDAD III: TECNICA DE ETIMACIÓN ETIMACIÓN POR INTERVALO INTRODUCCIÓN E temas ateriores se estableciero las bases que ermite a los estadísticos

Más detalles

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra:

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra: T ema 8 ESTIMACIÓN Coceptos previos Població y muestra: Població se refiere al cojuto total de elemetos que se quiere estudiar ua o más características. Debe estar bie defiida. Llamaremos N al úmero total

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO 005-06 Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3,

Más detalles

Convergencia. 1.1 Introducción

Convergencia. 1.1 Introducción Capítulo 1 Covergecia 1.1 Itroducció E este capítulo estudiaremos el comportamieto asitótico de sucesioes de variables aleatorias, daremos distitas defiicioes de covergecia y demostraremos dos de los Teoremas

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

ANILLOS Rodrigo Vargas

ANILLOS Rodrigo Vargas CAPITULO III ANILLOS Rodrigo Vargas 1. Aillos y Homomorfismos 1. (a) Sea G u gruo abeliao (aditivo). Defiimos ua oeració de multilicació e G or ab 0 (ara todo a, b G). Eoces G es u aillo. (b) Sea S el

Más detalles

Selección de inversiones II

Selección de inversiones II Problemas de Ecoomía y Orgaizació de Empresas (º de Bachillerato) Euciado Selecció de iversioes II Problema 6 U fabricate de evases de arcilla para la alimetació está aalizado la posibilidad de istalar

Más detalles

Modelos de distribuciones discretas

Modelos de distribuciones discretas Tema 5 Modelos de distribucioes discretas E este caítulo estudiaremos las distribucioes discretas más imortates. imortacia es doble, or las alicacioes y or su relevacia cocetual. De uevo, esa 5. Distribució

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

POSIBLE SOLUCIÓN DEL EXAMEN DE INVESTIGACIÓN OPERATIVA DE SISTEMAS DE JUNIO DE 2004.

POSIBLE SOLUCIÓN DEL EXAMEN DE INVESTIGACIÓN OPERATIVA DE SISTEMAS DE JUNIO DE 2004. POSBLE SOLUCÓN DEL EXAMEN DE NVESTGACÓN OPERATVA DE SSTEMAS DE JUNO DE 4. Problema (,5 utos): Ua máuia es iseccioada cada semaa ara comrobar si fucioa correctamete. El resultado de la isecció uede ser

Más detalles

Desigualdad de Tchebyshev

Desigualdad de Tchebyshev Desigualdad de Tchebyshev Si la Esperaza y la variaza de la variable X so fiitas, para cualquier úmero positivo k, la probabilidad de que la variable aleatoria X esté e el itervalo La probabilidad de que

Más detalles

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo Test de Kolmogorov Smirov Técicas de validació estadística Bodad de auste Kolmogorov-Smirov Patricia Kisbye FaMAF 29 de mayo, 2008 Icoveiete: No es secillo costruir los itervalos a partir de las probabilidades.

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

9 SUCESIONES. LÍMITES DE SUCESIONES

9 SUCESIONES. LÍMITES DE SUCESIONES 9 SUCESIONES. LÍMITES DE SUCESIONES EJERCICIOS PROPUESTOS 9. Co ua calculadora, forma térmios de las siguietes sucesioes y estudia a qué valores tiede. a) a b) b c) c 5 a) a a 8 5,6 a 0 00,98 a 0 00 0

Más detalles

el blog de mate de aida. MATEMÁTICAS ESO: COMBINATORIA pág. 1 COMBINATORIA

el blog de mate de aida. MATEMÁTICAS ESO: COMBINATORIA pág. 1 COMBINATORIA el blog de ate de aida. MATEMÁTICAS ESO: COMBINATORIA ág. COMBINATORIA Los étodos de coteo so estrategias utilizadas ara deteriar el úero de osibilidades diferetes ue existe al realizar u exerieto. MÉTODO

Más detalles

4 Contrastes del Chi 2 de bondad del ajuste

4 Contrastes del Chi 2 de bondad del ajuste 4 Cotrastes del Chi de bodad del ajuste U cotraste de bodad del ajuste es de la forma o H 0 : P = P 0 frete a H 1 : P P 0 H 0 : P {P θ } θ Θ frete a H 1 : P / {P θ } θ Θ 4.1 Cotraste del χ para modelos

Más detalles

Clase 6. Volatilidad del precio del bono y riesgo financiero: duración y duración modificada

Clase 6. Volatilidad del precio del bono y riesgo financiero: duración y duración modificada 1 lase 6 Volatilidad del recio del oo riesgo fiaciero: duració duració modificada 6.1 uració de u oo Es mu imortate el estudio de la relació etre la sesiilidad del recio del oo resecto a camios e la tasa

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Tema 6: Distribuciones Muestrales

Tema 6: Distribuciones Muestrales Tema 6: Distribucioes Muestrales El objetivo es efectuar ua geeralizació de los resultados de la muestra a la població. Iferir o adiviar el comportamieto de la població a partir del coocimieto de ua muestra.

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación.

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación. Teoría de la Estimació Estadística Teoría de la Estimació Estadística Razó para estimar Los admiistradores utiliza las estimacioes porque se debe tomar decisioes racioales, si que tega la iformació pertiete

Más detalles

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor Tema 7 (IV) Aplicacioes de las derivadas () Represetació gráfica de curvas y fórmula de Taylor Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos

Más detalles

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión Defiició y propiedades 5 5. Defiició y propiedades 6 5. Covergecia absoluta e icodicioal 65 5.3 Criterios de covergecia para series de térmios o egativos 66 5.4 Otros criterios 69 5.5 Suma de series 69

Más detalles

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean ESTADÍSTICA Estadística: Es ua rama de la matemática que comprede Métodos y Técicas que se emplea e la recolecció, ordeamieto, resume, aálisis, iterpretació y comuicació de cojutos de datos. Població:

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Solución. x 1 =36 x 2 =24 n 1 =50 n 2 =75 IC=96 % σ 1 =6 σ 2 =8. Datos. Fórmula x 1 -x 2 =36-24=

Solución. x 1 =36 x 2 =24 n 1 =50 n 2 =75 IC=96 % σ 1 =6 σ 2 =8. Datos. Fórmula x 1 -x 2 =36-24= Solució Datos x =36 x =4 =50 =75 IC=96 % σ =6 σ =8 Fórmula x x z Se lleva a cabo u exerimeto e que se comara dos tios de motores, A y B. Se mide el redimieto e millas or galó de gasolia. Se realiza 50

Más detalles

La ley de los grandes números

La ley de los grandes números La ley de los grades úmeros "El idicio de que las cosas estaba saliédose de su cauce ormal vio ua tarde de fiales de la década de 1940. Simplemete lo que pasó fue que etre las siete y las ueve de aquella

Más detalles

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+ Problema. E el diagrama se preseta los tres primeros cuadriláteros de ua secuecia que iicia e u puto e el cetro del tablero crece desde ese puto hacia fuera, cuál es el úmero de putos que está e el perímetro

Más detalles

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica

Más detalles

En esta parte cambiamos el nombre de algunos objetos ya conocidos. Contaremos las formas de ordenar los elementos de un conjunto.

En esta parte cambiamos el nombre de algunos objetos ya conocidos. Contaremos las formas de ordenar los elementos de un conjunto. Capítulo 4 Coteo E esta parte cambiamos el ombre de alguos objetos ya coocidos. Cotaremos las formas de ordear los elemetos de u cojuto. 4.1. Espacio muestral. Sucesos Defiició 4.1. U experimeto es ua

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS INTRODUCCIÓN

Más detalles

Intervalos de confianza e intervalos de credibilidad para una proporción

Intervalos de confianza e intervalos de credibilidad para una proporción Revista Colombiaa de Estadística Diciembre 2008, volume 31, o. 2,. 211 a 228 Itervalos de cofiaza e itervalos de credibilidad ara ua roorció Cofidece Itervals ad Credibility Itervals for a Proortio Edilberto

Más detalles

14. Técnicas de simulación mediante el método de Montecarlo

14. Técnicas de simulación mediante el método de Montecarlo 4. Técicas de simulació mediate el método de Motecarlo 4. Técicas de simulació mediate el método de Motecarlo Qué es la simulació? Proceso de simulació Simulació de evetos discretos Números aleatorios

Más detalles

DETERMINACIÓN DEL COEFICIENTE DE DEFORMACIÓN ELÁSTICA EN ENSAMBLES PISTÓN CILINDRO DE BALANZAS DE PRESIÓN TIPO INDUSTRIAL

DETERMINACIÓN DEL COEFICIENTE DE DEFORMACIÓN ELÁSTICA EN ENSAMBLES PISTÓN CILINDRO DE BALANZAS DE PRESIÓN TIPO INDUSTRIAL DETERMINACIÓN DEL COEFICIENTE DE DEFORMACIÓN ELÁSTICA EN ENSAMBLES PISTÓN CILINDRO DE BALANZAS DE PRESIÓN TIPO INDUSTRIAL Pablo Olvera Araa Cetro Nacioal de Metroloía, CENAM Resume E el esamble istó cilidro

Más detalles

Tema III. Distribuciones discretas y continuas Distribuciones discretas. Variables aleatorias discretas.

Tema III. Distribuciones discretas y continuas Distribuciones discretas. Variables aleatorias discretas. Dr. Fracisco Javier Taia Moreo. Marzo de 0. Tema III Distribucioes discretas y cotiuas E este tema aalizaremos dos imortates temas de la iferecia estadística: las distribucioes discretas y las distribucioes

Más detalles

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo.

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. Admítelo ua salchicha o es ua zaahoria. Así decía la revista El Cosumidor e u cometario sobre la baja calidad utricioal de las salchichas. Hay tres tipos

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad Tema 4.4: Teorema de Riema de sigularidades evitables. Ceros de ua fució holomorfa. Pricipio de idetidad Facultad de Ciecias Experimetales, Curso 2008-09 E. de Amo Comeamos e este tema extrayedo las primeras

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

MEIOSIS. n = 23 zigoto R R 2n = 46 2n = 46 2n = 46 n = 23

MEIOSIS. n = 23 zigoto R R 2n = 46 2n = 46 2n = 46 n = 23 MEIOSIS Básicamete, la meiosis cosiste e u tipo de divisió celular e la que se obtiee cuatro células hijas co la mitad de la dotació cromosómica, la mitad de iformació geética. Al fial, se obtiee cuatro

Más detalles

Tema IV. Estimación con intervalos de confianza

Tema IV. Estimación con intervalos de confianza Notas de Estadística Alicada a la Admiistració, Cotaduría, Iformática Admiistrativa I y Negocios y Comercio Iteracioales. Dr. Fracisco Javier Taia Moreo. Abril de 0. Tema IV Estimació co itervalos de cofiaza

Más detalles

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10 SUCESIONES I. Determiar el térmio que cotiúa e cada ua de las siguietes sucesioes: 1. ; 5; 11; 0; 4. - ; 5; - 9 ; 19; A) 8 B) - 7 C) 7 D) - 8 E) 14 A) 8 B) 0 C) D) 1 E) 5. 5 4 7 6 9 8 ; ; ; ; ; ;... 4

Más detalles

Uso de Excel en la enseñanza de las series 1

Uso de Excel en la enseñanza de las series 1 Uso de Excel e la eseñaza de las series Carlos E. Azofeifa Resume El presete trabajo tiee como objetivo mostrar el uso de la herramieta muy coocida y flexible como lo es la hoja electróica Excel, e el

Más detalles

Sobre el caracter cuadrático de 2 módulo un número primo impar

Sobre el caracter cuadrático de 2 módulo un número primo impar Abstractio & Alicatio 11 014 46 51 UADY Sobre el caracter cuadrático de módulo u úmero rimo imar Carlos Jacob Rubio Barrios a, Jesús Efré Pérez Terrazas Facultad de Matemáticas, Uiversidad Autóoma de Yucatá,

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

9- Intervalos de confianza

9- Intervalos de confianza arte Itervalos de cofiaa rof. María B. itarelli 9- Itervalos de cofiaa 9. Itroducció e ha visto como costruir a artir de ua muestra aleatoria u estimador utual de u arámetro descoocido. E esos casos ecesitábamos

Más detalles

162 ÁLGEBRA Y FUNDAMENTOS: UNA INTRODUCCIÓN. (i) Efectuando el producto, tenemos. (ii) De forma semejente, si z 2 6= 0, tenemos

162 ÁLGEBRA Y FUNDAMENTOS: UNA INTRODUCCIÓN. (i) Efectuando el producto, tenemos. (ii) De forma semejente, si z 2 6= 0, tenemos 162 ÁLGEBRA Y FUNDAMENTOS: UNA INTRODUCCIÓN (i) Efectuado el roducto, teemos z 1 z 2 = jz 1 jjz 2 j (cos ' 1 + i se ' 1 )(cos ' 2 + i se ' 2 ) = jz 1 jjz 2 j [(cos ' 1 cos ' 2 se ' 1 se ' 2 )+(se ' 1 cos

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

PROCESO DE POISSON Rosario Romera Febrero 2009

PROCESO DE POISSON Rosario Romera Febrero 2009 1 PROCESO DE POISSON Rosario Romera Febrero 2009 1. Proceso de Coteo U proceso estocástico fn t g t0 es u proceso de coteo si N t represeta el total de sucesos ocurridos asta el tiempo t. Sea u espacio

Más detalles

9- Intervalos de confianza

9- Intervalos de confianza arte Itervalos de cofiaa rof. María B. itarelli 9- Itervalos de cofiaa 9. Itroducció e ha visto como costruir a artir de ua muestra aleatoria u estimador utual de u arámetro descoocido. E esos casos ecesitábamos

Más detalles

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos Ua vez expuesta la lógica de u Cotraste de Hipótesis y tras haber defiido los térmios y coceptos ivolucrados, hay que decir que esa lógica geeral se cocreta

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

Propiedades de las series numéricas (18.03.2015)

Propiedades de las series numéricas (18.03.2015) Propiedades de las series uméricas 8.03.205) ) Si itercalamos e la sucesió {a } N u úmero fiito de térmios de suma b, el carácter de la serie a o varía y, si coverge, su suma aumeta e b. D: Sea b +b 2

Más detalles

Tema 7: Estimación por intervalos de confianza.

Tema 7: Estimación por intervalos de confianza. Estadística 69 Tema 7: Estimació por itervalos de cofiaza. 7. Itroducció. Cuado tratamos la estimació putual, uo de los problemas que se platearo es que el valor de la estimació es sólo uo de los valores

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

Señales en Tiempo Discreto

Señales en Tiempo Discreto Señales e Tiempo Discreto Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció.. Señales e tiempo discreto.3. Clasificació de las señales

Más detalles

( ) ( )( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( ) Algebra uiversitaria UNIDAD III. POLINOMIOS 3.. Técicas elemetales para buscar raíces Recordado la defiició de raíz U poliomio P(x) tiee ua raíz r si y solo si P(r) = 0. Recordar el teorema de factorizació

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

). Por ejemplo: mínimos cuadrados, momentos, métodos bayesianos, etc. Nosotros solo revisaremos aquí el método de máxima verosimilitud

). Por ejemplo: mínimos cuadrados, momentos, métodos bayesianos, etc. Nosotros solo revisaremos aquí el método de máxima verosimilitud El algoritmo EM Referecias: Bickel ad Docksum: Mathematical Statistics Casella, G Statistical iferece Lehma, E. Poit Estimatio. Estimació or Máima Verosimilitud Uo de los riciales objetivos e estadistica

Más detalles

ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN POR INTERVALOS DE CONFIANZA Estimació por itervalos de cofiaza. I.E.. A uqueira I pag. Coceptos ETIMACIÓN POR INTERVALO DE CONFIANZA E este tema vamos a estudiar como estimar, es decir proosticar, u parámetro de la població, geeralmete

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias.

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias. Sesió 27 Series de potecias Temas Series de potecias. Itervalo y radio de covergecia de ua serie de potecias. Capacidades Coocer y compreder el cocepto de serie de potecias. Determiar el itervalo y el

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

Desigualdad entre las medias Aritmética y Geométrica

Desigualdad entre las medias Aritmética y Geométrica Desigualdad etre las medias Aritmética y Geométrica Jorge Tipe Villaueva Dados reales positivos a 1, a,..., a, defiimos la media aritmética de a 1, a,..., a como el úmero a 1 + a +... + a y la media geométrica

Más detalles

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista CAPÍTUO 6 ESTIMACIÓN DE VARIANZAS PROPORCIONES POBACIONAES MEDIANTE INTERVAOS DE CONFIANZA 6.1 Itervalo de cofiaza ara la variaza de ua

Más detalles

Probabilidades y Estadística (M) Práctica 8 1 cuatrimestre 2012 Convergencias - Ley de los Grandes Números

Probabilidades y Estadística (M) Práctica 8 1 cuatrimestre 2012 Convergencias - Ley de los Grandes Números robabilidades y Estadística (M) ráctica 8 cuatrimestre 22 Covergecias - Ley de los Grades Números. Ua máquia produce artículos de 3 clases: A, B y C e proporcioes 25 %, 25 % y 5 % respectivamete. Las logitudes

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas Las fucioes de Cobb-Douglas como base del esacio vectorial de fucioes homogéeas Zuleyka Díaz Martíez Mª Pilar García Pieda José Atoio Núñez del Prado Uiversidad Comlutese de Madrid Facultad de Ciecias

Más detalles

TEMA 3: DISTRIBUCIONES BIDIMENSIONALES.

TEMA 3: DISTRIBUCIONES BIDIMENSIONALES. TEMA 3: DISTRIBUCIOES BIDIMESIOALES. 3.. Cocetos Geerales.... 3.2. Distribucioes bidimesioales de frecuecias... 3.2.. Tablas de correlació y cotigecia.... 3.2.2. Distribucioes margiales y codicioadas....

Más detalles