Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II"

Transcripción

1 Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes de los ejerccos propuestos para las pruebas de acceso a la Uversdad e Adalucía de la asgatura Matemátcas aplcadas a las Cecas Socales II sobre Ifereca Estadístca. Cada uo lleva u códgo como el sguete: B-4, que sg ca ejercco 4 de la opcó B del modelo 1 de la covocatora de Alguas otas sobre la resolucó de los ejerccos de Ifereca Estadístca La mayor parte de los ejerccos de Ifereca Estadístca que se propoe e las pruebas de acceso a la Uversdad so muy parecdos. Se basa e cuatro fórmulas que ay que coocer muy be y saber cuádo se debe utlzar. Para la meda poblacoal Para la proporcó Itervalo de co aza x z p # r ^p (1 ^p z ^p) " Tamaño mímo z E 0 z ^p (1 ^p) E 0 E cada ua de éstas fórmulas se utlza u valor crítco z asocado a u certo vel de co aza p (o, lo que es lo msmo, a u certo vel de sg cacó 1 p). El cálculo de este * Profesor del I.E.S. Acc de Guadx (Graada) - ttp:// 1

2 Matemátcas Aplcadas a las Cecas Socales II valor es u proceso automátco. Por eso, o lo vamos a explcar e cada ejercco. Smplemete damos, e la sguete tabla, los valores crítcos asocados a los veles de co aza más usuales. p 90 % 9 % 93 % 95 % 96 % 97 % 98 % 99 % % p z Úcamete e los ejerccos que aya sdo propuestos e las covocatoras de juo o septembre escrbremos cómo deducr estos valores crítcos (auque, debemos observar que, para que u ejercco esté completo, se debe explcar cómo obteer el correspodete valor crítco e cluso acer ua gura adecuada como la que presetaremos).. Ejerccos de Selectvdad Ejercco 1 (006-1-A-4) ( putos) De 500 ecuestados e ua poblacó, 350 se mostraro favorables a la retrasmsó de debates televsvos e tempos de eleccoes. Calcule u tervalo de co aza, al 99 5 %, para la proporcó de persoas favorables a estas retrasmsoes. Solucó : La proporcó de persoas favorables e la muestra (de tamaño ) es ^p Como ^p y ^q (1 ^p) 150 5, podemos utlzar el tervalo de co aza # r " ^p (1 ^p) ^p z para estmar la proporcó de persoas de la poblacó favorables a estas retrasmsoes. Dado que p , etoces buscamos e la tabla de la ormal estádar el valor crítco: Así, el tervalo de co aza buscado es: # r ^p (1 IC ^p z p ) z 0 81: ^p) " # ; : r " Adalucía Atoo Roldá

3 Matemátcas Aplcadas a las Cecas Socales II Este tervalo sg ca que e la poblacó ay, al vel de co aza del 99 5 %, etre el 68 4 y el % de persoas favorables a la retrasmsó de debates televsvos e tempos de eleccoes. Ejercco (006-1-B-4) El gasto aual, e vdeojuegos, de los jóvees de ua cudad sgue ua ley Normal de meda descoocda y desvacó típca 18 euros. Elegda al azar, ua muestra de 144 jóvees se a obtedo u gasto medo de 10 euros. a) (0 5 putos) Idque la dstrbucó de las medas de las muestras de tamaño 144. b) (0 75 putos) Determe u tervalo de co aza, al 99 %, para el gasto medo e vdeojuegos de los jóvees de esa cudad. c) (0 75 putos) Qué tamaño muestral mímo deberíamos tomar para, co la msma co aza, obteer u error meor que 1 0 9? Solucó : Los datos que teemos so 144, 18 y x 10 e. La dstrbucó de las medas muestrales de tamaño 144 es X 144,! N ; p N ; 18 N ; ; 1 dode es la meda de la poblacó (que es descoocda). Para u vel de co aza p , teemos el vel crítco p ) z 0 575; de dode el tervalo de co aza para el gasto medo, redodeado a los cétmos, es IC x z p ; : Falmete, s queremos que el error sea meor o gual que e, debemos tomar u tamaño o meor de: E 0 E z p ) z : 9 Así, debemos elegr ua muestra de, al meos, 596 jóvees. Ejercco 3 (006--A-4, Septembre) a) (1 puto) Los valores: 5; 61; 58; 49; 53; 60; 68; 50; 53; costtuye ua muestra aleatora de ua varable aleatora Normal, co desvacó típca 6. Obtega u tervalo de co aza para la meda de la poblacó, co u vel de co aza del 9 %. Adalucía 3 Atoo Roldá E 0

4 Matemátcas Aplcadas a las Cecas Socales II b) (1 puto) Se desea estmar la meda poblacoal de otra varable aleatora Normal, co varaza 49, medate la meda de ua muestra aleatora. Obtega el tamaño mímo de la muestra para que el error máxmo de la estmacó, medate u tervalo de co aza al 97 %, sea meor o gual que. Solucó : Como la varable de partda sgue ua dstrbucó ormal, etoces cualquer meda muestral sgue ua dstrbucó ormal. E partcular, sabemos que x 56 para la muestra cosderada, sedo de tamaño 9. Como 6, el tervalo de co aza para la meda de la poblacó es IC x z p p ; : 9 S para otra varable se tee que 49 (cudado: 7), y queremos u error meor o gual que E, debemos tomar ua muestra de tamaño, al meos, z ; E por lo que tomaremos ua muestra de tamaño, al meos, 58. Ejercco 4 (006--B-4, Septembre) ( putos) E ua muestra aleatora de 1000 persoas de ua cudad, 400 vota a u determado partdo polítco. Calcule u tervalo de co aza al 96 % para la proporcó de votates de ese partdo e la cudad. Solucó : La proporcó de votates de ese partdo e la muestra de tamaño es ^p Como ^p y ^q 600 5, podemos utlzar la fórmula usual para ecotrar el tervalo de co aza para la proporcó poblacoal. Para el vel de co aza p 1 de co aza es IC , el valor crítco correspodete es z Etoces el tervalo # r " ; Esto sg ca que, segú el estudo, dco partdo polítco obtedrá, al vel de co aza del 96 %, etre el % y el % de los votos. Ejercco 5 (006-3-A-4, Juo) ( putos) E ua poblacó, ua varable aleatora sgue ua ley Normal de meda descoocda y desvacó típca 9. De qué tamaño, como mímo, debe ser la muestra co la cual se estme la meda poblacoal co u vel de co aza del 97 % y co u error máxmo admsble gual a 3? : Adalucía 4 Atoo Roldá

5 Matemátcas Aplcadas a las Cecas Socales II Solucó : Sabemos que 9, E 3 y al vel de co aza p se tee el valor crítco z Etoces z : E 3 Por tato, debemos tomar ua muestra de tamaño, al meos, 43 dvduos. Ejercco 6 (006-3-B-4, Juo) ( putos) Se a lazado u dado 400 veces y se a obtedo 80 veces el valor cco. Estme, medate u tervalo de co aza al 95 %, el valor de la probabldad de obteer u cco. Solucó : La proporcó de ccos obteda, al lazar 400 veces el dado, es ^p Como ^p 80 5 y ^q 30 5, podemos utlzar la fórmula usual para estmar la proporcó (poblacoal) de aparcoes del cco. Al vel de co aza p 1 valor crítco correspodete es z Etoces el tervalo solctado es: # r " # r " ^p (1 ^p) 0 IC ^p z ; : , el Ejercco 7 (006-4-A-4) a) (1 5 putos) Sea la poblacó f1; 5; 7g. Escrba todas las muestras de tamaño, medate muestreo aleatoro smple, y calcule la varaza de las medas muestrales. b) (0 75 putos) De ua poblacó de 300 ombres y 00 mujeres se desea seleccoar, medate muestreo aleatoro estrat cado co a jacó proporcoal, ua muestra de tamaño 30 dstrbuda e los dos estratos, cuál será la composcó de la muestra? Solucó : Todas las muestras de tamaño so f (1; 1) ; (1; 5) ; (1; 7) ; (5; 1) ; (5; 5) ; (5; 7) ; (7; 1) ; (7; 5) ; (7; 7) g : La meda y la varaza de estos datos so X ; X por lo que la meda y la varaza de las muestras de tamaño so X X 13 3 ; X X : Adalucía 5 Atoo Roldá

6 Matemátcas Aplcadas a las Cecas Socales II E partcular, la varaza de las medas muestrales de tamaño es 89. Por otro lado, ua smple regla de tres os dce que s etre 500 persoas queremos seleccoar 30 de ellas, etre 300 ombres debemos elegr 18 ombres, y etre 00 mujeres debemos elegr a 1 de ellas. Obsérvese que la a jacó proporcoal es ya que se toma u 6 % de cada estrato. 300 ombres! 18 ombres 00 mujeres! 1 mujeres 500 persoas 30 persoas %; Ejercco 8 (006-4-B-4) Se a tomado las tallas de 16 bebés, elegdos al azar, de etre los acdos e u certo osptal, y se a obtedo los sguetes resultados, e cetímetros: 51; 50; 53; 48; 49; 50; 51; 48; 50; 51; 50; 47; 51; 51; 49; 51: La talla de los bebés sgue ua ley Normal de desvacó típca cetímetros y meda descoocda. a) (0 75 putos) Cuál es la dstrbucó de las medas de las muestras de tamaño 16? b) (1 5 putos) Determe u tervalo de co aza, al 97 %, para la meda poblacoal. Solucó : Sabemos que la varable aleatora X Talla de cada bebé,! N (; ) sgue ua dstrbucó ormal, por lo que cualquer varable que mda la dstrbucó de las medas muestrales de cualquer tamaño també es ormal. E partcular, las medas muestrales de tamaño 16 sgue ua dstrbucó X 16,! N ; X p N dode es la meda de la poblacó (que es descoocda). ; N ; ; 4 Por otro lado, al vel de co aza p 97 %, el valor crítco correspodete es z 0 17, por lo que el tervalo de co aza (para la meda poblacoal ) solctado es: X IC x z p ; : Adalucía 6 Atoo Roldá

7 Matemátcas Aplcadas a las Cecas Socales II Ejercco 9 (006-5-A-4) U fabrcate produce tabletas de cocolate cuyo peso e gramos sgue ua ley Normal de meda 15 gr y desvacó típca 4 gr. a) (1 puto) S las tabletas se empaqueta e lotes de 5, cuál es la probabldad de que el peso medo de las tabletas de u lote se ecuetre etre 14 y 16 gr? b) (1 puto) S los lotes fuese de 64 tabletas, cuál sería la probabldad de que el peso medo de las tabletas del lote superase los 14 gramos? Solucó : Sea X la varable aleatora que mde el peso de las tabletas de cocolate. Segú los datos, X,! N ( 15; 4). Etoces la varable X 5 que mde el peso medo de 5 tabletas (elegdas al azar) sgue ua dstrbucó X 5,! N ; p N 15; 4 5 N 15; : Así, la probabldad de que el peso medo de 5 tabletas de cocolate esté etre 14 gr y 16 gr es, tp cado para poder utlzar la tabla de la ormal estádar Z,! N (0; 1) de colas a la zquerda, p 14 < X 5 < p < X < p < Z < p Z < p Z < p Z < p Z > p Z < p Z < p Z < : Igualmete, s se toma ua muestra de 64 tabletas de cocolate, la meda sgue ua dstrbucó X 64,! N ; p N 15; 4 N 15; : 8 Etoces p X 64 > 14 X64 15 p 0 0 > p (Z > ) p (Z < ) : 5 Ejercco 10 (006-5-B-4) Ua varable aleatora sgue ua ley Normal co meda descoocda y desvacó típca 4. Se quere estmar la meda poblacoal, co u vel de co aza del 93 %, para lo que se toma dos muestras de dsttos tamaños. Adalucía 7 Atoo Roldá

8 Matemátcas Aplcadas a las Cecas Socales II a) (1 puto) S ua de las muestras tee tamaño 16 y su meda es 10 3, cuál es el tervalo de co aza correspodete? b) (1 puto) S co la otra muestra el tervalo de co aza es ( ; ), cuál es la meda muestral? Cuál es el tamaño de la muestra? Solucó : Sea X la varable aleatora del problema, de la que sabemos que X,! N (; 0 4), sedo la meda descoocda. Para u vel de co aza p , el valor crítco correspodete es z S tomamos ua muestra de tamaño 16 y meda x , el correspodete tervalo de co aza es: IC x z p IC ; : S aora el tervalo de co aza es ] ; [, la meda de la muestra es Así, el error admtdo es E x : , y el tamaño de la muestra es z E : 74 Obsérvese que se obtee el valor exacto de 36 dvduos e la muestra. Ejercco 11 (006-6-A-4) De ua poblacó Normal, co meda descoocda y varaza 36, se extrae ua muestra aleatora que resulta teer ua meda muestral de 173. a) (1 puto) Obtega u tervalo de co aza al 97 % para la meda poblacoal, s el tamaño de la muestra es 64. b) (1 puto) Cuál debe ser el tamaño mímo de la muestra, s se desea que el error cometdo al estmar la meda poblacoal sea feror a 1, para u vel de co aza del 95 %? Solucó : Dado que la varaza de la poblacó es 36, su desvacó típca es 6. La meda muestral es x 173. Para u vel de co aza p , su valor crítco correspodete es z S la muestra tee tamaño 64, el tervalo de co aza solctado es IC x z p ; : Adalucía 8 Atoo Roldá

9 Matemátcas Aplcadas a las Cecas Socales II S deseamos acotar el error admsble, E E 0 1 0, a u vel de co aza p (co valor crítco asocado z ), el tamaño muestral debe ver car: z : E 0 Así, abrá de elegrse ua muestra de, al meos, 97 dvduos. Ejercco 1 (006-6-B-4) Las cal cacoes obtedas por lo estudates de Matemátcas sgue ua ley Normal de meda descoocda y desvacó típca Para ua muestra de esa poblacó, se obtee que ( ; ) es u tervalo de co aza, al 9 %, para la meda poblacoal. a) (0 5 putos) Determe la meda muestral. b) (1 5 putos) Determe el tamaño de la muestra. Solucó : Sea X la varable aleatora que mde las cal cacoes obtedas por los estudates. Sabemos que X,! N (; ) sedo la meda descoocda. Para u vel de co aza p (co vel crítco asocado z ), el tervalo de co aza que se a obtedo es ] ; [. Etoces la meda muestral es el puto medo (la meda artmétca) etre los extremos de este tervalo: x : De aquí, el error muestral que se a cometdo es E Por tato, el tamaño de la muestra debe cumplr z E ; 049 lo que sg ca que la muestra cotee las cal cacoes de, al meos, 1807 estudates. Adalucía 9 Atoo Roldá

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA

CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA Atoo Morllas A. Morllas: C. o paramétrcos (I 1 CONTRASTES NO PARAMÉTRICOS: BONDAD DE AJUSTE Y TABLAS DE CONTINGENCIA Ifereca realzada

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el CAPÍTULO 3 METODOLOGÍA El objetvo del capítulo 3 es coocer la metodología, por lo cual os apoyaremos e el lbro de Smulato modelg ad Aalyss (Law, 000), para estudar alguas pruebas de bodad de ajuste. També

Más detalles

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función Uversdad Poltécca de Madrd Igeería de Mas Fórmulas de de Dervacó Numérca: Aproxmacó de de la la dervada prmera de de ua fucó Prof. Alfredo López L Beto Prof. Carlos Code LázaroL Prof. Arturo dalgo LópezL

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS

MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS MÓDULO 1 LEYES DE DISTRIBUCIÓN DE PROCESOS HIDROLÓGICOS Autores: Dr. Ig. Roberto Pzarro T. Ig. Jua Pablo Flores V. Ig. Clauda Sagüesa P. Ig. Ezo Martíez A. 1. INTRODUCCIÓN El presete documeto fue extraído

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09 Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE - INTRODUCCION Es tecó aalzar e este trabajo las coocdas relacoes costo-volume-utldad para el caso e que sus compoetes sea: w : costo varable utaro

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

LEY FINANCIERA DE DESCUENTO SIMPLE RACIONAL. DESCUENTO BANCARIO

LEY FINANCIERA DE DESCUENTO SIMPLE RACIONAL. DESCUENTO BANCARIO LEY FINANIEA E ESUENTO SIMPLE AIONAL. ESUENTO BANAIO Profesor: Jua Atoo Gozález íaz epartameto Métodos uattatvos Uversdad Pablo de Olavde www.clasesuverstaras.com Ley Facera de escueto Smple acoal La ley

Más detalles

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI TESIS DESARROLLO REIONAL C URVA DE L ORENZ C OEFICIENTE DE D ESIUALDAD DE INI D OCUMENTO A UXILIAR N DANIEL CAUAS - 5 JUN 203 LA CURVA DE LORENZ La curva de Lorez (Corado Lorez 905), es u recurso gráfco

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Intervalos de confianza para la media

Intervalos de confianza para la media Itervalos de cofiaza para la media Ejercicio º 1.- Las vetas diarias, e euros, e u determiado comercio sigue ua distribució N(950, 200). Calcula la probabilidad de que las vetas diarias e ese comercio:

Más detalles

Nociones de Estadística

Nociones de Estadística Químca Aalítca Prof. Aa Galao Jméez Nocoes de Estadístca Las medcoes tee sempre asocadas u error expermetal (herete a la resolucó del equpameto empleado, a errores aleatoros y/o a errores sstemátcos).

Más detalles

Unidad I Estadística Descriptiva

Unidad I Estadística Descriptiva PRESENTACIÓN DEL CURSO Udad I Estadístca Descrptva La ESTADISTICA es la parte de las matemátcas ecargada de la presetacó y aálss de los datos de u expermeto. Normalmete la estadístca se dvde e: Estadístca

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

Tema 21: Distribución muestral de un estadístico

Tema 21: Distribución muestral de un estadístico Análss de Datos I Esquema del Tema 21 Tema 21: Dstrbucón muestral de un estadístco 1. INTRODUCCIÓN 2. DISTRIBUCIÓN MUESTRAL DE LA MEDIA 3. DISTRIBUCIÓN MUESTRAL DE LA PROPORCIÓN Bblografía * : Tema 15

Más detalles

PRÁCTICA 13: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA

PRÁCTICA 13: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA PRÁCTICA 3: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA E ocasoes ocurre que el ecargado de hacer u trabajo estadístco o está seguro de la dstrbucó de ua determada varable aleatora. Para solucoar

Más detalles

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES. TEMA : PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.. INTRODUCCIÓN Hasta ahora hemos vsto cómo se puede resumr los datos obtedos del estudo de ua muestra (o ua poblacó) e ua tabla estadístca

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles

ANGEL FRANCISCO ARVELO LUJAN

ANGEL FRANCISCO ARVELO LUJAN ANGEL FRANCISCO ARVELO LUJAN Agel Fracsco Arvelo Lujá es u Profesor Uverstaro Veezolao e el área de Probabldad y Estadístca, co más de 40 años de expereca e las más recoocdas uversdades del área metropoltaa

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 006 (Modelo 1 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua impreta local edita periódicos y revistas. Para cada periódico ecesita u cartucho de

Más detalles

Ejercicios resueltos de funciones generatrices. Matemática discreta 4º Ingeniería Informática

Ejercicios resueltos de funciones generatrices. Matemática discreta 4º Ingeniería Informática Ejerccos resueltos de fucoes geeratrces. Matemátca dscreta º Igeería Iformátca. Determa la fucó geeratrz para el úmero de formas de dstrbur 5 moedas de u euro etre cco persoas, s (a o hay restrccoes; (b

Más detalles

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE arte Suma de varables aleatoras y Teorema cetral del límte rof. María B. tarell 3 6- SUMA DE VARIABLES ALEATORIAS TEOREMA CENTRAL DEL LÍMITE 6. Suma de varables aleatoras deedetes Cuado se estudaro las

Más detalles

Regla de Bayes. Pedro J. Rodríguez Esquerdo

Regla de Bayes. Pedro J. Rodríguez Esquerdo Regla de Bayes Pedro J. Rodríguez Esquerdo Isttuto de Estadístca y Sstemas Computadorzados de Iformacó Facultad de Admstracó de Empresas y Departameto de Matemátcas Facultad de Cecas Naturales Recto de

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA UNIVERIDAD NACIONAL DEL CALLAO VICERECTORADO DE INVETIGACIÓN FACULTAD DE CIENCIA ECONÓMICA TETO DE PROBLEMA DE INFERENCIA ETADÍTICA AUTOR: JUAN FRANCICO BAZÁN BACA (Resolucó Rectoral 940-0-R del -9-) 0-09-

Más detalles

Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran.

Actividad: Elabora un resumen de la información que se muestra a continuación y analiza los procedimientos que se muestran. Actvdad: Elabora u resume de la formacó que se muestra a cotuacó y aalza los procedmetos que se muestra. Fudametos matemátcos de la electróca dgtal Sstemas de umeracó poscoales E u sstema de esta clase,

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES.

VARIABLES ESTADÍSTICAS BIDIMENSIONALES. CONTENIDOS: VARIABLES ESTADÍSTICAS BIDIMENSIONALES. Orgazacó de dato: tabla de frecueca de doble etrada. Frecueca margale. Dagrama de dperó. Regreó leal: recta de regreó. Coefcete de correlacó leal. Iterpretacó.

Más detalles

CURSO PROBABILIDAD Y ESTADISTICAS FMS175 PROFESOR RODOLFO TORO DEPARTAMENTO DE FISICA Y MATEMATICAS UNIVERSIDAD NACIONAL ANDRES BELLO

CURSO PROBABILIDAD Y ESTADISTICAS FMS175 PROFESOR RODOLFO TORO DEPARTAMENTO DE FISICA Y MATEMATICAS UNIVERSIDAD NACIONAL ANDRES BELLO CURO PROBABILIDAD Y ETADITICA FM75 PROFEOR RODOLFO TORO DEPARTAMETO DE FIICA Y MATEMATICA UIVERIDAD ACIOAL ADRE BELLO EL MÉTODO CIETÍFICO La Estadístca, costtuye así, ua dscpla cetífca extremadamete ampla

Más detalles

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 47 Meddas Descrptvas Numércas Frecuetemete ua coleccó de datos se puede reducr a ua o uas cuatas meddas umércas secllas que resume al cojuto

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

MODELO 2. CONVERSION DE TASAS (parte 2) CASO 2: CONVERSIÓN DE UNA TASA EFECTIVA ANUAL A TASA NOMINAL

MODELO 2. CONVERSION DE TASAS (parte 2) CASO 2: CONVERSIÓN DE UNA TASA EFECTIVA ANUAL A TASA NOMINAL MODELO 2. CONVERSION DE TASAS (parte 2) CASO 2: CONVERSIÓN DE UNA TASA EFECTIVA ANUAL A TASA NOMINAL PROPÓSITO: Dseñar u modelo e hoja de cálculo que permta covertr ua tasa efectva, a su equvalete omal

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

OPCIÓN A EJERCICIO 1_A x 1 0 1

OPCIÓN A EJERCICIO 1_A x 1 0 1 IES Fco Ayala de Graada Sobrates de 006 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x 1 0 1 Sea las matrices A = y B =. 1 x+1 (1 puto) Ecuetre el valor o valores de x de forma

Más detalles

2.2 Distribuciones de frecuencias unidimensionales.

2.2 Distribuciones de frecuencias unidimensionales. Itroduccó a la Estadístca Empresaral Capítulo - Aálss de ua varable CAPITULO - AALISIS DE UA VARIABLE Itroduccó E este capítulo se dará u cojuto de strumetos que permtrá el aálss descrptvo de ua varable

Más detalles

ANGEL FRANCISCO ARVELO LUJAN

ANGEL FRANCISCO ARVELO LUJAN ANGEL FRANCISCO ARVELO LUJAN Agel Fracsco Arvelo Lujá es u Profesor Uverstaro Veezolao e el área de Probabldad y Estadístca, co más de 0 años de expereca e las más recoocdas uversdades del área metropoltaa

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 3, Parte II, Opció A Juio, Ejercicio 3, Parte II, Opció B Reserva

Más detalles

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u

de los vectores libres del plano. Recordemos que la operación de sumar vectores verificaba las siguientes propiedades: se cumple que u + v = v + u FUNDAMENTOS DE LOS ESPACIOS VECTORIALES ABSTRACTOS Prmeros ejemplos. Cosderemos el cojuto V de los vectores lbres del plao. Recordemos que la operacó de sumar vectores verfcaba las sguetes propedades:

Más detalles

SIMULACION. Departament d'eio / Notes Curs MEIO/FIB 33

SIMULACION. Departament d'eio / Notes Curs MEIO/FIB 33 SIMULACION TECNICA PARA IMITAR EN UN COMPUTADOR LAS OPERACIONES DE LOS SISTEMAS DEL MUNDO REAL A MEDIDA QUE EVOLUCIONAN EN EL TIEMPO, MEDIANTE MODELOS QUE LOS REPRESENTAN DE FORMA REALISTA Deartamet d'eio

Más detalles

3. La distribución normal multivariada

3. La distribución normal multivariada 3. La dstrbucó ormal multvarada Por qué es mportate la dstrbucó ormal multvarada? o Muchas de las téccas multvaradas supoe que los datos fuero geerados de ua dstrbucó ormal multvarada. o E la vda real

Más detalles

Tabla de Distribución de Frecuencias

Tabla de Distribución de Frecuencias Tabla de Dstrbucó de Frecuecas H. Mata 1 Tal como puede leerse e la lteratura estadístca ésta es ua ceca que se ecarga de recoger, orgazar y aalzar los hechos de aturaleza umérca reerete a cualquer tópco.

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 5: Modelos de Probabldad Estadístca Computacoal º Semestre 00 Profesor :Héctor llede Pága : www.f.utfsm.cl/~hallede

Más detalles

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1 MUESTREO E POBLACIOES FIITAS Atoo Morllas Coceptos estadístcos báscos Etapas e el muestreo 3 Tpos de error 4 Métodos de muestreo 5 Tamaño de la muestra e fereca 6 Muestreo e poblacoes ftas 6. Muestreo

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008

Más detalles

Tema 6: Distribuciones Muestrales

Tema 6: Distribuciones Muestrales Tema 6: Distribucioes Muestrales El objetivo es efectuar ua geeralizació de los resultados de la muestra a la població. Iferir o adiviar el comportamieto de la població a partir del coocimieto de ua muestra.

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

UN MÉTODO PARA CONTRASTAR LA BONDAD DE UN EXPERTO EN LA METODOLOGÍA PERT

UN MÉTODO PARA CONTRASTAR LA BONDAD DE UN EXPERTO EN LA METODOLOGÍA PERT UN MÉTODO PARA CONTRASTAR LA BONDAD DE UN EXPERTO EN LA METODOLOGÍA PERT RAFAEL HERRERÍAS PLEGUEZUELO FEDERICO PALACIOS GONZÁLEZ JOSÉ CALLEJÓN CÉSPEDES EDUARDO PÉREZ RODRÍGUEZ Departameto. de Ecoomía Aplcada.

Más detalles

LAS MATEMÁTICAS DE LOS SISTEMAS ELECTORALES

LAS MATEMÁTICAS DE LOS SISTEMAS ELECTORALES Rev.R.Acad.Cec.Exact.Fís.Nat. (Esp) Vol. 101, Nº. 1, pp 21-33, 2007 VII Programa de Promocó de la Cultura Cetífca y Tecológca LAS MATEMÁTICAS DE LOS SISTEMAS ELECTORALES FCO. JAVIER GIRÓN GONZÁLEZ-TORRE

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN Feradez Departameto de Matemátcas Uversdad de Puerto Rco Recto Uverstaro de Mayagüez REGRESIÓN LINEAL SIMPLE Regresó: cojuto de téccas que so usadas para establecer ua relacó etre

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

TEMA 4: NÚMEROS COMPLEJOS

TEMA 4: NÚMEROS COMPLEJOS TEMA : COMPLEJOS 1 EN FOMA BINÓMICA 1.1 DEFINICIONES Sabemos que la resolucó de alguas ecuacoes de º grado coduce a ua raíz cuadrada de u º egatvo. Dcha raíz o tee setdo e el cojuto de los úmeros reales.

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Frecuencia absoluta Les gusta 28 No les gusta 12 Total 40. Posibles resultados. Revisoras: Raquel Caro y Nieves Zuasti

Frecuencia absoluta Les gusta 28 No les gusta 12 Total 40. Posibles resultados. Revisoras: Raquel Caro y Nieves Zuasti 116 Capítulo 7: Estadístca. Azar y probabldad TEORÍA. Matemátcas 4º de ESO 1. ESTADÍSTICA 1.1. Muestras. Estudos estadístcos S queremos hacer u estudo estadístco teemos que: a) Recoger los datos b) Descrbr

Más detalles

INTRODUCCION AJUSTE Y DISEÑO REDES TOPOGRAFICAS. Raúl Márquez

INTRODUCCION AJUSTE Y DISEÑO REDES TOPOGRAFICAS. Raúl Márquez INRODUCCION A AJUSE DISEÑO DE REDES OPOGRAFICAS Raúl Márquez ---- Raúl Márquez, e-mal: gramarquez@hotmal.com ---- PREFACIO Esta publcacó pretede ser ua troduccó al auste mímos cuadrados y dseño de redes

Más detalles

Apuntes de Estadística para profesores

Apuntes de Estadística para profesores Aputes de Estadístca para profesores Curso 006/007 Cocepcó Bueo García Tomás Escudero Escorza Isttuto de Cecas de la Educacó Uversdad de Zaragoza Capítulo. Coceptos geerales.- Itroduccó Las dos grades

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Núeros Coplejos PREGUNTAS MÁS FRECUENTES. Qué es la udad agara? Es u eleeto del que cooceos úcaete su cuadrado:.obvaete, o se trata de u úero real.. Qué es u úero coplejo? Es

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = -

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = - IES Fco Ayala de Graada Sobrates de 004 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A - 0 0 - - - Sea las matrices A=, B= y C= - 0 0 - ( puto) Calcule (A I ) B, siedo I la matriz idetidad

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

Normativa de Ingreso Estudiantil a la UJAP

Normativa de Ingreso Estudiantil a la UJAP Normatva de Igreso Estudatl a la UJAP I.- INGRESO A LA UNIVERSIDAD JOSÉ ANTONIO PÁEZ PARA LAS CARRERAS OFERTADAS POR LAS FACULTADES DE INGENIERÍA, CIENCIAS SOCIALES, CIENCIAS DE LA EDUCACIÓN Y CIENCIAS

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2004 (Juio Modelo 5) Solucioes Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x+y 6 3x-2y 13 Sea el sistema de iecuacioes. x+3y -3 x 0 (2 putos) Dibuje el recito cuyos

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

Capítulo 1. CAPITALIZACIÓN SIMPLE

Capítulo 1. CAPITALIZACIÓN SIMPLE Curso de Cotabldad y Matemátcas Faceras 2ª parte: Matemátcas Faceras Capítulo. CAPITALIZACIÓN SIMPLE Capítulo. CAPITALIZACIÓN SIMPLE Ídce de cotedos Pága CAPÍTULO CAPITALIZACIÓN SIMPLE 3. CONCEPTO Y FÓRMULAS

Más detalles

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información MATEMÁTICA Udad 4 Resolvamos desgualdades Iterpretemos la varabldad de la formacó Objetvos de la Udad: Propodrás solucoes a problemas relacoados co desgualdades leales y cuadrátcas; y represetarás los

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

Diseños muestrales en Inventarios Forestales Introducción... 1 Distribución de las unidades muestrales.... 3

Diseños muestrales en Inventarios Forestales Introducción... 1 Distribución de las unidades muestrales.... 3 Dseños muestrales e Ivetaros Forestales Itroduccó... Dstrbucó de las udades muestrales.... 3 Dstrbucó Aleatora... 3 Dstrbucó stemátca... 4 Dstrbucó de las UM e trasectos... 5 Estmadores para udades muestrales

Más detalles

UN SISTEMA GENERADOR DE NÚMEROS PSEUDO ALEATORIOS

UN SISTEMA GENERADOR DE NÚMEROS PSEUDO ALEATORIOS UN SISTEMA GENERADOR DE NÚMEROS PSEUDO ALEATORIOS Gullermo Becerra Córdova Uversdad Autóoma Chapgo, Dpto. de Preparatora Agrícola, Área de Físca. E-mal: gllrmbecerra@yahoo.com Méxco Abstract The smulato

Más detalles