El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n )"

Transcripción

1 El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : n = {(x 1,x,, x n ) / x 1,x,, x n } A cada uno de los números reales x 1,x,, x n que conforman la n ada (x 1,x,, x n ) n, se le llama componente o cooordenada de la n-ada correspondiente. Al elemento x i, de la n ada (x 1,x,, x n ), lo denominaremos la i - ésima coordenada de (x 1,x,, x n ), donde i = 1,,..., n. Ejemplos: a) 1 = no es más que el conjunto de los números reales b) = {(x,y) / x, y } c) 3 = {(x,y,z) / x, y, z } Igualdad en n Dos n adas de n, se dicen ser iguales, cuando todos y cada una de sus coordenadas son iguales, es decir: (x 1,x,, x n ) = (y 1,y,, y n ) x 1 = y 1, x = y,..., x n = y n OPERACIONES EN n Las operaciones que definiremos en n son: a. Suma de n-adas ordenadas Si (x 1, x,, x n ), (y 1, y,, y n ), son dos elementos de n, definimos la suma, denotada por (x 1, x,, x n ) + (y 1, y,, y n ), como: (x 1, x,, x n ) + (y 1, y,, y n ) = (x 1 + y 1, x + y,, x n + y n ) b. Producto de una n-ada ordenada por un escalar El producto de una n-ada (x 1, x,, x n ) n por el escalar c, denotado por c(x 1, x,, x n ), se define por: c(x 1, x,, x n ) = ( c x 1, c x,, c x n ) PROPIEDADES 1. La suma es conmutativa, es decir (x 1, x,, x n ) + (y 1, y,, y n ) =(y 1, y,, y n ) + (x 1, x,, x n ). La suma es asociativa, es decir (x 1, x,, x n) + [ (y 1, y,, y n) +(z 1, z,, z n)] =[(x 1, x,, x n) + (y 1, y,, y n)] +(z 1, z,, z n) 3. Existe un elemento en n, llamado cero =(,,...,), que actua de manera neutra para la suma: (x 1, x,, x n ) + (,,, ) = (x 1, x,, x n ) 4. Cada n-ada de n tiene un inverso aditivo, el cual es un elemento de n que tiene la propiedad de que, sumado con la n-ada original, produce el cero de n. El inverso aditivo de (x 1, x,, x n ), es (- x 1, -x,,- x n ), pues: (x 1, x,, x n ) + (- x 1, -x,,- x n ) = (,,, ) 5. Si λ es un escalar, se tiene que: λ [ (x 1, x,, x n ) + (y 1, y,, y n )] = λ (x 1, x,, x n )+ λ (y 1, y,, y n ) 6. Si λ, µ son escalares, se tiene que: (λ+ µ) (x 1, x,, x n ) = λ (x 1, x,, x n ) + µ (x 1, x,, x n ) 7. Si λ, µ son escalares, se tiene que: (λ µ) (x 1, x,, x n ) = λ[ µ (x 1, x,, x n )] = µ [λ (x 1, x,, x n )] 8. 1(x 1, x,, x n ) = (x 1, x,, x n ) 1

2 SISTEMA CARTESIANO EN EL ESPACIO BOLAS ABIERTAS (a,,c) (a,,) (,,c) (a,b,) (,b,c) (,b,) Sea x n y r >. La bola abierta de centro en x y radio r, denotada por B(x,r), es el conjunto de puntos de n que distan de x en menos de r, es decir: B(x,r) = { x n / 7 x- x 7 < r } REPRESENTACION GRAFICA DE LAS BOLAS ABIERTAS EN : B(X o,r) : B(X o,r) 3 : B(X o,r) NORMA Y DISTANCIA y z La norma euclideana de un vector x n, denotada por 7x7, se define como: 7x7= x + x + + x 1 n x y x En el presente curso, nos referiremos como norma a la norma euclideana. La distancia entre los vectores x, y n, denotada por d(x,y), se define como: d(x,y)= 7x- y7 Ejemplos: Calcular la distancia entre los puntos: i) P(-1) y Q(1.5) ii) P(-, ) y Q(1,1.5) iii) P(1.5,-1,1) y Q(,,3) En : En : En 3 : Q CONJUNTO ABIERTOS Se dice que el conjunto U n es un conjunto abierto en n, si para cada x U existe un r > tal que B(x,r) U. CONJUNTOS CERRADOS Se dice que el conjunto U n es cerrado, si el complemento de U es un conjunto abierto en n. Ejemplos Indicar si el conjunto es abierto ó cerrado en: i) A = <-,5 > ii) A = [-5, 6 ] iii) A = [-5, 6 > P d(p,q) Q P iv) A = {(x,y) / x>, y> } v) A ={(x,y) / x, y } 3 4

3 FUNCIONES DE VARIAS VARIABLES La explicación ó descripción del mundo real y social han planteado, la necesidad de considerar funciones de más de una sola variable. Por ejemplo, considere la temperatura T en un punto de la superficie de la tierra depende en todo momento de la longitud x y la latitud y del punto. Podemos pensar en T como una función de dos variables x e y ó como una función del par (x,y). Esta dependencia funcional lo representaremos por T= f(x,y). Una función f de n variables f: D n, es una regla que asigna a cada elemento (x 1, x,, x n ) de D un único número real f(x 1, x,, x n ). Al conjunto D se conoce como dominio de f. A menudo escribimos z = f(x 1, x,, x n ) para hacer explícito el valor que toma f en el punto general (x 1, x,, x n ). Las variables x 1, x,, x n son las variables independientes y z es la variable dependiente. El rango de f, denotado por Rg(f), es el conjunto de valores que toma f, es decir: Rg(f) ={ f(x 1, x,, x n )/ (x 1, x,, x n ) D} Ejemplo: Determinar el dominio, rango de la función f(x,y)= 16 x y Sea f: D n, una función con dominio D. La gráfica de f, es el conjunto: G(f) = { (x 1, x,, x n, z)/ z = f(x 1, x,, x n ), (x 1, x,, x n ) D)} (x,y,z) (x,y) Ejercicios: Encontrar el dominio de las siguientes funciones: i) f(x,y) = x + y iv) f(x,y,z) = x + y ii) f(x,y) = x + y 1 v) f(x,y,z) = cos(x) + cos(y) + z iii) f(x,y)= x + y vi) f(x,y) = x ln(y - x) Observación: i) Si f: D, su gráfica se encuentra en ii) Si f: D, su gráfica se encuentra en 3 Ejemplo: Obtener la gráfica de la función f, definida por: f(x,y) = 4 5 6

4 CONJUNTO DE NIVEL LÍMITE DE UNA FUNCIÓN DE VARIAS VARIABLES Sea f: D n, una función y k. Entonces el conjunto de nivel de valor k, se define como: { x D/ f(x, y) = k } n Si: n =, el conjunto de nivel será una curva de nivel (de valor k) Si: n = 3, el conjunto de nivel será una superficie de nivel (de valor k) y Lámina de metal (a, b) (x, y) Temperatura L f(x, y) NOTA. Las curvas de nivel se usan frecuentemente en la elaboración de mapas hidrográficos, meteorológicos, etc. x Ejemplo Dibujar las curvas de nivel de la función f(x,y) = x y Ejercicio Graficar la función f(x,y) = x + y 4 Si la temperatura f(x,y) se acerca a un valor fijo L, cuando (x,y) se aproxima cada vez más a un punto fijo (a,b), entonces esto se denotará como: lim f(x,y) = L (x,y) (a,b) y puede leerse: el límite de f(x,y) cuando (x,y) tiende a (a,b) es L DEFINICIÓN FORMAL DE LIMITE OPERACIONES CON FUNCIONES DE VARIAS VARIABLES Sean f, g: D n, funciones de n variables con dominios D f y D g, f respectivamente, entonces f + g, f - g, f. g,, se definen como: g Sea f una función de n variables definida en alguna bola abierta B(p,r) excepto posiblemente en el punto p n. Entonces, lim f(x) = L para cada ε>, existe δ >, tal que f(x) L <ε, x p siempre que <7 x- p 7 < δ i) (f + g )(x) = f(x) + g(x), D f+g = D f D g ii) (f - g )(x) = f(x) - g(x), D f-g = D f D g iii) (f. g )(x) = f(x) g(x), D f.g = D f D g f f(x) iv) ( )(x) =, Df./ g g = {x D f D g / g(x) } g(x) Ejemplo: Determinar el dominio de la función: f(x,y) = x y + 9 ln (1- x) Ejemplo Demostrar que lim (7 x+ y) (,,) (1,,3) = 9 xyz Prueba Para ε>, debemos encontrar δ > tal que: 7x + y 9 <ε, siempre que <7 x- p 7 < δ. Como: 7 (x, y, z) (1,,3)7= ( x 1) + ( y ) + ( z 3) < δ 7 8

5 pero x -1 = ( x 1) ( x 1) + ( y ) + ( z 3) < δ y - = ( y ) ( x 1) + ( y ) + ( z 3) < δ 7x + y 9 = 7(x-1) + (y ) 7 x 1 + y 7δ + δ= 8δ = ε El número buscado es δ = 8 ε Ejercicio 1. Analizar si Ejercicio. Analizar si Ejercicio 3. Analizar si xy lim = x y (x,y) (,) xy lim = x y (x,y) (,) x y lim = x y (x,y) (,) + CALCULO DE LIMITES MEDIANTE OPERACIONES ALGEBRAICAS Ejemplo: Calcular los siguientes límites: TEOREMA DEL ENCAJE Dadas las funciones f,h,g tal que f(x) h(x) g(x), x D R n. Si lim f(x)= lim g(x), entonces, lim h(x)= lim f(x)= lim g(x) x x x x x x x x x x TEOREMA DE LA ACOTACIÓN Si f es una función tal que x x lim f(x)= ; g(x) una función acotada (es decir existe una constante k> de modo que: -k g(x) k ), entonces, lim f(x)g(x)= x x Este teorema nos indica que si una función tiene límite cero en un punto, y otra función está acotada en los alrededores del punto, entonces, su producto también tiene límite cero en dicho punto. Ejemplo: Calcular: i) lim (x + y )cos ii) (x,y) (,) xy (x,y) (,) 1 x lim x +y lim x y. lim x y x (x,y) (,) x + y 3 4 ( x 1)( y 16) x + y lim 4. lim ( x 1)( y 4) (x,y) (,) x + y + 4 (x,y) (1,5) (x,y) (1,) 9 1

6 PUNTO DE ACUMULACIÓN Se dice que p es un punto de acumulación de un conjunto D n, si toda bola abierta reducida B (p,r):= B(p,r) { p } contiene infinitos puntos de D, es decir: B (p,r) D. Ejemplo Analizar si el punto (,) es un punto de acumulación de S= {(x,y) / x >, y > } REGLA DE LA TRAYECTORIA Sea S 1 y S conjuntos de n que tienen al punto p como un punto de acumulación. Si lim f(x) lim f(x), entonces, lim f(x), no existe. x p x p x p x S1 x S Ejemplo. Calcular: i) lim xy (, xy) (,) x + y, si existe. ii) xy lim, si existe ( xy, ) (,) x + 3xy 4 3 x + yx + z x iii) lim, si existe. ( xyz,, ) (,,) 4 x + y z CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES Sea f es una función de n variables y sea p un punto en n Se dice que f es continua en el punto p si se cumplen la tres condiciones: i) f(p) esta definida ii) lim f(x) existe iii) x p lim f(x) = f(p) x p Si alguna de estas tres condiciones no se cumple, entonces, se dirá que la función no es continua en el punto p. Sea f una función de n variables, definida en el conjunto abierto D de Ñ n. Se dice que f es continua en D (o simplemente que f es continua) si f es continua en cada uno de los puntos x o D. 7 x+ y si ( x, y, z) (1,,3) Ejemplo Si f(x,y,z) =, determine si f es 8.99 si ( x, y, z) = (1,,3) continua en (1,,3) 11 1

El espacio n. Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n :

El espacio n. Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : n = {(x 1,x 2,, x n ) / x 1,x 2,, x n } A cada uno de los números reales x 1,x 2,, x n que conforman

Más detalles

Sea f: D n, una función con dominio D. La gráfica de f, es el conjunto: G(f) = { (x 1, x 2,, x n, z)/ z = f(x 1, x 2,, x n ), (x 1, x 2,, x n ) D)}

Sea f: D n, una función con dominio D. La gráfica de f, es el conjunto: G(f) = { (x 1, x 2,, x n, z)/ z = f(x 1, x 2,, x n ), (x 1, x 2,, x n ) D)} FUNCIONES DE VARIAS VARIABLES La eplicación ó descripción del mundo real y social han planteado, la necesidad de considerar funciones de más de una sola variable. Por ejemplo, considere la temperatura

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 54 CONTENIDO Funciones

Más detalles

FUNCIONES DE VARIAS VARIABLES

FUNCIONES DE VARIAS VARIABLES CAPITULO III CALCULO II FUNCIONES DE VARIAS VARIABLES 3.1 DEFINICIÓN Se denomina función de varias variables a la función que tiene n variables independientes y m variables dependientes. Una función de

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

El cuerpo de los números reales

El cuerpo de los números reales Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

Continuidad de funciones reales y vectoriales de variable vectorial

Continuidad de funciones reales y vectoriales de variable vectorial Capítulo 6 Continuidad de funciones reales y vectoriales de variable vectorial 6.1. Introducción Hasta el momento hemos estudiado funciones reales de variable real, es decir, funciones de la forma f :

Más detalles

Espacio de Funciones Medibles

Espacio de Funciones Medibles Capítulo 22 Espacio de Funciones Medibles Igual que la σ-álgebra de los conjuntos medibles, la familia de funciones medibles, además de contener a todas las funciones razonables (por supuesto son medibles

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON Cap. Continuidad de funciones.1 CONTINUIDAD EN UN PUNTO. CONTINUIDAD DE FUNCIONES CONOCIDAS.3 CONTINUIDAD EN OPERACIONES CON FUNCIONES.4 CONTINUIDAD EN UN INTERVALO.5 TEOREMA DEL VALOR INTERMEDIO OBJETIVOS:

Más detalles

Funciones de dos variables: Límites. Continuidad. Derivadas parciales. Derivadas de orden superior.

Funciones de dos variables: Límites. Continuidad. Derivadas parciales. Derivadas de orden superior. de orden superior Funciones de dos variables:. Continuidad.. Derivadas de orden superior. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. de orden superior Contenidos 1 Introducción

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Tema 1 Las Funciones y sus Gráficas

Tema 1 Las Funciones y sus Gráficas Tema Las Funciones y sus Gráficas..- Definición de Función y Conceptos Relacionados Es muy frecuente, en geometría, en física, en economía, etc., hablar de ciertas magnitudes que dependen del valor de

Más detalles

Funciones. Domf = {x R f(x) B} Ranf = {f(x) x Domf} x (, 4) (4, ) 4y + 1 y. 4y + 1. > 4 = y y. > 0 = y

Funciones. Domf = {x R f(x) B} Ranf = {f(x) x Domf} x (, 4) (4, ) 4y + 1 y. 4y + 1. > 4 = y y. > 0 = y Funciones Una función real de variable real es una aplicación f : A B donde A,B son conjuntos de números reales. Domf = x R f(x) B Rango: El rango o imagen de la función f es un conjunto que se define

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Funciones Reales. MathCon c 2007-2009

Funciones Reales. MathCon c 2007-2009 Funciones Reales z x y MathCon c 007-009 Contenido. Introducción.. Definición de función....................................... Ejemplos de funciones................................ Funciones básicas 7.0..

Más detalles

(x,y) tiende a (x0,y0), entonces:

(x,y) tiende a (x0,y0), entonces: 5.1Propiedades de los límites para funciones: R 2 R Sean f(x) y g(x) dos funciones reales de variables independientes Si existen los limites de f(x) y g(x) cuando x tiende a x0, entonces: 1. 2. 3. 4. 5.

Más detalles

Tema XIV: SUCESIONES Y SERIES DE NÚMEROS REALES XIV.1. Sucesiones. Sucesiones convergentes

Tema XIV: SUCESIONES Y SERIES DE NÚMEROS REALES XIV.1. Sucesiones. Sucesiones convergentes Tema XIV: SUCESIONES Y SERIES DE NÚMEROS REALES XIV.1. Sucesiones. Sucesiones convergentes 1. Sucesiones DEF. Una sucesión infinita de números reales es una función cuyo dominio es N y su imagen un subconjunto

Más detalles

Objetivos. Conjuntos numéricos. Funciones reales de una variable real. Límites de funciones. Continuidad de funciones. Derivabilidad.

Objetivos. Conjuntos numéricos. Funciones reales de una variable real. Límites de funciones. Continuidad de funciones. Derivabilidad. TEMA 1 Objetivos. Conjuntos numéricos. Funciones reales de una variable real. Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Polinomio de Taylor.

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Funciones de varias variables. Continuidad

Funciones de varias variables. Continuidad Capítulo 1 Funciones de varias variables. Continuidad 1. Topología en R n Definición (Norma, espacio vectorial normado). Una norma sobre R n es una aplicación: : R n [0,+ [ x x, que satisface las siguientes

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER

INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER ASIGNATURA: Matemática Aplicada II PROGRAMA: S3C LIMA-PERU 2 MANUAL DE MATEMATICA APLICADA II INDICE.- SECCION 1 : MATRICES Ejercicios 1 SECCION 2 : OPERACIONES

Más detalles

N = {1, 2, 3, 4, 5,...}

N = {1, 2, 3, 4, 5,...} Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente

Más detalles

Derivadas Parciales y Derivadas Direccionales

Derivadas Parciales y Derivadas Direccionales Tema 3 Derivadas Parciales y Derivadas Direccionales En este tema y en el siguiente presentaremos los conceptos fundamentales del Cálculo Diferencial para funciones de varias variables. Comenzaremos con

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO 1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos

Más detalles

son dos elementos de Rⁿ, definimos su suma, denotada por

son dos elementos de Rⁿ, definimos su suma, denotada por 1.1 Definición de un vector en R², R³ y su Interpretación geométrica. 1.2 Introducción a los campos escalares y vectoriales. 1.3 La geometría de las operaciones vectoriales. 1.4 Operaciones con vectores

Más detalles

FUNCIONES Y SUPERFICIES

FUNCIONES Y SUPERFICIES FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com

Más detalles

Cálculo vectorial en el plano.

Cálculo vectorial en el plano. Cálculo vectorial en el plano. Cuaderno de ejercicios MATEMÁTICAS JRM SOLUCIONES Índice de contenidos. 1. Puntos y vectores. Coordenadas y componentes. Puntos en el plano cartesiano. Coordenadas. Vectores

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados en Ingeniería Capítulo 1: Funciones de una variable real Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez 1 CAPÍTULO 1.

Más detalles

1 Cálculo diferencial en varias variables.

1 Cálculo diferencial en varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 1 Cálculo diferencial en varias variables. 1.1 Funciones de varias variables. Límites y continuidad.

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 OPERACIONES CON LOS NÚMEROS REALES En R se de nen dos operaciones: Suma o adición y producto o multiplicación: Si a 2 R y

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

Topología de R n. Beatriz Porras

Topología de R n. Beatriz Porras Producto escalar, métrica y norma asociada. Topología de R n Beatriz Porras 1 Producto escalar, métrica y norma asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

Espacios Normados (Normas en R n )

Espacios Normados (Normas en R n ) Espacios Normados (Normas en R n ) Uno de los conceptos más importantes del cálculo y del analisis matemático es el de métrica o distancia. En R n la noción de metrico depende a su vez del concepto de

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo

Más detalles

Aproximaciones de funciones y problemas de extremos

Aproximaciones de funciones y problemas de extremos Aproximaciones de funciones y problemas de extremos José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 5.- Aproximaciones de funciones y problemas de extremos 1 Teorema de

Más detalles

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 1. CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 1. CÁLCULO DIFERENCIAL EN VARIAS VARIABLES TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 1 CÁLCULO DIFERENCIAL EN VARIAS VARIABLES 11 CONCEPTOS BÁSICOS Definición La norma de un vector x =

Más detalles

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H. Producto cartesiano Motivación: Has oido hablar sobre gente que juega ajedrez sin tener que mirar nunca el tablero?. Esto es posible, y se debe a una herramienta llamada coordenadas de un punto. En un

Más detalles

Capítulo 3. Limites y continuidad

Capítulo 3. Limites y continuidad Capítulo 3. Limites y continuidad Objetivo: El alumno calculará el límite de una función real de variable real y analizará la continuidad de la misma. Contenido: 3.1 Concepto de límite de una función en

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp. República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad

Más detalles

CLASE 2. Sergio Stive Solano Sabié. Agosto de 2011. Catálogo de funciones básicas Transformaciones de funciones Combinaciones de funciones

CLASE 2. Sergio Stive Solano Sabié. Agosto de 2011. Catálogo de funciones básicas Transformaciones de funciones Combinaciones de funciones CLASE 2 Sergio Stive Solano Sabié Agosto de 2011 CLASE 2 Sergio Stive Solano Sabié Agosto de 2011 Función lineal Definición 1.1 Decimos que y es una función lineal de x, si la gráfica de y es una recta.

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

Una operación interna: Suma Una operación externa: Multiplicación por un escalar

Una operación interna: Suma Una operación externa: Multiplicación por un escalar El conjunto R n Es el conjunto de las n-adas formadas por el producto cartesiano RRR.R, donde R es el conjunto de los números reales. Así pues, dos elementos X y Y de R n serán iguales si y solo si tienen

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

Tema 3: Conjuntos y Funciones

Tema 3: Conjuntos y Funciones Tema 3: Conjuntos y Funciones Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2008 09 LC, 2008 09 Conjuntos y Funciones 3.1 Conjuntos Escribimos

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Campos escalares: gráficas, límites y continuidad

Campos escalares: gráficas, límites y continuidad Campos escalares: gráficas, ites y continuidad de febrero de 0 Gráficas de un campo escalar Dominio de un campo escalar Un campo escalar definido sobre un subconjunto U de R n, es una función f con dominio

Más detalles

IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada (Modelo del 01) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 011-01 Opción A Ejercicio 1, Opción A, Modelo de 01 Sea la

Más detalles

Topología de la Recta

Topología de la Recta Capítulo 2 Topología de la Recta 21 Introducción En este capítulo introducimos algunas nociones sobre topología de los espacios métricos Nuestro interés se limitará en el futuro al caso real o a los espacios

Más detalles

Números reales Conceptos básicos Algunas propiedades

Números reales Conceptos básicos Algunas propiedades Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice la cadena Tabla de Dada una función f : D R R,

Más detalles

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0 Funciones continuas Funciones continuas Continuidad de una función Si x 0 es un número, la función f(x) es continua en este punto si el límite de la función en ese punto coincide con el valor de la función

Más detalles

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario CÁLCULO III Pablo Torres Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario Funciones definidas en R n. INTRODUCCIÓN Sean n,m N y A R n. Una función f : A R m se denomina

Más detalles

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2)

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2) UNIVERSIDAD DEL VALLE PROFESOR CARLOS IVAN RESTREPO CONTINUIDAD. 1.- Continuidad en un punto. Continuidad lateral..- Continuidad en un intervalo. 3.- Operaciones con funciones continuas 4.- Discontinuidades.

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

5. INTEGRALES MULTIPLES

5. INTEGRALES MULTIPLES 5. INTEGRALES MULTIPLES INDICE 5 5.. Integrales iteradas. 5.. Definición de integral doble: áreas y volúmenes..3 5.3. Integral doble en coordenadas polares 5 5.4. Aplicaciones de la integral doble (geométricas

Más detalles

5. El teorema de los multiplicadores de Lagrange.

5. El teorema de los multiplicadores de Lagrange. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 5. El teorema de los multiplicadores de Lagrange. gxy= es decir, { } Sea g una función de dos variables suficientemente regular y consideremos la curva C

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

Unidad 3: Funciones de varias variables

Unidad 3: Funciones de varias variables Unidad 3: Funciones de varias variables INDICE INTRODUCCIÓN... 1 1. FUNCIONES DE VARIAS VARIABLES... 1 1.1 Funciones de varias variables... 1 1. Dominio... 1.3 Operaciones... 3 1.4 Gráficas... 4 1.4.1

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

Estructuras algebraicas

Estructuras algebraicas Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

RESUMEN TEÓRICO DE CLASES

RESUMEN TEÓRICO DE CLASES Página 1 RESUMEN TEÓRICO DE CLASES Página 2 Tema 1. Inecuaciones Las inecuaciones son desigualdades algebraicas en la que sus dos miembros se relacionan por uno de estos signos: >; ;

Más detalles

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables.

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables. Derivadas. Contenido 1. Introducción. (α) 2. Definición de Derivada. (α) 3. Pendiente de la recta tangente. (α) 4. Funciones diferenciables. (α) 5. Función derivada. (α) 6. Propiedades de la derivada.

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 009,

Más detalles

Introducción al Cálculo. Diferencial en Varias Variables

Introducción al Cálculo. Diferencial en Varias Variables UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción al Cálculo Diferencial en Varias Variables Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

En lo que resta de esta unidad se considera una región o dominio (ver Apéndice )

En lo que resta de esta unidad se considera una región o dominio (ver Apéndice ) 1 Derivadas Parciales (Parte 1) FUNCIONES DE VARIAS VARIABLES Hasta ahora nos hemos preocupado del Cálculo Diferencial e Integral de funciones de una variable, sin embargo, en el mundo real las cantidades

Más detalles

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica ANÁLISIS MATEMÁTICO BÁSICO DERIVADAS DE FUNCIONES DE VARIAS VARIABLES Curvas Paramétricas Dada una curva paramétrica γ : [a, b] R R n t γ(t) = (f 1 (t), f 2 (t),, f n (t)), donde las funciones f k : [a,

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

Funciones Exponenciales y Logarítmicas

Funciones Exponenciales y Logarítmicas Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

PRIMER PARCIAL

PRIMER PARCIAL PRIMER PARCIAL 25-26 decimales. Cuando termines un ejercicio cambia de página () Pregunta de teoría: (a) (.5 puntos) Enuncia y demuestra el Teorema del valor medio para funciones vectoriales. (b) (.5 puntos)

Más detalles

Distribuciones de Probabilidad Para Variables Aleatorias Continuas

Distribuciones de Probabilidad Para Variables Aleatorias Continuas Distribuciones de Probabilidad Para Variables Aleatorias Continuas Departamento de Estadística-FACES-ULA 20 de Diciembre de 2013 Introducción Recordemos la definición de Variable Aleatoria Continua. Variable

Más detalles

Parte I. FUNCIONES. LÍMITES Y CONTINUIDAD. ACOTACIÓN

Parte I. FUNCIONES. LÍMITES Y CONTINUIDAD. ACOTACIÓN Parte I. FUNCIONES. LÍMITES Y CONTINUIDAD. ACOTACIÓN I.1. DEFINICIONES. Una función real de variable real (f: Domf R Recf R) es una relación que a cada elemento x de un subconjunto de R (Domf) le asigna

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles