El Teorema Fundamental del Cálculo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El Teorema Fundamental del Cálculo"

Transcripción

1 del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011

2 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su integrl en I vle A R si se cumplen ls dos siguientes definiciones (equivlentes): 1 f = f = A. 2 Pr cd ε > 0 existe δ > 0 tl que si P P(I ) cumple P < δ entonces S(f ; P) A < ε pr culquier elección de puntos intermedios.

3 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su integrl en I vle A R si se cumplen ls dos siguientes definiciones (equivlentes): 1 f = f = A. 2 Pr cd ε > 0 existe δ > 0 tl que si P P(I ) cumple P < δ entonces S(f ; P) A < ε pr culquier elección de puntos intermedios. De dónde sle l Regl de Brrow? f (x) dx = F (b) F () si F = f en I y f continu en I.

4 Tiene que ver con l ditividd con respecto l intervlo de integrción Recordemos que si f : [, b] R es integrble en [, b] se define f (x) dx = f (x) dx. b

5 Tiene que ver con l ditividd con respecto l intervlo de integrción Recordemos que si f : [, b] R es integrble en [, b] se define f (x) dx = f (x) dx. b Problem. Demuestr que si f : I = [, b] R es integrble en I entonces pr culesquier x, y, z I se tiene que y x f (s) ds z x f (s) ds = y z f (s) ds.

6 L función integrl indefinid Se f : I = [, b] R un función integrble en I. Definición. Un integrl indefinid de f es culquier función de l form F : x I F (x) = donde x 0 I está fijdo de ntemno. x x 0 f (s) ds,

7 L función integrl indefinid Se f : I = [, b] R un función integrble en I. Definición. Un integrl indefinid de f es culquier función de l form F : x I F (x) = x x 0 f (s) ds, donde x 0 I está fijdo de ntemno. Teorem. En ls condiciones de l definición nterior, l función F es lipschitzin en I (y, por tnto, continu en I ).

8 del Cálculo Relcion los cálculos diferencil e integrl Teorem del Cálculo. Sen f : I = [, b] R integrble en I, x 0 I, y l función integrl indefinid F : x I F (x) = x x 0 f (s) ds. Si f es continu en un punto c I entonces F es derivble en c y F (c) = f (c).

9 del Cálculo Relcion los cálculos diferencil e integrl Teorem del Cálculo. Sen f : I = [, b] R integrble en I, x 0 I, y l función integrl indefinid F : x I F (x) = x x 0 f (s) ds. Si f es continu en un punto c I entonces F es derivble en c y F (c) = f (c). Not. Si c es un extremo del intervlo se entiende que F es l correspondiente derivd lterl.

10 Existenci de primitivs pr ls continus y l Regl de Brrow Corolrio (Existenci de primitivs pr ls continus). Si f : J R es continu en un intervlo J (no necesrimente cerrdo o cotdo), entonces pr culquier x 0 J fijdo l función integrl indefinid F : x J F (x) = x x 0 f (s) ds, es un primitiv de f (es decir, F (x) = f (x) pr todo x J). Además, culquier otr primitiv de f es de l form G(x) = F (x) + k pr todo x J y pr un cierto vlor k R.

11 Existenci de primitivs pr ls continus y l Regl de Brrow Corolrio (Existenci de primitivs pr ls continus). Si f : J R es continu en un intervlo J (no necesrimente cerrdo o cotdo), entonces pr culquier x 0 J fijdo l función integrl indefinid F : x J F (x) = x x 0 f (s) ds, es un primitiv de f (es decir, F (x) = f (x) pr todo x J). Además, culquier otr primitiv de f es de l form G(x) = F (x) + k pr todo x J y pr un cierto vlor k R. Corolrio (Regl de Brrow). Si f : I = [, b] R es continu en I y F es un primitiv de f entonces f (x) dx = F (b) F ().

12 Nots sobre l existenci de primitivs pr ls continus 1 El primer corolrio no solo segur l existenci de primitivs pr ls continus, sino que tmbién nos dice cómo son:

13 Nots sobre l existenci de primitivs pr ls continus 1 El primer corolrio no solo segur l existenci de primitivs pr ls continus, sino que tmbién nos dice cómo son: si f es continu en el intervlo J entonces tods sus primitivs son de l form x F (x) = k+ f (s) ds (x J), con x 0 J y k R fijdos. x 0

14 Nots sobre l existenci de primitivs pr ls continus 1 El primer corolrio no solo segur l existenci de primitivs pr ls continus, sino que tmbién nos dice cómo son: si f es continu en el intervlo J entonces tods sus primitivs son de l form F (x) = k+ x x 0 f (s) ds (x J), con x 0 J y k R fijdos. 2 No siempre ls elementles tienen primitivs elementles.

15 Nots sobre l existenci de primitivs pr ls continus 1 El primer corolrio no solo segur l existenci de primitivs pr ls continus, sino que tmbién nos dice cómo son: si f es continu en el intervlo J entonces tods sus primitivs son de l form F (x) = k+ x x 0 f (s) ds (x J), con x 0 J y k R fijdos. 2 No siempre ls elementles tienen primitivs elementles. Por ejemplo, F (x) = x 0 e s2 ds es un primitiv de f (x) = e x2, pero F no se puede expresr en términos de elementles.

16 Nots sobre l existenci de primitivs pr ls continus 1 El primer corolrio no solo segur l existenci de primitivs pr ls continus, sino que tmbién nos dice cómo son: si f es continu en el intervlo J entonces tods sus primitivs son de l form F (x) = k+ x x 0 f (s) ds (x J), con x 0 J y k R fijdos. 2 No siempre ls elementles tienen primitivs elementles. Por ejemplo, F (x) = x 0 e s2 ds es un primitiv de f (x) = e x2, pero F no se puede expresr en términos de elementles. 3 Ls discontinus pueden tener primitivs o no Ejemplo de cd un?

17 Nots sobre l Regl de Brrow 1 En ocsiones podemos usr l Regl de Brrow unque en principio no se cumpln sus hipótesis.

18 Nots sobre l Regl de Brrow 1 En ocsiones podemos usr l Regl de Brrow unque en principio no se cumpln sus hipótesis. Por ejemplo, cundo tenemos un cntidd finit de discontinuiddes, tods ells evitbles

19 Nots sobre l Regl de Brrow 1 En ocsiones podemos usr l Regl de Brrow unque en principio no se cumpln sus hipótesis. Por ejemplo, cundo tenemos un cntidd finit de discontinuiddes, tods ells evitbles; en el cálculo de de continus trozos quizá podmos plicr l Regl de Brrow l clculr l integrl en cd trozo.

20 Nots sobre l Regl de Brrow 1 En ocsiones podemos usr l Regl de Brrow unque en principio no se cumpln sus hipótesis. Por ejemplo, cundo tenemos un cntidd finit de discontinuiddes, tods ells evitbles; en el cálculo de de continus trozos quizá podmos plicr l Regl de Brrow l clculr l integrl en cd trozo. 2 Existe un versión más generl de l Regl de Brrow. Segundo Teorem del Cálculo. Si f : I = [, b] R es integrble en I y F es un primitiv de f, entonces f (x) dx = F (b) F ().

21 Nots sobre l Regl de Brrow 1 En ocsiones podemos usr l Regl de Brrow unque en principio no se cumpln sus hipótesis. Por ejemplo, cundo tenemos un cntidd finit de discontinuiddes, tods ells evitbles; en el cálculo de de continus trozos quizá podmos plicr l Regl de Brrow l clculr l integrl en cd trozo. 2 Existe un versión más generl de l Regl de Brrow. Segundo Teorem del Cálculo. Si f : I = [, b] R es integrble en I y F es un primitiv de f, entonces f (x) dx = F (b) F (). Ejercicio. Encuentr un ejemplo de un función f que stisfg ls condiciones del Segundo Teorem y no ls de l Regl de Brrow.

22 Esto es otr consecuenci del Teorem del Cálculo Nos plntemos hor cómo clculr derivds de del tipo x h(x) g(x) f (s) ds.

23 Esto es otr consecuenci del Teorem del Cálculo Nos plntemos hor cómo clculr derivds de del tipo x h(x) g(x) f (s) ds. Proposición. Si f : I R es continu en el intervlo I, g, h : J R son derivbles en el intervlo J y g(x), h(x) I pr todo x J, entonces pr todo x J tenemos que ( h(x) f (s) ds) = f (h(x))h (x) f (g(x))g (x). g(x)

24 Esto es otr consecuenci del Teorem del Cálculo Nos plntemos hor cómo clculr derivds de del tipo x h(x) g(x) f (s) ds. Proposición. Si f : I R es continu en el intervlo I, g, h : J R son derivbles en el intervlo J y g(x), h(x) I pr todo x J, entonces pr todo x J tenemos que ( h(x) f (s) ds) = f (h(x))h (x) f (g(x))g (x). g(x) Ejemplo. Clcul l derivd de l función G(x) = cos x sen x e s2 ds (x R).

25 Cmbio de vrible en l integrl definid No será necesrio deshcer los cmbios de vrible! Teorem en l integrl definid. L fórmul de cmbio de vrible G(b) G() f (x) dx = f (G(t)) G (t) dt es válid si G : I = [, b] R es continumente derivble en I y f es integrble en G(I ).

26 Cmbio de vrible en l integrl definid No será necesrio deshcer los cmbios de vrible! Teorem en l integrl definid. L fórmul de cmbio de vrible G(b) G() f (x) dx = f (G(t)) G (t) dt es válid si G : I = [, b] R es continumente derivble en I y f es integrble en G(I ). Not pr recordr l fórmul. En l primer integrl hcemos x = G(t), de donde dx = G (t) dt.

27 Cmbio de vrible en l integrl definid No será necesrio deshcer los cmbios de vrible! Teorem en l integrl definid. L fórmul de cmbio de vrible G(b) G() f (x) dx = f (G(t)) G (t) dt es válid si G : I = [, b] R es continumente derivble en I y f es integrble en G(I ). Not pr recordr l fórmul. En l primer integrl hcemos x = G(t), de donde dx = G (t) dt. Solmente lo demostrremos en el cso f continu.

28 Cmbio de vrible en l integrl definid No será necesrio deshcer los cmbios de vrible! Teorem en l integrl definid. L fórmul de cmbio de vrible G(b) G() f (x) dx = f (G(t)) G (t) dt es válid si G : I = [, b] R es continumente derivble en I y f es integrble en G(I ). Not pr recordr l fórmul. En l primer integrl hcemos x = G(t), de donde dx = G (t) dt. Solmente lo demostrremos en el cso f continu. Al contrrio que el en Teorem pr el cálculo de primitivs, l función de cmbio de vrible G no necesit ser inyectiv.

29 Cmbio de vrible en l integrl definid Aplicciones práctics: Cso Fácil y Cso No Tn Fácil Cómo usr el cmbio de vrible en l integrl definid. G(b) G() f (x) dx = } {{ } (I ) f (G(t)) G (t) dt. } {{ } (II )

30 Cmbio de vrible en l integrl definid Aplicciones práctics: Cso Fácil y Cso No Tn Fácil Cómo usr el cmbio de vrible en l integrl definid. G(b) G() f (x) dx = } {{ } (I ) f (G(t)) G (t) dt. } {{ } (II ) Ejemplo del Cso Fácil (Prtimos de l integrl (II), por lo que l función de cmbio G y su dominio se encuentrn entre los dtos del problem.) () Clcul l π/4 0 sen t cos t dt. (b) Clcul l sen t cos t dt.

31 Cmbio de vrible en l integrl definid Aplicciones práctics: Cso Fácil y Cso NO TAN Fácil Cómo usr el cmbio de vrible en l integrl definid. G(b) G() f (x) dx = } {{ } (I ) f (G(t)) G (t) dt. } {{ } (II )

32 Cmbio de vrible en l integrl definid Aplicciones práctics: Cso Fácil y Cso NO TAN Fácil Cómo usr el cmbio de vrible en l integrl definid. G(b) G() f (x) dx = } {{ } (I ) f (G(t)) G (t) dt. } {{ } (II ) Ejemplo del Cso NO TAN Fácil (Prtimos de l integrl (I), por lo que l función de cmbio G NO se encuentr entre los dtos del problem.) () Clcul l x 2 dx. (b) Clcul l 1 x 2 dx. (c) Repite el prtdo () usndo l mism función de cmbio pero con dominio en [ π/2, π/2 + 2π].

33 Cmbio de vrible en l integrl definid Segund versión: solmente pr cmbios biyectivos Segund versión del Teorem. L fórmul de cmbio de vrible G(b) G() f (x) (G 1 ) (x) dx = f (G(t)) dt es válid si G : I = [, b] R es continumente derivble en I, G (t) 0 pr todo t I, y f es integrble en G(I ). Ejemplo. Clculr π 2 (π/2) 2 cos t dt.

34 en l integrl definid Teorem de integrción en l integrl definid. Si f, g : I = [, b] R son continumente derivbles en I entonces f (x) g(x) dx = f (b)g(b) f ()g() f (x) g (x) dx.

35 en l integrl definid Teorem de integrción en l integrl definid. Si f, g : I = [, b] R son continumente derivbles en I entonces f (x) g(x) dx = f (b)g(b) f ()g() Abrevitur de l fórmul: u dv = u v b v du. f (x) g (x) dx.

36 en l integrl definid Teorem de integrción en l integrl definid. Si f, g : I = [, b] R son continumente derivbles en I entonces f (x) g(x) dx = f (b)g(b) f ()g() Abrevitur de l fórmul: Ejemplo. π 0 ex sen x dx. u dv = u v b v du. f (x) g (x) dx.

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

TRABAJOS DE MATEMATICA

TRABAJOS DE MATEMATICA UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA SERIE C TRABAJOS DE MATEMATICA Nº 36/07 Un segundo curso de Cálculo Crin Boyllin, Elid Ferreyr, Mrt Urciuolo, Cynthi Will Editores:

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Segunda Versión. Integración y Series. Tomo II

Segunda Versión. Integración y Series. Tomo II UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA Deprtmento de Mtemátic y Cienci de l Computción CÁLCULO Segund Versión Integrción y Series Tomo II Gldys Bobdill A. y Rfel Lbrc B. Sntigo de Chile 4

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

La integral de Riemann

La integral de Riemann Cpítulo 6 L integrl de Riemnn Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cotdo y cerrdo, es decir [, b] con < b R, y l definición que

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Tema 4. Integración compleja

Tema 4. Integración compleja Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE HUGO BARRANTES TRANSFORMADA DE LAPLACE Mteril complementrio ii Revisión filológic Mrí Benvides González Digrmción Hugo Brrntes Cmpos Encrgdo de cátedr Eugenio Rojs Mor Producción cdémic y sesorí metodológic

Más detalles

Resumen Segundo Parcial, MM-502

Resumen Segundo Parcial, MM-502 Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tem 5 Límites de funciones, continuidd y síntots Mtemátics CCSSII º Bch 1 TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 5.1 LÍMITE DE UNA FUNCIÓN 5.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de

Más detalles

Tema 9 Cálculo integral de funciones reales de variable real

Tema 9 Cálculo integral de funciones reales de variable real Tem 9 Cálculo integrl de funciones reles de vrile rel Ojetivos: 1. Clculr funciones primitivs con wxmxim. 2. Prcticr con el concepto de función integrle y l integrl de un función. 3. Trjr con funciones

Más detalles

Sucesiones de Funciones

Sucesiones de Funciones Cpítulo 9 Sucesiones de Funciones 9.1. Sucesiones de Funciones. En los cpítulos 3 y 4 vimos que un sucesión de números reles es, simplemente, un colección numerble y ordend de números reles. De mner similr,

Más detalles

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5 UNIDAD 5: LÍMITES Y CONTINUIDAD. 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Fíjte en el comportmiento de l unción ( x ) x 1 tom vlores cercnos. cundo x Si x se proxim, l unción tom vlores cercnos 5. Se escribe:

Más detalles

La Geometría de las Normas del Espacio de las Funciones Continuas

La Geometría de las Normas del Espacio de las Funciones Continuas Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)

Más detalles

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar Funciones de Vrile omplej - lse 7-8/08/01 [ ] ω : I =, R t I ω Donde : ω = u + iv( y) L derivd de ω se define como: [ ] ω : I =, R t I ω Donde : ω = u + iv L integrl definid de funciones ω sore t, se define

Más detalles

10.1 Funciones integrables Teorema fundamental del Cálculo Ejercicios

10.1 Funciones integrables Teorema fundamental del Cálculo Ejercicios Integrción Funciones integrbles Integrción. Funciones integrbles 49. Teorem fundmentl del Cálculo 55.3 Ejercicios 58 El áre de un recinto, l longitud de un cble que cuelg entre dos postes, el volumen o

Más detalles

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL RAFAEL HERRERÍAS PLEGUEZUELO EDUARDO PÉREZ RODRÍGUEZ Deprtmento de Economí Aplicd Universidd de Grnd. INTRODUCCIÓN Se supone que el Sr. Corto dispone de

Más detalles

Teorema de la Función Inversa

Teorema de la Función Inversa Teorem de l Función Invers Pr el cso de un funcion F : U R R se tiene Nuestro problem es, dds ls funciones x f(u, v) y y g(u, v) que describen x, y como funciones de u, v, cundo es posible estblecer funciones

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39 Índice generl. L Integrl Indenid.. Antiderivd e Integrl Indenid...................... Integrles inmedits........................... 3.3. Regl de l Cden............................ 4.4. Sustitución o Cmbio

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

1. La derivada del producto de funciones derivables

1. La derivada del producto de funciones derivables Cátedr de Mtemátic Mtemátic Fcultd de Arquitectur Universidd de l Repúblic 3 Segundo semestre Hoj 5 Derivd del producto e integrción por prtes Ddo que l derivción y l integrción pueden verse como operciones

Más detalles

4.1. El problema del cálculo de áreas

4.1. El problema del cálculo de áreas Cpítulo 4 Integrción 4.. El problem del cálculo de áres Unidd de medid: áre del cudrdo. Áre de un rectángulo, de un triángulo, de un prlelogrmo, de un rombo, de un trpecio, de un polígono regulr. Exhución

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

5. INTEGRAL DE LÍNEA. 5.1 Introducción. 5.2 Curvas

5. INTEGRAL DE LÍNEA. 5.1 Introducción. 5.2 Curvas 5. INTEGRAL DE LÍNEA 5.1 Introducción Nos proponemos mplir l noción de integrl, que y conocemos pr el cso de funciones de un vrile rel, cmpos de vris vriles. Cundo se definí l integrl definid pr un función

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow

Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow Universidd de l Repúblic Cálculo Fcultd de Ingenierí - IMERL Segundo semestre 6 Práctico 9 - Cálculo de integrles. Teorem fundmentl y regl de Brrow. Utilizndo los resultdos del ejercicio 9 del práctico

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

E.T.S. Minas: Métodos Matemáticos

E.T.S. Minas: Métodos Matemáticos E... Mins: Métodos Mtemáticos Resumen y ejemplos em 6: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Octubre 8, Versión.5 Contenido.

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una

CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una CAPÍTULO. PROCEDIMIENTOS DE INTEGRACIÓN.. Integrción por cmbio de vrible.. Integrción por prtes... Producto de un polinomio por un eponencil... Producto de un polinomio por un seno o un coseno... Producto

Más detalles

Integración Numérica. 18 Regla del Trapecio

Integración Numérica. 18 Regla del Trapecio Integrción Numéric L integrl resuelve el problem de clculr el áre bjo l gráfic de un función positiv definid sobre un intervlo cerrdo. El cálculo elementl de funciones de un vrible rel proporcion un método

Más detalles

Integración en el plano complejo

Integración en el plano complejo Integrción en el plno complejo 4.1. Funciones complejs de vrible rel Un función complej de vrible rel es un función w : [, b] C, donde b. L prte rel y l prte imginri de w son dos funciones reles de vrible

Más detalles

Integración en una variable. Aplicaciones

Integración en una variable. Aplicaciones Tem 4 Integrción en un vrible. Aplicciones Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución desrrolldo

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid

Más detalles

Matemáticas para Químicos

Matemáticas para Químicos UNIVERSIDAD DE SEVILLA Mtemátics pr Químicos José Antonio Prdo Bsss José Antonio Prdo Tendero Jun Antonio River Boz. Dpto. Análisis Mtemático Universidd de Sevill P.P.R. 22 de Septiembre de 2008. Edición:

Más detalles

Aproximación e interpolación mediante polinomios

Aproximación e interpolación mediante polinomios LA GACETA DE LA RSME, Vol. 5.3 (2002), Págs. 621 627 621 Aproximción e interpolción medinte polinomios por Miguel Mrno y Mrt Mrcolini En este trbjo se muestr un relción entre los conceptos de interpolción

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice: 1. Derivd de un unción. 1.1. Derivd de un unción en un punto. 1.. Interpretción geométric 1.3. Derivds lterles. 1.4. Función derivd. Derivds sucesivs.. Derivbilidd

Más detalles

Integración de Funciones de Varias variables

Integración de Funciones de Varias variables Cpítulo 1 Integrción de Funciones de Vris vribles 1. L σ-álgebr de orel 2. L medid de Lebesgue 3. Funciones medibles Un vez estudid l medid de Lebesgue en R n, vmos desrrollr hor l integrción de funciones

Más detalles

APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elaborados por José Manuel Rodríguez Versión abreviada de Dmitry Yakubovich (2011)

APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elaborados por José Manuel Rodríguez Versión abreviada de Dmitry Yakubovich (2011) APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elbordos por José Mnuel Rodríguez Versión brevid de Dmitry Ykubovich (20). INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Se define el conjunto de

Más detalles

1. Introducción: longitud de una curva

1. Introducción: longitud de una curva 1. Introducción: longitud de un curv Integrles de L ide pr clculr l longitud de un curv contenid en el plno o en el espcio consiste en dividirl en segmentos pequeños, escogiendo un fmili finit de puntos

Más detalles

n f j (x). j=0 f n Los teoremas que hemos obtenido anteriormente para sucesiones de funciones pueden aplicarse a las series de funciones.

n f j (x). j=0 f n Los teoremas que hemos obtenido anteriormente para sucesiones de funciones pueden aplicarse a las series de funciones. Cpítulo 10 Series de Funciones 10.1. Series de Funciones Definición 10.1 Se X R y (f n ) n N un sucesión de funciones reles sobre X. Pr n N definimos S n : X R por S n (x) = f j (x). Llmmos (S n ) n N

Más detalles

Aplicación de la Mecánica Cuántica a sistemas sencillos

Aplicación de la Mecánica Cuántica a sistemas sencillos Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso 15- Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =

Más detalles

Apuntes de cálculo en una variable real. Eduardo Liz Marzán

Apuntes de cálculo en una variable real. Eduardo Liz Marzán Apuntes de cálculo en un vrible rel Edurdo Liz Mrzán Vigo, Diciembre de 2006 Índice Generl Preinres. Introducción........................................2 L relción de orden en el conjunto de los números

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

4. Integral de Riemann

4. Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 7: INTEGRAL DE RIEMANN 4. Integrl de Riemnn

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

Continuidad. Funciones

Continuidad. Funciones I. E. S. Siete Colins (Ceut) Deprtmento de Mtemátics Mtemátics de º de Bchillerto Continuidd de Funciones Por Jvier Crroquino CZs Ctedrático de mtemátics del I.E.S. Siete Colins Ceut 005 Continuidd De

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

TEMA 6.- DERIVADAS. La siguiente tabla da el precio, en euros, de un producto durante 8 años sucesivos:

TEMA 6.- DERIVADAS. La siguiente tabla da el precio, en euros, de un producto durante 8 años sucesivos: TEMA 6.- DERIVADAS.- TASA DE VARIACIÓN MEDIA L siguiente tbl d el precio, en euros, de un producto durnte 8 ños sucesivos: Si llmmos P( l unción precio según el ño, podemos medir l vrición del precio en

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

CÁLCULO INTEGRAL EN VARIAS VARIABLES

CÁLCULO INTEGRAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO INTEGRAL EN VARIAS VARIABLES Rmón Bruzul Mrisel Domínguez Crcs, Venezuel Julio 25 Rmón

Más detalles

Integración en el campo complejo

Integración en el campo complejo Cpítulo 4 Integrción en el cmpo complejo Objetivos Relizr integrles de funciones complejs lo lrgo de curvs. Comprender los conceptos de independenci del cmino y homologí. Clculr integrles por medio de

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Para funciones reales de una variable real, toda función continua g : [a, b] R es la derivada de su integral indefinida f(x) = x

Para funciones reales de una variable real, toda función continua g : [a, b] R es la derivada de su integral indefinida f(x) = x Cpítulo 13 Integrl curvilíne Cmpos de vectores y forms diferenciles. Integrción curvilíne: Independenci del cmino y existenci de función potencil. Teorem de Green. Aplicciones Pr funciones reles de un

Más detalles