Práctica 5 Cálculo integral y sus aplicaciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 5 Cálculo integral y sus aplicaciones"

Transcripción

1 Práctica 5 Cálculo integral y sus aplicaciones Integración con Mathematica o Integrales indefinidas e integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión variable] Calcula la integral indefinida de la expresión dada con respecto a la variable indicada Integrate[expresión{variableab}] Calcula la integral definida de la expresión dada con respecto a la variable indicada en el intervalo [ab]. Ambas instrucciones pueden también indicarse directamente mediante los símbolos: (integral indefinida) que figuran en la paleta BasicInput. (integral definida) o Integración de expresiones simbólicas Mathematica también nos permite calcular la integral de determinadas expresiones simbólicas. Lo que hace el programa es en definitiva mostrarnos la fórmula de integración de determinadas expresiones.

2 Y por supuesto Mathematica conoce el Teorema Fundamental del Cálculo Integral y la regla de Leibniz o Integrales impropias Para calcular integrales impropias aplicamos la definición correspondiente según se trate de integrales impropias de 1ª 2ª o 3ª especie. Ejemplo 5.1 Calcular las siguientes integrales impropias: La integral es convergente.

3 La integral es convergente. La integral es divergente. Mathematica calcula directamente integrales impropias en el caso de que se trate de integrales convergentes y nos presenta un mensaje en aquellos casos en los que la integral no sea convergente.

4 o Valor aproximado de una integral El programa Mathematica tiene como era de esperar sus limitaciones a la hora de calcular ciertas integrales. De hecho no siempre es capaz de darnos el valor exacto de una integral y en ocasiones dicho resultado viene expresado en términos de ciertas funciones especiales que el programa tiene definidas. Sin embargo en ambas situaciones podemos pedirle que nos dé un valor aproximado de la integral. En este ejemplo Mathematica nos devuelve el valor exacto de la integral en términos de la función especial Erf (que se denomina función error y viene dada por Erf ( z) = 2 π 0 z 2 e z dz es decir se trata de la integral de la función de densidad de la distribución de Gauss o distribución normal de media 0 y desviación típica 1). Para obtener un valor aproximado podemos utilizar el comando N Sin embargo Mathematica dispone de una instrucción específica NIntegrate para calcular el valor aproximado de una integral definida y cuya sintaxis es la siguiente: NIntegrate[expresión {variableab}] Calcula un valor aproximado de la integral de la expresión dada con respecto a la variable indicada en el intervalo [ab]. Aunque el resultado mostrado por las instrucciones anteriores es el mismo hemos de indicar que la forma de operar es bien distinta. Fuerza al programa a calcular el valor exacto de la integral y a continuación nos muestra un valor aproximado. Aplica fórmulas de integración numérica para calcular directamente un valor aproximado de la integral. Observación: Las fórmulas de integración numérica que utiliza Mathematica al aplicar la instrucción NIntegrate funcionan bastante bien cuando se trata de calcular valores aproximados de integrales definidas en intervalos acotados. Por el contrario no ocurre lo mismo si aplicamos la instrucción NIntegrate para calcular valores aproximados de integrales impropias definidas en intervalos no acotados.

5 El programa nos devuelve el valor exacto de la integral impropia en términos de la función especial Si(z). Ahora con el comando N podemos obtener un valor aproximado. Sin embargo si utilizamos la función NIntegrate obtenemos: Mathematica nos avisa de que el resultado mostrado no es demasiado fiable. De hecho el resultado mostrado es muy distinto del resultado real Aplicaciones de la integral o Cálculo de áreas de recintos planos El área limitada por dos curvas y = f (x) e y = g(x) en el intervalo [ab] viene dada por Si conocemos los puntos de corte de ambas gráficas en el intervalo [ab] la integral anterior puede calcularse como

6 En el caso particular de que g = 0 se obtiene el área limitada por la curva y = f (x) y el eje OX en el intervalo [ab] Si conocemos los puntos de corte de la gráfica y = f (x) con el eje OX la integral anterior se puede calcular como: Mathematica permite visualizar al área limitada por dos curvas y = f (x) e y = g(x) en el intervalo [ab] mediante la instrucción FilledPlot cuya sintaxis es la siguiente: FilledPlot[{f[x]g[x]}{xab}] Visualiza el área limitada por las curvas y = f (x) e y = g(x) en el intervalo [ab]. FilledPlot[f[x]{xab}] Visualiza el área limitada por las curva y = f (x) y el eje OX en el intervalo [ab]. Para utilizar al instrucción FilledPlot hay que cargar el paquete Graphics`FilledPlot` Ejemplo 5.2 a) Calcular el área limitada por la parábola y = x 2-3x y el eje OX en el intervalo [-11]. El área viene dada por Definimos la función

7 Visualizamos el área que queremos calcular Calculamos los puntos de corte con el eje OX Calculamos el área Mathematica puede calcular directamente la integral anterior en la forma b) Calcular el área limitada por las parábolas y = x 2-2x e y = x 2-2x en el intervalo [-13] Definimos las funciones Visualizamos el área que queremos calcular

8 Calculamos los puntos de corte de ambas gráficas Calculamos el área También en este caso podríamos haber calculado el área directamente en la forma x = t sent c) Calcular el área limitada por la cicloide entre t = 0 y t = π. y = 1 cost Si entre los puntos de abscisa a = x(t 1 ) y b = x(t 2 ) las ecuaciones paramétricas x = x( t) y = y( t) t [ t 1 t 2 ] definen una función integrable y = f (x) entonces el área encerrada por la curva y el eje de abscisas viene dada por Definimos las ecuaciones paramétricas Dibujamos la gráfica de la cicloide en el intervalo [02π] Calculamos el área

9 o Longitud de un arco de curva Si f es una función de clase 1 en el intervalo [ab] entonces la longitud del arco de curva y = f (x) en el intervalo [ab] viene dada por: x = x( t) Si la curva viene dada por las ecuaciones paramétricas [ ] siendo las ( ) t t t 1 2 y = y t funciones x(t) e y(t) de clase 1 en el intervalo [ab] entonces la longitud viene dada por Ejemplo 5.3 a) Calcular la longitud del arco de curva y = sen x en el intervalo [02π]. Definimos la función Representamos el arco de curva en el intervalo [02π] Calculamos la longitud del arco de curva Mathematica nos devuelve el valor exacto en términos de la función especial EllipticE. Para obtener un valor aproximado podemos utilizamos el comando N

10 b) Calcular la longitud del arco de astroide ] [02 cos 3 3 π = = t t sen y t x Definimos las ecuaciones paramétricas Dibujamos la gráfica de la astroide en el intervalo [02π] Calculamos la longitud o Superficies de revolución Podemos imaginar una superficie en R 3 como la deformación de una malla rectangular P(xvz) (uv) v u A cada punto (uv) sobre la malla rectangular le corresponde un punto P(xyz) sobre la superficie siendo ] [ ] [ ) ( ) ( ) ( v v v u u u v u z z v u y y v u x x = = = Las ecuaciones anteriores se denominan ecuaciones paramétricas de la superficie.

11 Mathematica dispone de la instrucción ParametricPlot3D para dibujar la gráfica de una superficie dada en forma paramétrica cuya sintaxis es la siguiente: ParametricPlot3D[{x[uv]y[uv]z[uv]}{uu 1 u 2 }{vv 1 v 2 }] Las ecuaciones paramétricas de una esfera de centro (000) y de radio r vienen dadas por x = r cosu cosv y = r cosu senv z = r senu u [02π ] v [0 π ] Las ecuaciones paramétricas de la superficie de revolución generada al girar la curva y = f (x) alrededor del eje OX en el intervalo [ab] vienen dadas por: x = u y = f ( u)cosv u [ a b] v [02π ] z = f ( u) senv Las ecuaciones paramétricas de la superficie de revolución generada al girar la curva y = f (x) alrededor del eje OY en el intervalo [ab] vienen dadas por: x = u cosv y = u senv u [ a b] v [02π ] z = f ( u) La siguiente definición nos va a permitir dibujar la superficie de revolución generada por una curva al girar alrededor del eje OX y del eje OY:

12 Área de una superficie de revolución El área de la superficie de revolución generada al girar la curva y = f (x) alrededor del eje OX en el intervalo [ab] viene dada por El área de la superficie de revolución generada al girar la curva y=f(x) alrededor del eje OY en el intervalo [ab] viene dada por Ejemplo 5.4 a) Calcular el área de la superficie de revolución generada al girar la curva y = x 3 en el intervalo [01] alrededor del eje OY. Definimos la función Representamos la curva en el intervalo [01] Representamos la superficie de revolución alrededor del eje OY

13 Calculamos el área de la superficie de revolución b) Calcular el área de la superficie de revolución generada al girar la curva y = sen x en el intervalo [0π] alrededor del eje OX. Definimos la función Representamos la curva en el intervalo [0π] Representamos la superficie de revolución alrededor del eje OY Calculamos el área de la superficie de revolución

14 o Volúmenes de cuerpos de revolución Método de los discos Método de las envolventes Método de las arandelas

15 Ejemplo 5.5 a) Calcular el volumen del elipsoide de revolución obtenido al girar la elipse de ecuación alrededor del eje OX con a = 4 y b = 3. Definimos función (despejamos la variable y en la ecuación anterior) Nos quedamos con la parte positiva Representamos la curva en el intervalo [-44] Representamos la superficie de revolución alrededor del eje OX

16 Calculamos el volumen del cuerpo de revolución aplicando el método de los discos a) Calcular el volumen del cuerpo de revolución obtenido al girar la región limitada por las curvas y=x 2 e y = x al girar alrededor del eje OX y el eje OY. Definimos las funciones Calculamos los puntos de corte Representamos la región limitada por ambas curvas Calculamos el área del cuerpo de revolución alrededor del eje OX aplicando el método de las arandelas (observemos que g(x) f (x) en el intervalo [01]) Calculamos el área del cuerpo de revolución alrededor del eje OY aplicando el método de las envolventes (observemos que la altura de la envolvente en cada punto x viene dada por g(x) f (x))

17 1.- Calcular las siguientes integrales o un valor aproximado cuando sea necesario a) b) 2.- Calcular la derivada de las siguientes funciones: a) b) 3.- Estudiar el carácter de las siguientes integrales impropias: 4.- Calcular el área limitada por la curva y = x 3 - x 2 y la recta y = x 1. Dibuja el área del recinto limitado por ambas. 5.- Calcular el volumen del cuerpo de revolución obtenido al girar la región limitada por la curva y = ln x y el eje OX en el intervalo [0e] a) alrededor del eje OX b) alrededor del eje OY.

PRÁCTICA 4 Cálculo integral y aplicaciones

PRÁCTICA 4 Cálculo integral y aplicaciones PRÁCTICA 4 Cálculo integral y aplicaciones. Integración con Mathematica. Integrales indefinidas, integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión,

Más detalles

PRÁCTICA 4.- Integración de funciones de una variable real

PRÁCTICA 4.- Integración de funciones de una variable real PRÁCTICA.- Integración de funciones de una variable real.- Integración con Mathematica. Integrales indefinidas, integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones:

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

De x = 1 a x = 6, la recta queda por encima de la parábola.

De x = 1 a x = 6, la recta queda por encima de la parábola. Área entre curvas El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo. Ejemplos 1. Calcular el área

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

APLICACIONES DE LA INTEGRAL ( ( ) ( )) A = f x g x dx EJERCICIOS: 5) Calcular el área de la región limitada por las líneas y = xln(x), y = x.

APLICACIONES DE LA INTEGRAL ( ( ) ( )) A = f x g x dx EJERCICIOS: 5) Calcular el área de la región limitada por las líneas y = xln(x), y = x. APLICACIONES DE LA INTEGRAL Si R es la región limitada por las líneas y f() y y g(), con f() g(), entre a y b, el área de R viene dada por la integral A: b a ( ( ) ( )) A f g EJERCICIOS: ) Calcular el

Más detalles

PROBLEMAS DE INTEGRALES INDEFINIDAS

PROBLEMAS DE INTEGRALES INDEFINIDAS PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

INTEGRALES. EL PROBLEMA DEL ÁREA III

INTEGRALES. EL PROBLEMA DEL ÁREA III INTEGRALES. EL PROBLEMA DEL ÁREA III En esta relación de ejercicios vamos a aplicar el concepto de integral definida para calcular el área limitado por gráficas de funciones. Recuerda que para realizar

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+

Más detalles

Respuestas a la evaluación de la competencia del capítulo 3

Respuestas a la evaluación de la competencia del capítulo 3 Respuestas Respuestas a la evaluación de la competencia del capítulo En los ejercicios del al 7, dibuja la región que queda comprendida bajo la gráfica de la función dada en el intervalo indicado calcula

Más detalles

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h Eamen de cálculo diferencial e integral /4/9 Opción A Ejercicio. (Puntuación máima: puntos) Sea la función f ( ) = 4 a. Estudiar su continuidad y derivabilidad. b. Dibujar su gráfica. c. Calcular el área

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

Apéndice 10: Integral de Riemann

Apéndice 10: Integral de Riemann Apéndice : Integral de Riemann. Otras aplicaciones geométricas.. Volúmenes mediante secciones planas transversales Supongamos que tenemos un sólido del que se conoce (), el área de la sección plana obtenida

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos Análisis Integral Indefinida Matemáticas II TEMA La integral definida Problemas Propuestos Integrales definidas Halla el valor de: a) d b) 7 c) d 5 d d) e d Calcula la integral e ln( ) d Utilizando el

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

Ejercicios propuestos para el cálculo de áreas

Ejercicios propuestos para el cálculo de áreas Aplicaciones geométricas y mecánicas de la integral definida 191 Ejercicios propuestos para el cálculo de áreas 1) Calcular el área de la figura limitada por la parábola verticales = 1, = y el eje OX y

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera.

Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera. Wilson Herrera 1 Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera. 1. Calcular las siguientes integrales: a) b) c) d) e) f ) g) h) 1 8 4 1 6 3 3 1 ( + 3) ( + 3 ) 1 + y dy y 5 + 3 1 + 3

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas II (GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Halla el área que encierra la curva C dada en polares por r = + sen(θ. Solución: Primero debemos hallar

Más detalles

Práctica 3: Integración de funciones

Práctica 3: Integración de funciones Práctica 3: Integración de funciones En esta práctica se estudiarán en una primera sección los comandos que permiten el cálculo de integrales indefinidas y definidas. Finalmente, se abordará el cálculo

Más detalles

Práctica 2 Gráficos 2D en mathematica

Práctica 2 Gráficos 2D en mathematica Práctica 2 Gráficos 2D en mathematica Mathematica dispone de varias instrucciones para representar gráficamente funciones, curvas o elementos geométricos en el plano. La instrucción Plot nos permite representar

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones PÁGINA 363 SOLUCIONES 1. La solución: Lo que nos pide el problema es hallar el área del recinto rayado. Este recinto es un trapecio y su area es:. Queda: x

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

APLICACIONES GEOMÉTRICAS DE LA INTEGRAL DEFINIDA

APLICACIONES GEOMÉTRICAS DE LA INTEGRAL DEFINIDA APLICACIONES GEOMÉTRICAS DE LA INTEGRAL DEFINIDA APLICACIONES GEOMÉTRICAS DE LA INTEGRAL DEFINIDA [8.] Calcular el área del dominio plano definido en el primer cuadrante por: Determinemos los puntos de

Más detalles

Tema 13 La integral definida. Aplicaciones

Tema 13 La integral definida. Aplicaciones Tema La integral definida. Aplicaciones. Integral definida. Calcula la integral. ( ) d 4 Calculamos una primitiva de la función f ( ) : G( ) ( ) d Según la regla de Barrow: 4 4 ( ) d G(4) G() 4 8 4 Ahora

Más detalles

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos

Más detalles

Práctica 8 Resolución de ecuaciones y sistemas de ecuaciones con Mathematica

Práctica 8 Resolución de ecuaciones y sistemas de ecuaciones con Mathematica Práctica 8 Resolución de ecuaciones y sistemas de ecuaciones con Mathematica Resolver una ecuación o un sistema de ecuaciones es un problema que se presenta con mucha frecuencia en matemáticas. En esta

Más detalles

LA INTEGRAL DEFINIDA. APLICACIONES

LA INTEGRAL DEFINIDA. APLICACIONES 13 LA INTEGRAL DEFINIDA. APLICACIONES REFLEXIONA Y RESUELVE Dos trenes Un Talgo y un tren de mercancías salen de la misma estación, por la misma vía y en idéntica dirección, uno tras otro, casi simultáneamente.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

de ecuaciones x=0 y x=3. Haz una representación gráfica aproximada. (Junio 2008)

de ecuaciones x=0 y x=3. Haz una representación gráfica aproximada.  (Junio 2008) 1.- Calcula el área del recinto limitado por la parábola de ecuación y = 4 x 2 y la recta de ecuación y = x+2. Haz una representación gráfica aproximada. http://www.youtube.com/watch?v=pmdehdqdbpy 2.-

Más detalles

LA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS CON LA TI VOYAGE 200

LA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS CON LA TI VOYAGE 200 Fermí Vilà TI-Voyage 200 1 LA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS CON LA TI VOYAGE 200 Calcula el área comprendida entre la función y=x 3 x 2 6x y el eje OX. [APPS] Y= Editor Para definir la función: [APPS]

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Respuestas al desarrollo de la competencia del capítulo 3

Respuestas al desarrollo de la competencia del capítulo 3 Respuestas Respuestas al desarrollo de la competencia del capítulo ÁREA NETA CON SIGNO En los problemas del al, dibuja la región delimitada por la gráfica de la función dada en el intervalo indicado calcula

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA CAPÍTULO XI. APLICACIONES DE LA INTEGRAL DEFINIDA SECCIONES A. Áreas de figuras planas. B. Cálculo de volúmenes. C. Longitud de curvas planas. D. Ejercicios propuestos. 37 A. ÁREAS DE FIGURAS PLANAS. En

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráca de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

Universidad Diego Portales

Universidad Diego Portales Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Asignatura: Cálculo II LABORATORIO Nº 0 Longitud de arco y Volumen de sólido de revolución Contenido: Longitud de arco en

Más detalles

PROBLEMAS DE CÁLCULO I

PROBLEMAS DE CÁLCULO I INGENIERÍAS TÉCNICAS INDUSTRIALES PROBLEMAS DE CÁLCULO I UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas ING. TEC. IND. MECANICA, ELECTRICIDAD Y ELECTRÓNICA 24

Más detalles

EJERCICIOS DE INTEGRALES DEFINIDAS:

EJERCICIOS DE INTEGRALES DEFINIDAS: EJERCICIOS DE INTEGRALES DEFINIDAS: 1.) Se considera, en el primer cuadrante, la región R del plano limitada por: el eje X, el eje Y, la recta x = 2 y la curva y =. a) Calcula razonadamente, el área de

Más detalles

Ejercicios de integración

Ejercicios de integración 1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) + 6 6 + 1 d 5) + + 1 + 1 7) d 8) + Ejercicios de integración d ) + + 1 d 6) ( + 1) + + d + d 9) ( + + 1) ln d + 1 + + 1) d 11) d 1) + + 1 d + 1 1)

Más detalles

INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS

INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS. Dada la función f() = -. Calcular f () d. a) Representar y = ( ) 3. b b) Calcular la integral indefinida ( 3 ) d a c) Justificar el resultado de b en función de

Más detalles

Rotaciones alrededor de los ejes cartesianos

Rotaciones alrededor de los ejes cartesianos Sólido de revolución Un sólido de revolución es un cuerpo que puede obtenerse mediante una operación geométrica de rotación de una superficie plana alrededor de una recta que se contenida en su mismo plano.

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padre Poveda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES a. (6-M-A-) (.5 puntos) Calcula el valor de a > para el que se verifica d. +. (6-M-B-) (.5 puntos) Considera la función : R R f

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

LA INTEGRAL DEFINIDA. APLICACIONES

LA INTEGRAL DEFINIDA. APLICACIONES UNIDAD LA INTEGRAL DEFINIDA. APLICACIONES Página 78 Problema Interpreta lo que significa el área bajo la curva en cada uno de los siguientes casos: VELOCIDAD (km/h) VELOCIDAD DE UN TREN v = f (t) Gráfica

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

Integral doble 1.- Calcular el área representada en el gráfico mediante una integral doble.

Integral doble 1.- Calcular el área representada en el gráfico mediante una integral doble. Integral doble 1.- Calcular el área representada en el gráfico mediante una integral doble..- Colocar los límites de integración en uno y otro orden, en la integral doble: f(x,y)dxdy para los recintos:

Más detalles

ln x dx = x ln x 2x ln x + 2x = (e 2e + 2e) 2 = (e 2) u

ln x dx = x ln x 2x ln x + 2x = (e 2e + 2e) 2 = (e 2) u Tema: Integrales definidas. Áreas Ejercicios PAU - JUNIO GENERAL Ejercicio.- Calcule d + Sea F() = d = + = + d d ln ln + = ln ln ln 5 + ln = A B + = + + = A( + ) + B = = A = = B A =, B = d = ln ln ln 5

Más detalles

ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja 1. A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: 4x dx 3) I= π 0

ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja 1. A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: 4x dx 3) I= π 0 ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: ) I= ( + ) ) I= / 4 π 0 cos 4) I= e ( + ) 6) I= 4 0 ( y) / dy B) Hallar el valor

Más detalles

Ejercicios y problemas propuestos

Ejercicios y problemas propuestos Ejercicios problemas propuestos Página Para practicar Integral definida Calcula las siguientes integrales: a) d b) e d c) ln d d) d /e a) / ( ) d ( ) d / > H : D / / / b) d / / d ( ) d e o G < F / / d

Más detalles

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x:

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x: Volumen de Revolución Ejemplo Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x 2 1 gira sobre el eje 0x: Sólidos de Revolución conocidos ALGUNAS APLICACIONES

Más detalles

Aplicaciones de la integral definida. Cálculo de áreas.

Aplicaciones de la integral definida. Cálculo de áreas. ºBachillerato Aplicaciones de la integral definida. Cálculo de áreas.. Calcular el área del recinto limitado por la gráfica de la función f 4 abscisas y las rectas = y =. Sol: /., el eje de a) Buscamos

Más detalles

Cálculo Integral Enero 2016

Cálculo Integral Enero 2016 Cálculo Integral Enero 6 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) ( + + ) ) ( + ) ( ) ) ( w + ) (w ) dw ) ( + ) 5) (y ) dy 6) ( +)( 5) 6 7) + 8) ( +) 5 y+ dy ) (y+5

Más detalles

EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN

EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN.- Calcular el área encerrada por la función: y = 9, el eje OX, y las rectas = f 9 Se trata de un triángulo de base y altura 9 9 El área sombreada

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. 1. (5 puntos) Bosquejar la región en el primer cuadrante que está

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. 1. (5 puntos) Bosquejar la región en el primer cuadrante que está ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS RÚBRICA DE LA SEGUNDA EVALUACIÓN DE CÁLCULO DE UNA VARIABLE. (5 puntos) Bosquejar la región

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

CAPÍTULO 6 APLICACIONES AL CÁLCULO

CAPÍTULO 6 APLICACIONES AL CÁLCULO CAPÍTULO 6 APLICACIONES AL CÁLCULO 1.- CÁLCULO DE LÍMITES.- CÁLCULO DIFERENCIAL 3.- CÁLCULO INTEGRAL 4.- SERIES NUMÉRICAS 5.- FÓRMULA DE TAYLOR 6.- TRANSFORMADA DE LAPLACE CAPÍTULO 6 13 14 1.- CÁLCULO

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Matemáticas II. * Análisis III: Integrales * o) x x. p) 3. q) 5. r) 1. s) e 2x 3 dx. t) 5 dx. u) x2 5 x 4. v) x3 3x 2 x 1. z) 3

Matemáticas II. * Análisis III: Integrales * o) x x. p) 3. q) 5. r) 1. s) e 2x 3 dx. t) 5 dx. u) x2 5 x 4. v) x3 3x 2 x 1. z) 3 I.E.S. Juan Carlos I Ciempozuelos (Madrid) Matemáticas II * Análisis III: Integrales *. Integrales inmediatas (o casi inmediatas): a) 4 2 5 7 b) 3 3 5 2 +3 +4 c) 2 7 d) 5 e) sen f) sen +7cos g) tg 2 h)

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS INTEGRALES INDEFINIDAS 1) Calcular las siguientes integrales: a) - - b) c) d) e) f) g) h) i) j) k) l) m) ) n) o) p) q) r) s) t) u) v) w) x) y) z) aa) bb) cc) dd) ee) ff) dz gg) hh) dt ii) jj) Nota: Las

Más detalles

5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES.

5.2. El teorema de Fubini. TEMA 5. INTEGRALES DE FUNCIONES DE DOS VARIABLES. Tema 5 Integrales de funciones de dos variables. 5.. La integral doble como volumen. La integral de una función de dos variables está relacionada con zf H,L el cálculo del volumen encerrado entre el plano

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

Cálculo Integral INTEGRAL INDEFINIDA. INTEGRAL DEFINIDA. APLICACIONES

Cálculo Integral INTEGRAL INDEFINIDA. INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA. INTEGRAL DEFINIDA. APLICACIONES. Halla una primitiva de: e) f) g) h) i) j) + 7 +. Halla el área comprendida entre la función y = ( ) ( ), el eje X y las rectas = 0, =. Sol: 98 u..

Más detalles

Escuela Politécnica Superior de Málaga. CÁLCULO

Escuela Politécnica Superior de Málaga. CÁLCULO Escuela Politécnica Superior de Málaga. CÁLCULO. Cálculo en una variable.. En los números que se describen a continuación, Cuáles son racionales y cuales no? Encontrar la fracción generatriz para aquellos

Más detalles

Práctica 4 Límites, continuidad y derivación

Práctica 4 Límites, continuidad y derivación Práctica 4 Límites, continuidad y derivación En esta práctica utilizaremos el programa Mathematica para estudiar límites, continuidad y derivabilidad de funciones reales de variable real, así como algunas

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 6 de Junio de 7 Primera parte Ejercicio. Determinar los puntos de máxima y mínima pendiente de la gráfica de la función y = +x, x. Solución.

Más detalles

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS ANÁLISIS Selectividad hasta el año 9- incluido Ejercicio. Calificación máima: puntos. (Junio 99 A) Hallar la longitud de los lados del triángulo isósceles de área máima cuyo perímetro sea 6 m. Ejercicio.

Más detalles

Integración en una variable (repaso)

Integración en una variable (repaso) Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 2 Práctica 8: Integración Integración en una variable (repaso). Calcular: sen x. 2π sen x. El área entre las curvas y = sen x, y =, x =, x

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del tercer eamen parcial del curso Cálculo una variable Grupo: Uno Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. a. Después

Más detalles

Cálculo Integral Agosto 2016

Cálculo Integral Agosto 2016 Cálculo Integral Agosto 6 Laboratorio # Antiderivadas I.- Realice la antidiferenciación indicada ) ( + 7/ ) ) w ( w + ) dw ) (z / + z /5 + )dz ) + ) (w + w)(w + ) dw ) k (k +) / dk ) (y / + y 5/ )(y +

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer examen parcial del curso Cálculo de una variable Grupo: Once Período: Inicial del año 000 Prof: Rubén D. Nieto C. PUNTO 1.

Más detalles

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx INTEGRAL DEFINIDA. PROBLEMAS. º-Calcular las siguientes integrales definidas: π sen. ln(+ )d. d. + sen - cos -π +. d.5 -) - ( - d.6 E[]d -.7 E[] d.8 cos d - º-Calcular el área limitada por las gráficas

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 10 de febrero de 2010

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 10 de febrero de 2010 CUESTIONES TIPO TEST Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0. puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- En un triángulo esférico rectángulo,

Más detalles

Superfícies. Superfícies Parametricas. Y se dice de tipo II si ésta puede escribirse como

Superfícies. Superfícies Parametricas. Y se dice de tipo II si ésta puede escribirse como La integral de supercie puede considerarse como el equivalente en dos dimensiones a la integral de línea siendo la región de integración una supercie en lugar de una curva. El integrando será un campo

Más detalles

Unidad 10 Integrales definidas. Aplicaciones

Unidad 10 Integrales definidas. Aplicaciones Unidad Integrales definidas. Aplicaciones PÁGINA 5 SOLUCIONES. Las áreas quedan: A u A u A 5 u. El área del recinto viene dada por : ( ) ( ) Área d,5 u PÁGINA 9 SOLUCIONES. La solución queda: Directo:

Más detalles

MATEMÁTICAS II Soluciones Hoja Integración Aproximada Curso 07-08

MATEMÁTICAS II Soluciones Hoja Integración Aproximada Curso 07-08 Ejercicio : Para proceder a pintarlo, se necesita conocer las medidas del techo de cierto edificio singular. Dicho techo tiene forma geométrica de embudo invertido, similar a la de la superficie de revolución

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

CÁLCULO INTEGRAL 1/er Parcial

CÁLCULO INTEGRAL 1/er Parcial CÁLCULO INTEGRAL /er Parcial sen cos. El integrando en la epresión: es: ( ) a) b) sen cos sen cos c) d). Se dice que una función F es una anti derivada de una función f si: ( ) a) F () = f() b) F() = f()

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU

EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU Problema 1 (2 puntos) De una función derivable f (x) se conoce que pasa por el punto A(-1,

Más detalles

Examen de integración Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) x arcsin x. 1 x. u = arcsin x du = v = 1 x 2

Examen de integración Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) x arcsin x. 1 x. u = arcsin x du = v = 1 x 2 Eamen de integración Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.).- ( puntos) Calcular las integrales indefinidas siguientes: ln d arcsin (ii) d (iii) e d ln d ln C arcsin (ii) d u arcsin du

Más detalles

c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) 2

c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) 2 Junio 010 1A. a) Enuncia el teorema de Bolzano. (0,5 puntos) 1 b) Se puede aplicar dicho teorema a la función f ( x) 1 x en algún intervalo? (1 punto) c) Demuestra que la función f(x) anterior y g(x) =

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Práctica 7. sen 2 x cos x dx. c) 3x 2 x 2 dx. f) 3. Hallar el área encerrada por las curvas:

Práctica 7. sen 2 x cos x dx. c) 3x 2 x 2 dx. f) 3. Hallar el área encerrada por las curvas: ANÁLISIS I MATEMÁTICA ANÁLISIS (Computación) Práctica 7 I. epaso: integración en una variable. Calcular: sen x. b) π sen x. c) El área entre las curvas y = sen x, y =, x =, x = π.. Calcular: x sen x. b)

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

Escuela Politécnica Superior de Málaga. CÁLCULO

Escuela Politécnica Superior de Málaga. CÁLCULO Escuela Politécnica Superior de Málaga. CÁLCULO. Cálculo en una variable.. Prueba que y 3 no son números racionales. En los números que se describen a continuación, Cuáles son racionales y cuales no? Encontrar

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padre Poveda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (5-M-A-) (5 puntos) Calcula el valor de a > sabiendo que el área del recinto comprendido entre la parábola y + a y la recta y es

Más detalles

COORDENADAS POLARES O CILÍNDRICAS

COORDENADAS POLARES O CILÍNDRICAS COORDENADAS POLARES O CILÍNDRICAS Para definir la posición de un punto en un plano (o en el espacio) podemos utilizar distintos tipos de coordenadas, siendo las más normales las coordenadas rectangulares

Más detalles