Problemas puertas lógicas, karnaugh...

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problemas puertas lógicas, karnaugh..."

Transcripción

1 ENUNCIADOS Prolems puerts lógis, krnugh Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B'' 3.- Ps l funión lógi e los iruitos ominionles siguientes tl lógi o tl e ver F = A'BC'+A'BC+AB'C'+ABC' 4. Relizr l tl e ver e los iruitos el ejeriio 1 5. Convierte ls siguientes tls funiones lógis utilizno el métoo e los MINitérminos y MAXitérminos Tl F

2 Tl nº F Simplifir por el métoo e álger e Boole F F F F e F f F 7.- Psr puerts NAND e 2 puerts 7400 F F F 8. Psr ls siguientes funiones puerts NOR7402 F e F 9. Supongmos un sistem e lrm e tres interruptores y, uno esten los tres en Off, o sólo el On tiene que tivrse l lrm, el so ontrrio tmién, es eir uno esten los tres On o sólo el Off. Relizr el iruito en puerts NAND. 10. Supongmos un lrm e tres interruptores que se tiene que tivr uno esté sólo en Off o sólo el en On. Si sólo est el interruptor en On o sólo est en Off es iniferente l tivión el sistem. Tmién si están toos en Off es iniferente. 11. Tenieno en uent sólo ls entrs I1 I2 I3 e I4 relizr un progrm que Q1=1 si el número e interruptores tivos supern o iguln l número e interruptores estivos. Relizrlo on puerts NAND e os entrs Tenieno en uent sólo ls entrs I1 I2 I3 e I4, her un progrm que si hy os interruptores ontíguos tivos, entones Q1=1. Si I1=0 e I4 =0 entones l sli Q1 es iniferente. Relizrlo on puerts NAND e os entrs 7400.

3 13. Diseñr un iruito e pertur e un grje e ohes, existen 4 entrs, mirno l figur: = etetor e ohe en l entr = llve e entr = etetor e ohe que quiere slir = llve e rir entro el grje Se tienen 5 slis en el iruito : M = Motor e l puert. 0 = ierr. 1 = rir. R1 V1 = Lues roj y vere l entr el grje R2 V2 = Lues roj y vere entro el grje. Se tiene que ri si se hy ohe en l entr y ion l llve e entr y no hy nie entro o si hy lguien entro y ion l llve e rir. L luz roj R1 se tiene que enener si hy lguien entro que quiere slir. L luz V1 se tiene que enener si hy lguen fuer, y entro no hy nie. L luz roj R2 se tiene que enener si hy lquien fuer que quiere entrr, y l luz V2 se tiene que enener si hy lguien entro y fuer no hy nie. Si hy os ohes en l entr y entro y los os ionn l llve l vez, ls lues een e inir que tiene prefereni el e entro, l puert se re. Diseñr el iruito on el mínimo e iruitos integros. No iseñr los finles e rrer, sistems e seguri y el sistem utomátio e ierre e l puert. Relizrlo on puerts NAND e 2 ent 14. Diseñr un iruito lógio e un sistem e lrm e 3 interruptores y, que se tive si hy sólo os interruptores enenios, si sólo est el tiene que estr pgo, y el resto e ominiones es iniferente l sli. Relizrlo on puerts NAND e 2 ent Diseñr un iruito lógio e un sistem e lrm e 4 interruptores y, que se tive si hy 3 o 4 interruptores tivos, se estive si hy uno o ninguno tivo y es iniferente si hy 2 tivos. Relizrlo on puerts NOR Relizr un iruito lógio e 4 interruptores y e tl mner que se tive si y estn en sólos en "on" o y estn en sólos en "on" o y estn en sólos en "on" o sólo est en "off". Si est sólo en "on" o el sólo en "on" o el sólo en "off" o toos en "on" entones l tivión el sistem es iniferente. El resto e estos 0. Utilizr el mínimo e puerts lógis. 17. Diseñr un iruito lógio e un sistem e lrm e 4 interruptores y, que se estive si hy 3 o 4 interruptores tivos, se tive si hy uno o ninguno tivo y es iniferente si hy 2 tivos. Relizrlo on puerts NAND

4 SOLUCIONES 1. F 2. L funión lógi que respone l euión AB'C'+D'+A+B'' es L funión lógi que respone l euión A+B'+C'D''+A'+B''CA+B'' 3 Se reliz operno en un e ls ominiones resultno : F

5 Se reliz operno en un e ls ominiones resultno : F El primer ejeriio, tiene e tl e ver l siguiente, que se puee her lulnolos e uno en uno, o vieno que l ser un puert OR slrá los unos e puert, que en un so en uno A y B sen l vez 0 y 0 y en el otro so será uno y sen l vez 0 y 0 nº F En este ejeriio tn omplejo, lo mejor es her ominiones pero e uno e los suiruiotos nº 1 +' nn or ' 7nor 6 3 F nn

6 5. En MINitérminos tenemos : F En MAXitérminos : F En MINitérminos F En MAXitérminos F 6. F 1 F F F 1 1 e F f F Teorem2 llmno B B B 7. Hieno MORGAN F Este y es más omplejo... F * * * * * * *

7 Bueno, y este muho más... F * * * * * * * * * * * * * * * Y el iujo serí e l siguiente form F El iujo serí :

8 e e e e e F 9. L tl e ver, krnugh y psr puerts NAND :

9 10. L soluión el prolem ps por onsierr lgunos omo unos 11. Aquí lo que hy que her es un tl e ver on su orresponiente tl e krnugh : I1I2 I3 I4 Q1 I1 I2\I3 I L funión es simplifino F=I3I4+I1I2+I2I3+I2I4+I1I3+I1I Aquí lo que hy que her es un tl e ver on su orresponiente tl e krnugh : I1I2 I3 I4 Q x x x x I1 I2\I3 I X 0 1 X X 0 1 X L funión es simplifino Q1=I3 + I1I2

10 13. L tl e ver y ls funiones e krnugh y simplifis y pss puerts NAND es 14. L tl e ver y el iruito pso puerts nn e os entrs es 15. L funión simplifi que F=+ pero pr psrl puerts NOR hy que her Morgn : F omo poemos ver, ls vriles e entr están negs, luego poemos utilizr en vez e lógi positiv que nos oligrí unilizr puerts NOT pr negrls, utilizr lógi negtiv y sí horrnos ls puerts NOT 7404 e ls vriles e entr : 16. En este so l simplifiión por krnugh F * si utilizmos l lógi positiv nos sle el iruito e l izquier, pero on l lógi negtiv pli sólo en el iruito e l ereh, sin un puert NOT.

11 17. El iruito tiene omo soluión F * * que l psr en puerts NAND que el iruito e l ereh, pero usno l lógi negtiv, nos horrmos 4 puerts NOT on el iruito e l ereh.

Fundamentos de Informática II Tema 2 Sistemas Combinacionales Resolución de ejercicios de la hoja de problemas. nivel 1 a b c.

Fundamentos de Informática II Tema 2 Sistemas Combinacionales Resolución de ejercicios de la hoja de problemas. nivel 1 a b c. Funmentos e Inormáti II Tem Sistems Cominionles Resoluión e ejeriios e l hoj e prolems.-) nivel nivel nivel nivel Pso : Ientiir ls slis e puert lógi. Se muestr en l igur. Pso : Diviir el iruito en niveles.

Más detalles

BOLETIN DE EJERCICIOS 2: CIRCUITOS COMBINACIONALES

BOLETIN DE EJERCICIOS 2: CIRCUITOS COMBINACIONALES : OBJETIVO Los ejeriios e este oletín tienen omo ojetivo onsolir los onoimientos reltivos los siguientes oneptos: - L implementión e ls uniones lógis meinte puerts lógis interonets. - Los istintos tipos

Más detalles

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión: PROLEM REUELTO ) implifir por el métoo e Krnugh l siguiente expresión: ) Diujr un iruito que relie ih funión on puerts lógis (eletivi nluz). Otenemos l expresión nóni y relizmos el mp e Krnugh pr utro

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

Ejemplo para transformar un DFA en una Expresión Regular

Ejemplo para transformar un DFA en una Expresión Regular Ejemplo pr trnsformr un DFA en un Expresión Regulr En este texto vmos ver uno e los métoos que se usn pr trnsformr utómts finitos eterminists en expresiones regulres, el métoo e eliminión e estos. Cuno

Más detalles

1.Calcula el número decimal equivalente al binario Calcula el decimal equivalente al número binario

1.Calcula el número decimal equivalente al binario Calcula el decimal equivalente al número binario ITEMA DE NUMERACIÓN.Clul el número deiml equivlente l inrio 2 2. Clul el deiml equivlente l número inrio 2 3. Clul el inrio nturl y el BCD nturl equivlentes l deiml 45 4. Clul el deiml equivlente l inrio,

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

Cometa. Pág max. 50 C. 6mm. b TSP 4x30

Cometa. Pág max. 50 C. 6mm. b TSP 4x30 Comet Guí e uso Pág. 1 Fije el progrmor l pre, en un lol erro, resguro e los gentes tmosférios y el gu, on un tempertur miente e 0 50 C. No instle el prto l intemperie ni en rquets enterrs. 1 2 OK! 3 mx.

Más detalles

ELECTRÓNICA DIGITAL 0 FALSO APAGADO CON INTERRUPTOR

ELECTRÓNICA DIGITAL 0 FALSO APAGADO CON INTERRUPTOR I.E.S Sntos Iss Deprtmento de Tenologí ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN 2. SISTEMAS DE NUMERACIÓN Y CÓDIGOS 3. ALGEBRA DE BOOLE 4. FUNCIONES LÓGICAS 5. SIMPLIFICACIÓN DE FUNCIONES LÓGICAS 1. INTRODUCCIÓN

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

ÁLGEBRA DE BOOLE. Algebra de Boole

ÁLGEBRA DE BOOLE. Algebra de Boole ÁLGEBRA DE BOOLE Alger de Boole George Boole 854 desrrolló un herrmient mtemáti que se utiliz pr el estudio de omputdores. L pliión en omputdores es del tipo inrio 0/ El estdo de un elemento del iruito

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

Electrónica Básica. Álgebra de Boole. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC

Electrónica Básica. Álgebra de Boole. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC Eletrói Bási Álger de Boole Eletrói Digitl José Rmó Sedr Sedr Dpto. de Igeierí Eletrói y Automáti ULPGC 2 Ciruito de omutió p.e. sistem de otrol idustril sistem teleóio ordedor et. El Álger de Boole sirve

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

Álgebra Booleana y Propiedades

Álgebra Booleana y Propiedades Álger Boolen y Propieddes Se B ={;}. Deinimos l sum y el produto y omplemento pr los elementos de B omo + =. + = + = + =.. = =. =.. = Un vrile es un vrile oolen si sólo tom vlores de B. en onseueni + =

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES.

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES. PRÁCTICA ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES..- OPERACIONES ARITMÉTICAS ELEMENTALES SUMA : + y DIFERENCIA : y PRODUCTO : *y o ien y DIVISIÓN : /y POTENCIA : ^y.- CELDAS EVALUABLES Est el y ls nteriores

Más detalles

TEMA 5: ELECTRÓNICA DIGITAL

TEMA 5: ELECTRÓNICA DIGITAL Deprtmento de Tecnologí. IE Ntr. r. de l Almuden. Mª Jesús iz TEMA 5: ELECTRÓNICA DIGITAL L electrónic se divide en dos grupos: electrónic nlógic y electrónic digitl. En l electrónic nlógic los vlores

Más detalles

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno

Más detalles

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1 ntegrles oles NTEGRALES OBLES e l mism mner que el onepto e integrl efini pr funiones e un vrile sirve pr resolver e un moo generl, el prolem e l eterminión e áres e figurs plns, el onepto e integrl ole

Más detalles

TEMA 1. Electrónica digital. Circuitos combinaciones. Álgebra de Boole

TEMA 1. Electrónica digital. Circuitos combinaciones. Álgebra de Boole TEMA 1 Eletróni digitl. Ciruitos ominiones. Álger de Boole 1. Introduión Un iruito ominionl es quel que en d instnte present un estdo de slid que depende únimente del estdo de sus entrds. Un señl nlógi

Más detalles

Hacia la universidad Álgebra lineal

Hacia la universidad Álgebra lineal Hi l universi Álger linel OPCIÓN A Soluionrio. Un mtriz ur A se llm ntisimétri uno su trspuest es igul su opuest. Otén l form generl e un mtriz A e oren que se ntisimétri. Clul A, A y A. Consieremos l

Más detalles

1 - Resolver los siguientes determinantes usando propiedades 1/10

1 - Resolver los siguientes determinantes usando propiedades 1/10 - Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Creimiento y dereimiento. APLICACIONES DE LA DERIVADA Cundo un funión es derivle en un punto, podemos onoer si es reiente o dereiente

Más detalles

TEMA 8. Circuitos Secuenciales de Propósito General

TEMA 8. Circuitos Secuenciales de Propósito General Fundamentos de los Computadores. Circuitos Secuenciales de Propósito General T8-1 TEM 8. Circuitos Secuenciales de Propósito General INICE: REGISTROS E ESPLZMIENTO o CRG SERIE Y PRLEL o UNIVERSL ISEÑO

Más detalles

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma:

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma: PUNE: Mtries UNIVERSIDD NCIONL DE RIO NEGRO signtur: Mtemáti Crrers: Li. en ministrión Profesor: Prof. Mel Chresti Semestre: o ño: 6 Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en

Más detalles

Modulo 9V OK! OK! Guía de uso

Modulo 9V OK! OK! Guía de uso Moulo 9V Guí e uso Pg. 1 INSTALACIÓN. El móulo e mno es perfetmente estno y funion unque siempre esté sumergio en gu hst un metro e profuni (gro e proteión IP68). Se puee instlr l ire lire o en un rquet.

Más detalles

MATEMÁTICAS APLICADAS A CC.SS. I TEMA 1 Y 2: LOS NÚMEROS RADICALES. LOGARITMOS

MATEMÁTICAS APLICADAS A CC.SS. I TEMA 1 Y 2: LOS NÚMEROS RADICALES. LOGARITMOS http://olmo.pnti.me.es/dms000 MATEMÁTICAS APLICADAS A CC.SS. I TEMA Y : LOS NÚMEROS RADICALES. LOGARITMOS HOJA Nº Feh de entreg: Viernes, de Oture de 00 Ejeriios. 7. Etre ftores y simplifi l máimo l epresión

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Álgebra de Boole (Relés y ecuaciones en el mundo industrial)

Álgebra de Boole (Relés y ecuaciones en el mundo industrial) Alger de Boole (Automtismos ominionles) Álger de Boole (Relés y euiones en el mundo industril) UPCO CA Deprtmento de Eletróni y Automáti 1 Alger de Boole (Automtismos ominionles) Vriles y uniones lógis

Más detalles

DEPARTAMENTO DE CIENCIAS BÁ SICAS E INGENIERÍAS INGENIERÍA EN TELEMÁ TICA

DEPARTAMENTO DE CIENCIAS BÁ SICAS E INGENIERÍAS INGENIERÍA EN TELEMÁ TICA DEPARTAMENTO DE CIENCIAS BÁ SICAS E INGENIERÍAS INGENIERÍA EN TELEMÁ TICA NOMBRE DE LA ASIGNATURA CLAVE ASIGNATURA PLAN DE ESTUDIO ELECTRONICA DIGITAL IT0208 2004IT PRACTICA No. LABORATORIO DE NOMBRE DE

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

. Se clasifican en Números Racionales Q y Números Irracionales Q. . Se pueden representar en la recta numérica al igual que otros números reales.

. Se clasifican en Números Racionales Q y Números Irracionales Q. . Se pueden representar en la recta numérica al igual que otros números reales. COMPETENCIA Estleer reliones y iferenis entre iferentes notiones e números reles pr eiir sore su uso. 2.. NÚMEROS RACIONALES Los números Frionrios se simolizn on l letr Q. Se lsifin en Números Rionles

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 UNIVERSIDADES ÚBLICAS DE LA COMUNIDAD DE MADRID RUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 20-202 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

Estructuras de datos. Estructuras de datos. Estructuras de datos. Estructuras de datos

Estructuras de datos. Estructuras de datos. Estructuras de datos. Estructuras de datos Existen dos tipos de list on un uso muy freuente en el desrrollo de pliiones de softwre. El primero son ls pils uyo omportmiento es el de un list que insert y elimin sus elementos por el mismo extremo

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

NÚMEROS RACIONALES. y Números Irracionales Q

NÚMEROS RACIONALES. y Números Irracionales Q CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR DEPARTAMENTO DE CIENCIAS BÁSICAS LOGICA Y PENSAMIENTO MATEMATICO ASIGNATURA: AREA / COMPONENTE: FORMACIÓN BÁSICA CICLO DE FORMACIÓN: TECNICA TIPO DE

Más detalles

c a, b tal que f(c) = 0

c a, b tal que f(c) = 0 IES Mediterráneo Málg Junio Jun Crlos lonso Ginontti Propuest.- ) Enuni el teorem olno ( puntos) ) Se pue plir diho teorem l funión f en lgún interlo? ( punto) ) Demuestr que l funión f() nterior g se

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL. (,5 puntos) D l siguiente euión mtriil: 6 z otener e form rzon los vlores e,, z. 5. Se el siguiente sistem e ineuiones 6. 7 ) (,5 puntos) Represent

Más detalles

B B B B B a) Siguiendo el orden establecido arriba, los subconjuntos se corresponden con los bloques

B B B B B a) Siguiendo el orden establecido arriba, los subconjuntos se corresponden con los bloques 4 Álgr Bool 4 Álgr Bool 1 Sn B = {0, 1} y f: B 4 B un funión lógi utro vrils,,, y. Si n B 4 sustituimos B por lguno sus suonjuntos no víos {0} o {1} o B s otinn suonjuntos B 4. Así tnmos qu {1} {0} {0}

Más detalles

Carreras: Analista de Sistemas y Licenciatura en Sistemas Asignatura: Estructuras de Datos Docentes: Lic. Verónica L. Vanoli y AdeS.

Carreras: Analista de Sistemas y Licenciatura en Sistemas Asignatura: Estructuras de Datos Docentes: Lic. Verónica L. Vanoli y AdeS. TRABAJO PRACTICO N. G=(V, A) V(G)=perro, gto, niml, vertero, ostr, rustáeo, invertero, ngrejo, perro e z, mono, nn, álmt, perro oméstio A(G)=(vertero, niml), (invertero, rustáeo), (perro, vertero), (gto,

Más detalles

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O. TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos

Más detalles

Elettra Evolution OK! OK! b. Guía de uso

Elettra Evolution OK! OK! b. Guía de uso Elettr Evolution Guí e uso Pg. 1 INSTALACIÓN DE LA ELECTROVÁLVULA. L eletroválvul progrmle es perfetmente estn y funion unque siempre esté sumergi en gu hst un metro e profuni (gro e proteión IP68). Se

Más detalles

Introducción al álgebra en R

Introducción al álgebra en R Autor: hristin ortes Introuión l álger en R.- El álger trt e nties omo en l ritméti pero en form más generl; que mientrs que l ritméti utili nties enots por números on un solo vlor efinio el álger us letrs

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

Integrales múltiples.

Integrales múltiples. Pro. Enrique Mteus Nieves otoro en Euión Mtemáti Integrles múltiples. Introuión. En el primer urso e Funmentos se plnteó el prolem e hllr el áre ompreni entre l grái e un unión positiv y x, el eje OX y

Más detalles

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b):

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b): TEMA 6: INTEGRAL DEFINIDA. 6.1 Integrl efini omo límite e sums superiores o inferiores. 6. Propiees e l integrl efini. 6. Regl e Brrow. 6.4 Apliiones e l integrl efini (Áre). 6.1 Integrl efini. Se f un

Más detalles

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %

Más detalles

CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) Analizar los autómatas de estado finito y sus componentes, así como las diferentes formas de representarlos.

CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) Analizar los autómatas de estado finito y sus componentes, así como las diferentes formas de representarlos. CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) OBJETIVO Anlizr los utómts de estdo finito y sus omponentes, sí omo ls diferentes forms de representrlos. JUSTIFICACION L definiión de los utómts de estdo finito

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA Uni Nº Resoluión e sisems meine eerminnes! PR EPEZR, RELEXION Y RESUELVE Deerminnes e oren! Resuelve uno e los siguienes sisems e euiones lul el eerminne e l mri e los oefiienes: E sumno E E sumno λ,s.c.i.,

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

SISTEMA DE COORDENADAS EN EL PLANO

SISTEMA DE COORDENADAS EN EL PLANO Mtemáti Diseño Inustril Coorens en el lno Ing. Avil Ing. Moll SISTEMA DE CRDENADAS EN EL LAN SISTEMA UNIDIMENSINAL Es sio que es posile soir los números reles on los puntos e un ret reípromente. Es lo

Más detalles

Ciclos Termodinámicos

Ciclos Termodinámicos Cpítulo 5 Cilos Termoinámios 5.1. Cilo e Crnot Consieremos un gs iel sometio l siguiente proeso ílio: b isoterm f ibt ibt o isoterm V V V Figur 5.1: Cilo e Crnot. Proeso b : Aibt reversible El gs se omprime

Más detalles

Facultad de Ingeniería UCV Álgebra Lineal y Geometría Analítica (0250) Ciclo Básico EJERCICIOS RESUELTOS 3 T. = entonces. = c ( ) ( ) ( ) ( ) 7

Facultad de Ingeniería UCV Álgebra Lineal y Geometría Analítica (0250) Ciclo Básico EJERCICIOS RESUELTOS 3 T. = entonces. = c ( ) ( ) ( ) ( ) 7 Ful e Ingenierí UV Álger Linel Geomerí nlíi ilo Básio eprmeno e Memái pli EJERIIOS RESUELOS. Se l represenión mriil e l rnsformión linel : P R respeo ls ses B } { B. Enuenre pr R. Opión : Sen l mri e mio

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES

Más detalles

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1 Ruión stos quivlnts Mrio Min. mriomin@u.l Ruión stos quivlnts Proso isño ntrior no sgur l númro mínimo stos Ruión númro stos Ru l númro lip-lops Ru l lógi ominionl Asignión vrils sto tmién pu ruir lógi

Más detalles

Electroválvula RF. Guía de uso. a LOW NEW!

Electroválvula RF. Guía de uso. a LOW NEW! 2x 2x - 2x Eletroválvul RF Guí e uso Pg. 1 COLOCCIÓN DE LS PILS. Pr olor o sustituir ls pils: esenrosque l tp trnsprente y extrig el grupo e mno. Desenrosque l tp el omprtimiento e ls pils. Extrig el soporte

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

Transformaciones Geométricas 3D

Transformaciones Geométricas 3D Trnsformciones Geométrics 3D Introucción 3D Cuno nos introucimos l muno 3D, hy que consierr: El fctor e profuni Ls combinciones que se pueen generr sobre 3 ejes L perspectiv e observción Los operores se

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14 R= SOLUCONES DE LOS PROLEMS DE ELECTRCDD DE C.C. SOLUCONES DE LOS EJERCCOS DE CORRENTE CONTNU - er TRMESTRE-. prolems:, y ª ) Soluionremos este prolem por el método generl de nálisis por lzos ásios, omprondo

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

Álgebras de Boole. Concepto de Álgebra. Elementos Operaciones Axiomas. Conjuntos Lógica...

Álgebras de Boole. Concepto de Álgebra. Elementos Operaciones Axiomas. Conjuntos Lógica... Automtizción Industril UC3M Dep. de Ing. de Sistems y Automátic Álger de Boole Concepto de Álger. Elementos Operciones Axioms Álgers de Boole. Conjuntos Lógic... Automtizción Industril UC3M Dep. de Ing.

Más detalles

Práctica 3. Convertidores de códigos

Práctica 3. Convertidores de códigos . Objetivo Práctic Convertiores e cóigos El lumno construirá un circuito convertior e cóigo y esplegrá su resulto en un exhibior e siete segmentos.. Anteceentes L informción en un sistem igitl se proces

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

1.TIPOS DE SEÑALES Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos:

1.TIPOS DE SEÑALES Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos: 4.ELECTRÓNIC DIGITL. Tipos de señles 2. Representción de ls señles digitles 3. istem inrio 4. Funciones ásics 5. Propieddes de ls funciones ND y OR. Teorem de Morgn. 6. implificción de funciones lógics

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTAS D CUACIONS. Resolver los siguientes sistems de dos euiones lineles on dos inógnits. Se puede resolver por ulquier método, pero deido que es fáil despejr l de l primer euión, lo resuelvo por sustituión.

Más detalles

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC I.E.S. Ciudd de Arjon Deprtmento de Mtemátis. º BAC UNIDAD : TRIGONOMETRÍA. MEDIDAS DE ÁNGULOS. GRADOS: Un grdo sexgesiml es el ángulo orrespondiente un de ls 60 prtes en que se divide el ángulo entrl

Más detalles

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:

Más detalles

Programación: el método de bisección

Programación: el método de bisección Progrmión: el método de iseión Este texto fue esrito por Egor Mximenko y Mri de los Angeles Isidro Perez. Ojetivos. Enter l ide del método de iseión, progrmr el método de iseión usndo un ilo while, pror

Más detalles

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO : L euión generl es de l form M N Pz donde todos los oefiientes son no nulos M N P Se puede esriir l euión nterior en l form: ± ± on Llmd form nóni de un uádri sin entro. Álger B Fultd de Ingenierí UNMdP

Más detalles

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013 MATEMÁTICAS 0 OBJETIVOS MÍNIMOS REQUERIDOS - Operiones omins on números enteros. - Potenis ríes urs. - Operiones on friones. - Operiones on números eimles. - Euiones e primer seguno gro. - Usr e form eu

Más detalles

Objetivos. Cálculo de primitivas. La integral definida. Funciones integrables. Aplicaciones geométricas de la integral.

Objetivos. Cálculo de primitivas. La integral definida. Funciones integrables. Aplicaciones geométricas de la integral. TEMA Ojetivos. álulo de rimitivs. L integrl deinid. Funiones integrles. Integrles imrois. Aliiones geométris de l integrl. Plnter y lulr integrles de uniones de un vrile y lirls l resoluión de rolems reltivos

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

ARQUITECTURA DE LAS COMPUTADORAS PRÁCTICA

ARQUITECTURA DE LAS COMPUTADORAS PRÁCTICA RQUITETUR E LS OMPUTORS PRÁTI INTROUION TEORI: IRUITOS LÓGIOS El Álgebra de oole o Álgebra ooleana es de dos estados o binaria. Los circuitos lógicos son circuitos que pueden analizarse con este álgebra.

Más detalles

DETERMINANTES. GUIA DETERMINANTES 1

DETERMINANTES. GUIA DETERMINANTES 1 GUI DETERMINNTES DETERMINNTES. Los determinntes fueron originlmente investigdos por el mtemátio jponés Sei Kow lrededor de 8, por seprdo, por el filósofo mtemátio lemán Gottfried Wilhelm Leiniz lrededor

Más detalles

Seminario de problemas. Curso Soluciones Hoja 18

Seminario de problemas. Curso Soluciones Hoja 18 Seminrio de problems. Curso 015-16. Soluiones Hoj 18 10. Sen, b, y d utro números enteros. Demostrr que el produto de ls seis diferenis b,, d, b, d b, d es múltiplo de 1. Soluión Vemos que diho produto

Más detalles

Variables, Constantes y Operadores

Variables, Constantes y Operadores L Eseni e l Lógi e Progrmión Omr Ivn Trejos Buritiá 27 Cpítulo 3 Vriles, Constntes y Operores Vrile Informlmente lgo vrile es lgo que puee mir e un momento otro. Ténimente un vrile es un mpo e memori l

Más detalles

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de

Más detalles

MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1

MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1 MÉTODO DE KARNAUGH Jesús Pizrro Peláez MÉTODO DE KARNAUGH... 1 1. INTRODUCCIÓN... 1 2. MÉTODO DE KARNAUGH... 2 3. EJEMPLO DE APLICACIÓN (I)... 4 4. ESTADOS NO IMPORTA EN LAS FUNCIONES LÓGICAS... 6 5. EJEMPLO

Más detalles

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2.

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2. Algunos prolems. L olorión en ls mtemátis L olorión en ls mtemátis no es más que provehr lguns iferenis que estleemos entre los entes empleos en un prolem prtiulr, similr l utili e ls nemotenis en l progrmión,

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

TEMA 2. Determinantes Problemas Resueltos

TEMA 2. Determinantes Problemas Resueltos Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l

Más detalles

BOLETÍN DE EJERCICIOS PARA LA CONVOCATORIA DE SEPTIEMBRE. MATEMÁTICAS 4º ESO. ENTREGAR ESTOS EJERCICIOS EL DÍA DEL EXAMEN.

BOLETÍN DE EJERCICIOS PARA LA CONVOCATORIA DE SEPTIEMBRE. MATEMÁTICAS 4º ESO. ENTREGAR ESTOS EJERCICIOS EL DÍA DEL EXAMEN. MATEMÁTICAS º ESO BOLETÍN DE EJERCICIOS PARA LA CONVOCATORIA DE SEPTIEMBRE. MATEMÁTICAS º ESO. ENTREGAR ESTOS EJERCICIOS EL DÍA DEL EXAMEN.. Clul simplifi: 0 0. Rionliz ls siguientes friones on riles:.

Más detalles

que verifican A 2 = A.

que verifican A 2 = A. . Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A

Más detalles

TI. 955 99 99 30 Fax 955998912 Email santiponce@dipusevilla.es " www.santiponce.es

TI. 955 99 99 30 Fax 955998912 Email santiponce@dipusevilla.es  www.santiponce.es Fx 955998912 Emil sntipone@ipusevill.es " www.sntipone.es DE SANTIPONCE Nomre: Cul es el olor hitul e los metros e rpintero? mrillo zul negro vere 2 Que uni e mei us el sonómetro eielio lux herio vtio

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones

Más detalles

Cometa NO! Guía de uso

Cometa NO! Guía de uso 8 9 10 11 12 MV 8 9 10 11 12 MV 8 9 10 11 12 MV Comet Guí e uso Pág. 1 Fije el progrmor l pre, en un lol erro, resguro e los gentes tmosférios y el gu, on un tempertur miente e 0 50 C. No instle el prto

Más detalles