1. INTRODUCCION Y CONCEPTOS BÁSICOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. INTRODUCCION Y CONCEPTOS BÁSICOS"

Transcripción

1 TRANSMISORES EN COMUNICACIONES ÓPTICAS 1. INTRODUCCION Y CONCEPTOS BÁSICOS en Comunicaciones Opticas Interacción radiación materia en niveles atómicos Conceptos básicos de semiconductores Interacción radiación-materia en semiconductores Unión p-n, doble heterounión Materiales para emisores ópticos V (t) : conversores electro-ópticos Tipos: Light Emitting Diode (LED) Laser Diode (LD) Requisitos ideales (dependiendo de aplicación): Alta potencia en la fibra Alta velocidad de conmutación Espectro de emisión estrecho; longitud de onda estable Conversión E/O: lineal (analógicos), sin ruido Baja dependencia con la temperatura Otras características: tamaño, precio, fiabilidad... V CIRCUITO DE ATAQUE Y POLARIZACIÓN P (t) F. O. LED o LD 1 2 El papel del transmisor en un sistema de Comunicaciones Ópticas es la conversión de la señal eléctrica de entrada en su correspondiente señal óptica y acoplarla a la fibra óptica que sirve como medio de transmisión. El componente principal del transmisor es el emisor o fuente óptica. Los dos tipos de dispositivos habitualmente empleados como emisores son el Diodo Emisor de Luz (LED) y el Diodo Láser (LD), también conocido como Láser de Semiconductor o Láser de Inyección. El transmisor óptico puede incluir adicionalmente al emisor otros componentes, tales como los circuitos electrónicos de ataque y polarización (driver), un fotodiodo de control de potencia, un sistema de control de temperatura, y la óptica necesaria para realizar el acoplo a fibra. Las características más importantes del transmisor desde el punto de vista de su aplicación a un sistema son la potencia óptica que es capaz de acoplar a fibra, su velocidad de conmutación y su anchura espectral. 1 2

2 Coeficientes de Einstein Radiación del Cuerpo Negro E 2 E 1 ABSORCIÓN EMISIÓN ESPONTÁNEA EMISIÓN ESTIMULADA dn 1 /dt = -B 12 N 1 () + A 21 N 2 + B 21 N 2 () = - dn 2 /dt = 0 N 2 /N 1 = exp [- (E 2 -E 1 ) /kt] = exp (-h/kt) () = A 21 / [ B 12 (N 1 / N 2 ) - B 21 ] = A 21 / [ B 12 exp (h/kt) - B 21 ] () = (8 h 3 /c 3 ) / [ exp (h/kt) - 1] Ley del cuerpo negro B 12 = B 21 A 21 / B 12 = (8 h 3 /c 3 ) 3 4 Existen tres tipos de procesos de interacción entre la radiación y la materia: absorción, emisión espontánea y emisión estimulada. La figura ilustra los tres procesos en el caso de niveles atómicos, tomando como referencia dos niveles atómicos de energías E 1 y E 2. (a)absorción: un electrón en el nivel E 1 absorbe un fotón de energía (E 2 - E 1 ) y pasa al nivel E 2. (b)emisión espontánea: un átomo en el nivel E 2 pasa al nivel E 1 emitiendo un fotón de energía (E 2 - E 1 ). (c)emisión estimulada: un fotón, de energía (E 2 - E 1 ), estimula una transición de un átomo del nivel E 2 al nivel E 1, generándose un segundo fotón idéntico al primero en todas sus propiedades (frecuencia, fase, dirección, polarización...). Las probabilidades de transición de cada uno de estos procesos pueden formularse considerando las constantes de proporcionalidad de Einstein B 12 para procesos de absorción, B 21 para procesos de emisión estimulada y A 21 para procesos de emisión espontánea. Se considera que el número de átomos en el nivel energético E 1 es N 1 y en el nivel E 2 es N 2 y que la densidad de energía de radiación a la frecuencia tal que h = E 2 - E 1 es (). En equilibrio la relación entre N 1 y N 2 vendrá dada por la función de Boltzmann, con lo que es posible obtener () en función de B 12, B 21,A 21 y h. La densidad de energía emitida por un cuerpo negro en equilibrio a una temperatura T viene dada por la ley del cuerpo negro, propuesta por Plank al considerar la existencia de cuantos o unidades discretas de energía. Al identificar términos de la ley del cuerpo negro con la densidad de energía en equilibrio con la materia, se obtienen relaciones entre los coeficientes de Einstein. A partir de estas relaciones se deduce que en equilibrio la emisión espontánea predomina frente a la estimulada, y que las tasas de absorción y de emisión estimulada tienen el mismo coeficiente de proporcionalidad. 3 4

3 Inversión de población Ganancia g > 0 Absorción (cm -1 ) Ganancia g = - I (x) = I 0 exp (- x) I 0 MEDIO g < 0 x g > 0 Amplificación g < 0 Atenuación g = 0 Transparencia dn 2 /dt = B 21 () (N 2 -N 1 )-A 21 N 2 Inversión de población: N2 > N1 g > La tasa de emisión estimulada neta será proporcional a la diferencia (N 2 -N 1 ). Si el material está en equilibrio, N 1 > N 2, con lo que predominará la absorción sobre la emisión estimulada. Por el contrario, si se saca el material de equilibrio mediante un bombeo que lleve átomos del nivel E1 al nivel E2, se podrá alcanzar la denominada inversión de población (N2 > N1), con lo que la emisión estimulada predominará frente a la absorción. Cuando un haz óptico recorre un medio, puede ser amplificado, atenuado o no afectado, en función del valor del coeficiente de ganancia (absorción) a la longitud de onda de la radiación. En general, la variación de la intensidad óptica I en un diferencial de longitud dz será proporcional a la intensidad y al coeficiente de ganancia: di = g I dz La integración de esta ecuación diferencial nos dará el típico crecimiento exponencial si la ganancia es positiva, o decrecimiento exponencial si la ganancia es negativa (o coeficiente de absorción positivo) El coeficiente de ganancia es proporcional a la tasa de emisión estimulada neta, y por lo tanto a la diferencia (N 2 - N 1 ). Ello indica que en equilibrio, predominará la absorción, o el material será transparente (g = 0) si no existe ninguna transición a la energía del fotón considerado. En cambio, si se aporta energía al medio de la forma adecuada (bombeo), y se consigue la condición de inversión de población, el material presentará ganancia óptica positiva, siendo capaz de amplificar la radiación. 5 6

4 NIVELES ENERGÉTICOS Y BANDAS DE ENERGÍA BANDAS EN SEMICONDUCTORES METAL E 2 Banda de Conducción SEMICONDUCTOR Banda de conducción Banda de valencia E C = E C0 + (h k) 2 /2m C E 1 E G E C0 E V0 Banda de Valencia Gap de Energía AISLANTE Banda de conducción Banda de valencia Energía E G E C0 E V0 E V = E V0 - (h k) 2 /2m V ATOMO SÓLIDO Gap de Energía Banda de conducción Banda de valencia k = 0 Vector de onda k 7 8 Es bien sabido que los electrones en los átomos están caracterizados por niveles discretos de energía. En el caso de los sólidos, la próximidad de los átomos da lugar a un desdoblamiento de los niveles energéticos en un conjunto de valores discretos próximos entre sí, que aproximamos por un continuo de energías que denominamos bandas. La banda de energías más altas se denomina banda de conducción (BC) y la siguiente, de energías menores, banda de valencia (BV). La diferencia de energía entre el mínimo de la BC y el máximo de la BV es el gap de energía (zanja, salto). Los diferentes tipos de sólidos cristalinos pueden caracterizarse por la disposición de las bandas de energía, y su nivel de llenado de electrones. Los metales tienen la última banda parcialmente llena de electrones; los semiconductores y aislantes tienen gap de energía, con la BV llena de electrones y la BC vacía. Si el gap toma valores entre 0,1 y 2,5 ev nos referimos a materiales semiconductores, y con gaps mayores hablamos de aislantes, aunque las fronteras no están definidas y también depende de otras propiedades de los materiales. Los diagramas de dispersión, de bandas, o E-k, relacionan el vector de onda k con la energía en los estados energéticos de las bandas. Son consecuencia de la consideración de los electrones como onda en un sólido cristalino, lo que implica unos ciertos valores posibles de su vector de onda k y de su correspondiente energía. En los valores de mínima energía de la BC, la relación entre la energía de los estados electrónicos y su vector de onda es aproximadamente cuadrática. El valor de la masa efectiva de los electrones en la masa de conducción m C representa el efecto de la red atómica del sólido sobre el movimiento de dichos electrones en comparación con un electrón libre. En la banda de valencia la relación E-k da lugar a una masa efectiva de los electrones m V negativa, lo que significa que el movimiento del conjunto de electrones de esa manda es equivalente al de una partícula con carga positiva y masa m V, que denominamos hueco. 7 8

5 OCUPACIÓN DE LAS BANDAS: EQUILIBRIO OCUPACIÓN DE LAS BANDAS: FUERA DE EQUILIBRIO Intrínseco: T = 0 Intrínseco: T > 0 Dopado n BOMBEO (Inyección) E FN -E FP > 0 E FN Energía E F Energía E F Energía E F Energía E FP f(e C ) = 1 + exp[(e C -E FN )/kt] -1 Vector de onda k Vector de onda k Vector de onda k Vector de onda k f(e V ) = 1 + exp[(e V -E FP )/kt] -1 f(e) = 1 + exp[(e - E F )/kt] La probabilidad de que un estado electrónico en una banda esté ocupado o no por un electrón viene dada por la función estadísticas de Fermi-Dirac, y depende de la distancia entre la energía del estado y la energía de Fermi E F del semiconductor. Los semiconductores intrínsecos son aquellos que no tienen, en número significativo, átomos de impurezas o defectos de la red cristalina. En ellos, a la temperatura de 0 K, todos los estados de la banda de valencia están ocupados por electrones, y todos lo de la banda de conducción están vacíos. A una temperatura superior la energía térmica provocará que algunos electrones de la BV pasen a la BC, dejando huecos en la BV. El número de electrones y huecos, denominado concentración intrínseca, es muy bajo comparado con el número de estados. Al dopar un semiconductor se le añaden átomos de impurezas, que pueden ser donadoras, si añaden electrones a la BC, o aceptadoras, si toman un electrón de la BV, liberando un hueco. En un semiconductor en equilibrio, la probabilidad de encontrar un electrón en la BV es siempre mayor que la de encontrarlo en la BC. Cuando se saca al semiconductor de equilibrio, por bombeo óptico o inyección de portadores, se vacían de electrones los estados en la BV, que queda poblada por huecos, y se añaden electrones a la BC. Es decir se quitan electrones de baja energía y se añaden electrones de alta energía. Las probabilidades de ocupación vienen dadas ahora por los quasiniveles de Fermi en las bandas de conducción y valencia (E FN y E FP, respectivamente). El nivel de inyección, o bombeo, viene dado por la diferencia de quaisiniveles. 9 10

6 INTERACCIÓN RADIACIÓN-MATERIA: Semiconductor ESPECTROS DE GANANCIA Y EMISIÓN ESPONTÁNEA E E C E V E g h h h k = 0 k k = 0 k k = 0 k (a) (b) (c) h h Ganancia del Material (cm -1 ) Origin60 Dem o Origin60 Dem o Origin60 Dem o Origin60 Dem o Origin60 Dem o Origin60 Dem o cm -3 8x x10 18 Origin60 Dem o Origin60 Dem o Origin60 Dem o 7x10 18 Origin60 Dem o Origin60 Dem o Origin60 Dem o 6x x x10 18 Origin60 Dem o Origin60 Dem o Origin60 Dem o Origin60 Dem o Origin60 Dem o Origin60 Dem o ,65 0,70 0,75 0,80 0,85 3x x cm -3 Longitud de Onda (µm) AlGaAs SQW Recombinación Espontánea (10 28 ev -1 cm -3 s -1 ) Origin60 Demo Origin60 Dem o Origin60 Dem o cm -3 9 x AlGaAs SQW Origin60 Demo Origin60 Dem o Origin60 Dem o 8 x Origin60 Demo Origin60 7 x Dem o Origin60 Dem o 6 x Origin60 Demo Origin60 Dem o Origin60 Dem o 5 x Origin60 Demo Origin60 4 x Dem o Origin60 Dem o 3 x Origin60 Demo Origin60 Dem o Origin60 Dem o 2 x ,65 0,70 0,75 0,80 0,85 Longitud de Onda (µm) ABSORCIÓN EM. ESPONTÁNEA EM. ESTIMULADA Semiconductor con ganancia positiva (inversión de población): (E FN - E FP ) > h > E G La figura ilustra los tres procesos anteriores en el caso de un material semiconductor. Las transiciones de un banda a otra deben realizarse sin variación del vector de onda k de los electrones y conservando la energía total. (a)absorción: un electrón de la BV absorbe un fotón y pasa a la BC, generándose un par electrón-hueco. Este proceso es el fundamento de los fotodetectores (b)emisión espontánea: un electrón de la BC pasa a la BV (recombinación electrón hueco), emitiendo espontáneamente un fotón. Es la base de funcionamiento de los LEDs (c) Emisión estimulada: un fotón atravesando el material estimula una recombinación electrón-hueco, generándose un segundo fotón idéntico al primero. Es el fundamento de los láseres y amplificadores ópticos. La Figura de la izquierda presenta el espectro calculado de ganancia para un semiconductor (en concreto una estructura de pozo cuántico de AlGaAs), en función de la densidad de portadores inyectados. A baja densidad de portadores el semiconductor es absorbente a longitudes de onda menores que la correspondiente al gap y transparente a longitudes de onda mayores. Cuando se va aumentando la inyección aparece un rango de longitudes de onda en el que el semiconductor presenta ganancia positiva. El ancho de este rango es típicamente nm. Puede demostrarse fácilmente que para que un semiconductor presente ganancia positiva para una energía de fotón h es necesario que la probabilidad de encontrar a un electrón en el nivel energético de la BC involucrado en la transición ha de ser mayor que la de encontrar a un electrón en el nivel de la BV. Ello implica que la separación de los cuasiniveles de Fermi ha de ser mayor que la energía del fotón. La figura de la derecha muestra el espectro calculado de emisión espontánea para el mismo material en función de la densidad de portadores. Este espectro es equivalente al espectro de emisión de un LED fabricado con este material en la zona activa. Su anchura a mitad es típicamente entre 30 y 150 nm, dependiendo de la longitud de onda y el nivel de inyección

7 UNIÓN p-n MATERIALES para EMISORES OPTICOS V j Gap indirecto (Si, Ge): No eficientes Transiciones con intervención de un fonón Gap directo (III-V, II-VI): eficientes Transiciones directas Electron Energy E C E fh p-material junction qv j n-material E fe E V Materiales típicos (C.O.): GaAs/AlGaAs: nm InGaAsP/ InP: nm La forma convencional de bombear el semiconductor para que esté en condiciones de no-equilibrio y pueda proporcionar ganancia y/o emisión espontánea es mediante el clásico diodo de unión p-n. Tanto los LEDs como los LDs están basados en un diodo de unión p-n. En una unión p-n en polarización directa se inyectan electrones de la zona n hacia la p, y huecos de la p hacia la n. En la zona cercana a la unión se produce una alta recombinación de electrones y huecos ya que se establecen altas densidades de ambos. En esta zona la diferencia entre los niveles de Fermi de electrones y huecos es aproximadamente el voltaje externo aplicado. Desde un punto de vista eléctrico la unión p-n es un diodo, permitiendo el paso de la corriente con una caída de tensión casi constante al estar polarizado en directa, y no permitiendo el paso de corriente en inversa. Existen dos tipos de materiales semiconductores: semiconductores de gap directo y semiconductores de gap indirecto. En los primeros el mínimo de la BC corresponde al mismo valor del vector de onda que el máximo de la BV. Ello favorece transiciones directas de una banda a otra y posibilita el uso de estos materiales en emisores ópticos. En los semiconductores de gap indirecto el mínimo de la BC se encuentra a un valor del vector de onda diferente del máximo de la BV. Por ello no se pueden realizar transiciones directas de una banda a otra sin la intervención de otra partícula que iguale la variación del vector de onda entre el estado inicial y final. Esta otra partícula es habitualmente un fonón (cuanto de vibración de la red). La necesidad de intervención de otra partícula hace menos probables las transiciones radiativas en este tipo de materiales. Los semiconductores del grupo IV (Silicio, germanio...) tienen gap indirecto y por ello no pueden emplearse como emisores. Casi todos los semiconductores del grupo III-V y II-VI tienen gap directo: aquellos cuya tecnología está suficientemente desarrollada pueden emplearse como emisores. Entre ellos destaca la aleación AlGaAs sobre sustrato de GaAs, utilizada para dispositivos que emiten entre 780 y 850 nm, y la aleación InGaAs(P), sobre sustrato de InP, empleada para emisores de 2ª y 3ª ventana

8 4.2 LED LED: Principios de funcionamiento Principios de funcionamiento Característica Potencia-Corriente Estructuras LED Espectros de emisión Propiedades dinámicas Diagramas de radiación V j P out extrac h h Pin extin I e I q q Estructura basica: diodo p-n en material de gap directo Basado en emisión espontánea Característica P-I: aprox. Lineal Baja eficiencia de conversión (2-3 %) Un emisor LED es básicamente un diodo de unión p-n fabricado sobre un semiconductor de gap directo y diseñado para facilitar al máximo la extracción al exterior de la emisión espontánea. La relación entre la potencia óptica emitida P out y la corriente inyectada I es aproximadamente lineal, salvo a muy altas corrientes en las que la emisión disminuye debido al autocalentamiento. Se define como eficiencia cuántica externa e la relación entre el número de fotones extraídos y el numero de electrones inyectados. Salvo en algunas estructuras recientes, con valores de hasta el 22%, el valor típico de e es bajo (1-3%), debido a las dificultades en la extracción de los fotones espontáneamente emitidos. La emisión espontánea del LED es incoherente, es decir, los fotones emitidos no tienen correlación entre sí. La frecuencia, polarizacción, dirección, y fase de cada uno de ellos es independiente de los demás

9 CARACTERÍSTICA POTENCIA-CORRIENTE (P-I) Output power (W) Current (ma) -15 ºC 25 ºC 65 ºC P-I lineal (casi) Baja pendiente (típica 10-4 W/A en fibra) Poca dependencia con temperatura n-gaas substrate multimode optical fiber LED EMISIÓN SUPERFICIAL (SLED) epoxy adhesive metal etched contact well n-algaas p-gaas p-algaas SiO 2 metal contact light emitting region ESTRUCTURAS LED metal contact insulation layer (SiO 2 ) p + -GaAs p-algaas p-gaas n-algaas output light GaAs-substrate metal contact LED EMISIÓN LATERAL (ELED) Puede observarse que la relación P-I en el LED es casi lineal con una cierta saturación causada por efectos de autocalentamiento. La potencia máxima acoplada a fibra MM es baja, siendo su valor típico -10 a 15 dbm. La dependencia de la potencia con la temperatura ambiente es pequeña. Existen muchas estructuras LED, dos de las cuales están representadas en las figuras. La de la izquierda corresponde a un LED de emisión superficial ( surface emitting LED, SLED), también llamado tipo Burrus, muy empleado en comunicaciones ópticas desde hace años. La estructura de capas corresponde a una unión p-n cuya zona activa es GaAs. Las capas epitaxiales se sueldan con la parte superior (p) hacia abajo sobre un sumidero de calor con el fin de facilitar la disipación. En el substrato se realiza un agujero mediante ataque químico hasta acercarse a la zona activa, en el que se coloca una fibra MM, buscando que la mayor parte de la luz emitida se acople a la fibra. La estructura de la derecha corresponde a un LED de emisión lateral ( edge emitting LED, ELED). En este caso la extracción de la luz y acoplo a la fibra se realiza por un lateral de la estructura de capas. El diseño de la estructura, al igual que en un LD, da lugar a un fenómeno de guiado óptico en la dirección de inyección de corriente, que aumenta la emisión en las caras laterales

10 ESPECTRO DE EMISIÓN DIAGRAMA DE RADIACIÓN (LED) Power Intensity (a.u.) 1.0 LED Wavelength (nm) Valores típicos: (FWHM) entre 30 y 150 nm Aproximadamente: ~ 1,45 (kt) 2 [ expresado en µm y (kt) en ev] LED: lambertiano º (FWHM) Campo lejano (u.a.) º ángulo (º) En las figuras se ha representado el espectro de emisión típico de un LED. Su espectro es habitualmente asimétrico y con un único lóbulo, de ancho a mitad de altura entre 30 y 150 nm. Es tanto más ancho cuanto mayor es la longitud de onda de emisión. Los diagramas o patrones de radiación de un LED son muy anchos y siguen una ley lambertiana debido a la naturaleza incoherente de la radiación. Ello da lugar a un ancho teórico a mitad de altura de 120. En la práctica el ancho es algo menor, y en el caso de los ELED es mucho más estrecho (hasta 30 ) en la dirección perpendicular al plano de la unión. Este diagrama dificulta el acoplo a fibra de la radiación

11 RESPUESTA DINÁMICA 3. Diodo Láser P 90 % 10 % 2.2 n Filtro paso bajo: P( ) P( 0) tot rise, fall 22. tot t Compromiso potencia-velocidad Valores típicos: 10 MHz-1 GHz Idea general de Láser Láser de semiconductor Condición umbral Potencia-corriente Estructuras de guiado lateral Patrones de emisión Láser de pozo cuántico Láser FP: Espectro Láser monofrecuencia Láseres sintonizables: VCSELs Propiedades dinámicas: Al aplicar un escalón de corriente a un LED la potencia óptica aumenta de acuerdo con una función exponencial similar a la de un circuito RC. El tiempo característico tot corresponde al tiempo de vida de portadores, tomando valores entre 1 y 10 ns. La respuesta en frecuencia (modulación en pequeña señal) corresponde a un filtro paso bajo de polo simple, con ancho de banda (2 tot ) -1. Los valores típicos de ancho de banda en LEDs de comunicaciones varían entre 10 y 150 MHz, pudiéndose encontrarse algunos de mayor velocidad. Sin embargo, cuando la velocidad es mayor la potencia emitida disminuye en comparación con dispositivos más lentos

12 CONCEPTO GENERAL DE LÁSER LÁSER DE DOBLE HETEROESTRUCTURA LASER: Light Amplification by Stimulated Emission of Radiation BOMBEO I I > I I out MEDIO ACTIVO g > 0 Energía (bombeo): óptico o inyección de corriente Medio con ganancia (inversión de población) Realimentación: cavidad resonante (Fabry-Perot) y z active region x electrical wire I metal contact p-material n-material cavity width optical mode refractive index n holes VB energy bandgap CB electrons realimentación OSCILACIÓN LÁSER Confinamiento de portadores (recombinación en la zona activa) Guía-onda en la dirección vertical La emisión LASER en un medio fue obtenida por primera vez en 1960 en un cristal de rubí. Desde entonces se ha desarrollado un gran número de tipos diferentes de láser (gas, estado sólido, semiconductor, colorante, electrones libres...) con un enorme rango de aplicaciones. En general, un láser es un oscilador a frecuencias ópticas. De la misma manera que un oscilador electrónico necesita para oscilar un proceso de amplificación y otro de realimentación positiva, un láser está constituido por un medio en condiciones de ganancia y una cavidad resonante. El medio debe estar recibiendo un bombeo, que puede ser óptico o mediante inyección de corriente, para estar fuera de equilibrio y ser capaz de amplificar. La realimentación se consigue típicamente por medio de una cavidad Fabry-Perot, consistente en dos espejos semitransparentes separados una distancia L. La luz confinada en el interior de la cavidad sufre un proceso de ganancia al propagarse que compensa las pérdidas debidas a las reflexiones en los espejos. Aquellas frecuencias ópticas que tras propagarse por la cavidad y reflejarse en ambos espejos mantengan su fase sin cambios, serán las posibles frecuencias de oscilación del sistema. La emisión láser está caracterizada por ser altamente coherente, es decir por fotones (casi) idénticos en cuanto a frecuencia, polarización y fase. Casi todos los diodos láser (LD) actuales están basados en el láser de doble heteroestructura. Consiste en un chip de semiconductor en el que se ha crecido una unión p-n sobre un substrato; sus caras han sido talladas ( cleaved ) de forma que den lugar a espejos de alta calidad debido a la diferencia entre el índice de refracción del semiconductor y del aire. En la dirección de inyección de corriente se ha crecido una zona activa de mayor índice de refracción y de menor gap que las zonas adyacentes, denominadas zonas de recubrimiento ( cladding ). Ello se consigue mediante un adecuado perfil de composición. Dicho perfil de composición da lugar a dos fenómenos imprescindibles para obtener emisión láser en forma eficiente: - Confinamiento de portadores: que son acumulados y forzados a recombinarse en la región activa, de menor gap. - Confinamiento óptico: el perfil de índices produce un efecto de guía onda que confina el campo óptico en la zona activa

13 CONDICIÓN UMBRAL MODOS LONGITUDINALES R E 2 E 0 Z = 0 ACTIVE REGION CURRENT INJECTION L CLEAVED FACETS GAIN MEDIUM MIRRORS R Z = L ( n 1) R ( n 1) 0.3 E( z, t) A( z) e j( tkz) Condición de oscilación : E E R e ( g in ) L ( j2kl) 1 MÓDULO : 1 1 gth in ln L R FASE : 2kL = 2m e Gain 0 cavity losses longitudinal modes carrier density Wavelength (µm) lasing mode 2neff k mc m n 2L eff c n 2L eff neff 2L m m 2 n 2L eff La condición necesaria para la oscilación láser se denomina condición umbral. Refleja el hecho de que un campo óptico E 0 que se propague por la cavidad debe permanecer inalterado tras una ida y vuelta completa ( round trip condition ). Esta condición se expresa matemáticamente como E 0 = E 2, donde E 2 es el campo tras recorrer una distancia 2L en un medio de ganancia neta (g- in ), siendo la constante de propagación k. g es la ganancia modal y in es el coeficiente de pérdidas internas. La reflectividad de los espejos viene dada por R. La condición umbral puede dividirse en dos partes: Condición en módulo, que indica que la ganancia umbral proporcionada por el material debe ser igual a las pérdidas totales. Condición en fase, que indica que la fase de la onda tras una ida y vuelta en la cavidad debe ser un múltiplo entero de 2. Esta última condición define las frecuencias propias de oscilación de la cavidad, denominadas modos longitudinales. La figura representa el espectro de ganancia y los posibles modos longitudinales de la cavidad m. Las pérdidas totales de la cavidad están dadas por la línea de puntos. Al aumentar la corriente inyectada la densidad de portadores en la zona activa aumenta, y por tanto también aumenta la ganancia. Cuando la ganancia iguala a las pérdidas de la cavidad, comienza la emisión láser en el modo longitudinal más cercano al máximo de la curva de ganancia. Un aumento posterior de la corriente ya no aumenta la concentración de portadores, que se mantiene enganchada en su valor umbral, y por tanto no varía la longitud de onda de emisión, salvo por efectos de segundo orden. Los posibles modos longitudinales están equiespaciados en frecuencia pero no en longitud de onda. La distancia entre dos modos en longitud de onda depende de la longitud de la cavidad, siendo su margen típico entre 0,1 y 0,3 nm para los láseres habituales

14 RELACIÓN POTENCIA-PORTADORES-CORRIENTE CARACTERÍSTICA POTENCIA-CORRIENTE (P-I) I I th I I n I qvact tot S 0; P 0 th I I g ( n P slope th opt slope 0 th ( I I n ) S th ) : Slope Efficiency (W/A) 0 n P I th n th slope I I Output power (mw) Current (ma) 15 ºC 25 ºC 35 ºC 45 ºC 55 ºC P-I con umbral (típica 10 ma) Alta pendiente (típica W/A; en fibra menor) Alta potencia (típica 0-10 dbm); ruptura por exceso de potencia Alta dependencia con temperatura Al aumentar la corriente inyectada al láser por debajo de umbral, la densidad de portadores en la zona activa n crece casi linealmente con la corriente. Cuando la densidad de portadores alcanza su valor umbral n th todo nuevo incremento de corriente es convertido en potencia óptica, y la densidad de portadores queda enganchada a su valor umbral. La característica Potencia Óptica-Corriente (P-I) de un LD está caracterizada por la existencia de una corriente umbral (I th ) a partir de la cual comienza la emisión láser. Esta corriente es la necesaria para que la densidad de portadores llegue a n th, y pueda proporcionar la ganancia necesaria para igualar a las pérdidas. La corriente umbral es proporcional al volumen de la zona activa e inversamente proporcional al tiempo de vida de los portadores. A corrientes superiores a I th la potencia óptica emitida aumenta linealmente con la corriente. La pendiente de la relación P-I se define como la eficiencia de la pendiente slope, en W/A. Su valor depende de la longitud de onda, de la longitud de la cavidad y de otras características del dispositivo. Valores típicos se encuentran entre 0,2 y 1 W/A, considerando la emisión por ambas caras. En la curva Potencia-Corriente de un LD puede observarse la existencia de un valor umbral altamente dependiente con la temperatura, según la expresión empírica: T I th Ith0 exp T 0 donde T 0 se denomina temperatura característica y toma valores entre 50 y 150 K. La dependencia con la temperatura es más acusada en láseres de 2ª y 3ª ventana que en los de 1ª ventana. Los LDs acoplan alta potencia en fibra SM, típicamente entre 0 y 10 dbm para láseres de comunicaciones. La pendiente de la curva P-I es altamente lineal, hasta su potencia máxima de operación

15 ESTRUCTURAS LÁSER: GUIADO LATERAL DIAGRAMA DE RADIACIÓN (LÁSER) p-cladding n-cladding substrate metal contac oxide active p-cladding n-cladding substrate metal contac a active n p p n substrate n p metal contac oxide blocking layer confinement layer 1 Guiado por ganancia: Fabricación sencilla Haz inestable Guiado débil por índice: Fabricación más compleja Control de modos laterales Menor volumen bombeado Guiado fuerte por índice (estructuras enterradas) Fabricación muy compleja Confinamiento óptico y de portadores Mínimo volumen bombeado campo lejano (u.a.) ángulo (º) LD: depende de la estructura Existen un gran número de estructuras láser desde el punto de vista de su configuración lateral, es decir en el eje perpendicular a la emisión y a la inyección de corriente. Los láseres guiados por ganancia son los más sencillos de fabricar, y en ellos su zona activa es definida por la inyección de corriente sin que se produzca ningún guiado en la dirección lateral. Ello da lugar a un esparcimiento de la corriente ( spreading ), que no queda confinada, y un haz muy inestable y poco controlable. Las estructuras con guiado débil por índice, como por ejemplo la estructura en caballete ( ridge ) representada en la figura, proporcionan una ligera diferencia de índice efectivo entre la zona bombeada y la zona exterior. Esta diferencia de índice realiza un guiado lateral y confina el modo en una zona localizada, proporcionando operación monomodo lateral hasta niveles altos de potencia. Su proceso de fabricación es más complejo que el anterior. Las estructuras con guiado fuerte por índice, tales como las estructuras enterradas ( buried heterostructures ) dan lugar a confinamiento del modo óptico y de los portadores en la zona activa. Deben ser fabricadas mediante recrecimiento epitaxial lo que complica su producción. Proporcionan las mejores prestaciones, y casi todos los láseres de C.O. corresponden a este tipo. El diagrama de radiación de un láser convencional (emisión lateral) es fuertemente asimétrico, dando lugar a un haz con forma elíptica. En la dirección perpendicular a la unión es altamente divergente, con anchuras variables entre 30 y 50, dependiendo de la estructura interna de capas. En la dirección paralela a la unión toma valores muy diversos en función de la estructura lateral y de las dimensiones de la zona activa, pudiendo valer entre 5 y

16 LÁSERES DE POZO CUÁNTICO ESPECTRO LASER FP: variación con I n-cladding p-cladding E C confinement confinement QW E ei 2 ei Zona activa: 5-20 nm Confinamiento de e - y h + en sub-bandas de energía E ei-hj Ventajas: Menor volumen + efectos 2D menor corriente umbral Más grados de libertad (long. onda) Más velocidad 40 ma 35 ma 30 ma 25 ma Variación de longitud de onda: Cada modo n eff (I, T) Saltos: ganancia (T) efectos no lineales E V E hj 2 hj y Actualmente todos los LD comerciales son de QW Futuro: Punto cuántico (QD)? Cascada cuántica (QC)? 20 ma 16 ma I = 14 ma (nm) A partir de 1980 comenzaron a fabricarse los llamados láseres de pozo cuántico ( Quantum Well, QW). En ellos la zona activa corresponde a un material de gap más estrecho que el de las zonas adyacentes (zonas de confinamiento) y pequeño espesor. El confinamiento de los portadores en el QW da lugar a efectos de tipo cuántico, apareciendo subbandas de energía y limitando el movimiento de éstos en la dirección de crecimiento. Este tipo de láseres se ha impuesto en el decenio de los 90, de tal forma que en la actualidad casi todos los láseres comerciales son de QW. El confinamiento de los portadores y el menor volumen activo da lugar a una menor corriente umbral. Además es posible crecer un mayor número de materiales, aumentando el número de grados de libertad en el diseño y expandiendo el rango de longitudes de onda disponibles. Actualmente se está tendiendo a dos nuevos tipos de estructuras, a nivel investigación y desarrollo, que probablemente entrarán próximamente en su fase comercial: los láseres de punto cuántico ( Quantum Dot ), en los que se produce confinamiento de portadores en las tres direcciones del espacio, y los láseres de cascada cuántica ( Quantum Cascade ), en los que las transiciones se producen entre las subbandas de conducción de un pozo cuántico. En la figura puede observarse la variación del espectro de un láser FP por encima de umbral al aumentar la corriente inyectada (la escala es lineal). Puede apreciarse el fenómeno de salto de modo ( mode hopping ) longitudinal, debido fundamentalmente al autocalentamiento: al aumentar la temperatura interna el gap del semiconductor se estrecha y el máximo del espectro de ganancia se traslada a longitudes de onda mayores. Adicionalmente también se aprecia un ligero desplazamiento de cada uno de los modos a longitud de onda más alta al aumentar la corriente; es debido a la dependencia con la temperatura del índice de refracción

17 ANCHO DE LINEA LÁSERES MONOFRECUENCIA (SINGLE FREQUENCY) (1) Típico (DFB): 1-10 MHz (10 mw) 2 1 Rspon 4 P : factor de ensanchamiento de línea 1-5 Medidas del mismo Láser en diferentes Laboratorios!!!! LÁSER FABRY-PEROT (FP) SMSR = 3-20 db LÁSER MONOFRECUENCIA SMSR = db Side Mode Supression Ratio (SMSR) = 10 log (P 0 /P s ) Se denomina ancho de línea de emisión a la anchura a mitad de altura de cada uno de los modos longitudinales de láser FP o del único modo de un láser DFB o DBR. El ancho de línea está originado por fluctuaciones de la fase provenientes de diferentes fuentes de ruido, entre la que destaca el ruido de la emisión espontánea acoplada al modo láser. Su valor es muy diferente en función del dispositivo concreto y de su modo de operación, y suele expresarse en unidades de frecuencia, variando entre decenas de KHz y decenas de MHz. El ancho de línea disminuye al aumentar la potencia emitida. Su determinación experimental no es sencilla, y como ejemplo se adjunta un conjunto de medidas del ancho de línea del mismo láser DFB realizadas en laboratorios diferentes, en las que puede observarse una gran dispersión en los resultados. El valor típico del ancho de línea garantizado por los fabricantes en DFBs comerciales es de 1-10 MHz a 10 mw. Se denomina láseres monomodo, o monofrecuencia ( single frequency ), a aquellos que son capaces de emitir en un único modo longitudinal. Para comprender su funcionamiento debemos observar primero el espectro de emisión de un láser convencional de cavidad Fabry-Perot. Puede observarse la aparición de todo un conjunto de longitudes de onda de emisión. El parámetro que define la importancia relativa de los modos secundarios es el SMSR (Relación de Supresión de Modos Laterales), siendo su valor típico entre 3 y 20 db para un láser FP en continua. En conmutación el SMSR se degrada fuertemente. En general se define como monomodo a aquellos láseres cuya SMSR toma un valor en continua de 30 o 40 db. Además su longitud de onda de emisión es altamente estable frente a variaciones en la corriente de inyección

18 LÁSERES MONOFRECUENCIA (SINGLE FREQUENCY) (2) ESPECTRO LASER DFB: variación con T p-type + grating p-type + n-type active region DBR n-type DBR DFB: Distributed Feedback Laser - DBR: Distributed Bragg Reflector - Longitud de onda de Bragg: = m B / 2 n eff Seleccionan un único modo longitudinal de la cavidad Tecnología muy compleja Alto precio Existen dos tipos fundamentales de láseres monomodo: los láseres DFB (realimentación distribuida) y los láseres DBR (reflector de Bragg distribuido). En los láseres DFB se define una red de difracción ( grating ) a lo largo de toda la cavidad mediante una variación del índice de refracción de periodo. Las interferencias constructivas entre las ondas que se propagan hacia delante y hacia atrás en la cavidad dan lugar a que sólo aquellas frecuencias que cumplan la condición de Bragg puedan ser sostenidas. En los láseres DBR se sustituye uno o los dos espejos por un reflector de Bragg que da lugar a un máximo de reflexión a una única frecuencia y un mínimo cercano a cero a las demás. Ello da lugar a que el único modo que pueda sostenerse es aquél para el cual se produce la reflexión. Es importante resaltar que la condición de Bragg depende en ambos casos del índice de refracción. Por tanto cualquier variación del índice (portadores, temperatura...) dará lugar a variaciones en la longitud de onda de emisión. En la figura puede observarse el desplazamiento de la longitud de onda de emisión de un láser DFB al aumentar la temperatura, por el mismo motivo que el comentado anteriormente en un láser FP (variación del índice con la temperatura). Este fenómeno tiene como aplicación directa la selección de longitud de onda a partir del control de la temperatura ( temperature tuning ) 35 36

19 LÁSERES SINTONIZABLES LÁSERES DE EMISIÓN SUPERFICIAL Láser de cavidad externa Vertical Cavity Surface Emitting Lasers (VCSELs) Láser DBR multisección Pequeño volumen: menor ganancia, menor I th Alta densidad (producción) Posibilidad de arrays 2D Tecnología compleja Problemas térmicos Bajo precio! Existen diferentes modos de fabricar láseres sintonizables, de gran importancia en algunas aplicaciones tales como sistemas WDM En los láseres de cavidad externa se aplica un recubrimiento antireflexivo en una de las caras y la emisión se lleva a una red de difracción. Ésta solo reflejará una única longitud de onda que definirá el modo de oscilación láser. Girando la red de difracción es posible sintonizar la longitud de onda deseada. En los láseres DBR multisección se dispone de una o más zonas adicionales de bombeo. La variación en la corriente de la sección DBR (I 3 en la figura) varía la densidad de portadores y por tanto el índice efectivo y la longitud de onda de Bragg. La corriente I 2 proporciona un ajuste fino de la longitud de onda de emisión. El margen de sintonía en estos láseres corresponde al ancho de su espectro de ganancia, típicamente 50 nm. En los últimos años han aparecido ya en forma comercial los láseres de Cavidad Vertical y Emisión Superficial (VCSEL). En ellos la emisión tiene lugar en la dirección perpendicular al substrato y estructura de capas. La cavidad tiene una longitud muy inferiores a la de los láseres de emisión lateral (1-2 µm en lugar de µm), por lo que es necesario introducir espejos de muy alta reflectividad. Ello se consigue creciendo DBRs por encima y por debajo de la zona activa. El área ocupada por cada láser es muy inferior a la de un láser convencional, lo que abarata el coste de producción y permite la fabricación de arrays bidimensionales. El volumen también es pequeño, por lo que la corriente umbral es muy baja. Debido al pequeño tamaño de la cavidad, los modos longitudinales están muy separados en frecuencia, por lo que los VCSELs presentan funcionamiento monomodo longitudinal. Su mayor problema es el de disipación térmica, que da lugar a un alto calentamiento y limita la máxima potencia de emisión. Los posibles modos transversos y el control de la polarización del haz dan lugar también a problemas en mucha aplicaciones. Hasta ahora se han fabricado VCSELs emitiendo en longitudes de onda inferiores a 1 µm, siendo más compleja su fabricación para longitudes de onda mayores

20 DIAGRAMA DE RADIACIÓN (VCSEL) RESPUESTA DINÁMICA DEL LÁSER (GRAN SEÑAL) Tiempo de encendido: ns Oscilaciones de relajación: 1-20 GHz Anchos de banda (f 3dB ) > 1 GHz siempre > 25 GHz posible Los VCSELs presentan habitualmente problemas en cuanto al control de sus modos transversos. Debido a su simetría cilíndrica tienden a aparecer modos de tipo LP, similares a los de la fibra óptica a altos niveles de inyección. En la figura pueden observarse los patrones de campo cercano de los cuatro primeros modos. Al aplicar un escalón de corriente a un LD la respuesta es mucho más complicada que en un LED y puede verse esquematizada en la Figura. Durante un tiempo inicial, denominado tiempo de encendido, no se emite potencia. Posteriormente la potencia emitida aumenta muy abruptamente y presenta oscilaciones hasta que se relaja a su valor de equilibrio. El tiempo de encendido es el necesario para que el número de portadores en la zona activa llegue a su valor umbral. Este tiempo depende de la corriente inicial y de la corriente inyectada, siendo su valor típico entre 0,2 y 0,5 ns. Las oscilaciones de relajación tienen una frecuencia entre 1 y 20 GHz, dependiendo de la estructura del láser y del valor de la corriente. En décimas de ns se suele alcanzar el estado estacionario. El origen de estas oscilaciones es la interacción entre las poblaciones de portadores y fotones en el interior de la cavidad, que tienen un comportamiento resonante similar al de un circuito LCR. Si se evita el tiempo de encendido mediante prepolarización como veremos a continuación, la respuesta de casi todos los láseres es muy rápida, pudiendo llegar a anchos de banda entre 1 y 40 GHz. En aquellos láseres no diseñados para alta velocidad, el límite viene dado por los parásitos eléctricos del encapsulado

EMISORES y DETECTORES

EMISORES y DETECTORES EMISORES y DETECTORES Los dispositivos utilizados como emisores y detectores de radiación luminosa en los sistemas de comunicaciones ópticas son el láser de semiconductores (diodo láser) y el LED (diodo

Más detalles

Informe Trabajo de Exposición Fuentes Ópticas

Informe Trabajo de Exposición Fuentes Ópticas Universidad de Aquino Bolivia Facultad de Ciencias y Tecnología Ingeniería de Telecomunicaciones Sistemas de Transmisión por Fibra Óptica Informe Trabajo de Exposición Fuentes Ópticas Grupo n 2 Choque

Más detalles

Láser Semiconductor. La Excitación Bombeo es la corriente del diodo. Haz Laser. Reflector 99% Reflector 100% Zona N Medio activo

Láser Semiconductor. La Excitación Bombeo es la corriente del diodo. Haz Laser. Reflector 99% Reflector 100% Zona N Medio activo Láser Semiconductor Relacionando con la teoría de láser: Al medio activo lo provee la juntura P-N altamente contaminada. Esta juntura está formada por materiales N y P degenerados por su alta contaminación.

Más detalles

La Fibra Óptica. Carlos Eduardo Molina C. www.redtauros.com cemolina@redtauros.com

La Fibra Óptica. Carlos Eduardo Molina C. www.redtauros.com cemolina@redtauros.com Los sistemas clásicos de comunicación utilizan señales eléctricas soportadas por cable coaxial, radio, etc., según el tipo de aplicación. Estos sistemas presentan algunos inconvenientes que hacen necesario

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com TRANSMISORES Y RECEPTORES ÓPTICOS Contenido 1.- Sistema óptico básico. 2.- Diodo emisor de luz LED. 3.- Diodo láser. 4.- Modulación óptica. 5.- Detectores de luz. Objetivo.- Al finalizar, el lector será

Más detalles

Comunicaciones Ópticas. Tema 2 Fuentes de luz y el transmisor óptico

Comunicaciones Ópticas. Tema 2 Fuentes de luz y el transmisor óptico Comunicaciones Ópticas Tema 2 Fuentes de luz y el transmisor óptico Objetivos Conocer el papel del transmisor en un sistema de C.O. y su arquitectura Valorar el impacto de las prestaciones del transmisor

Más detalles

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. 2.1 INTRODUCCIÓN. Uno de los componentes clave en las comunicaciones ópticas es la fuente de luz monocromática. En sistemas de comunicaciones ópticas, las fuentes

Más detalles

B.5. El diodo de emisión de luz (LED)

B.5. El diodo de emisión de luz (LED) B.5. El diodo de emisión de luz (LED) B.5.1. Introducción Una importante componente del procesado óptico de la información es la generación de señales ópticas. Las señales ópticas se utilizan en comunicaciones

Más detalles

Caracterización de un diodo LED

Caracterización de un diodo LED Práctica 5 Caracterización de un diodo LED OBJETIVOS Observar el funcionamiento y conocer algunas propiedades del LED, como una de las fuentes utilizadas en sistemas de comunicaciones vía fibra óptica.

Más detalles

Dispositivos y Medios de Transmisión Óptica

Dispositivos y Medios de Transmisión Óptica Dispositivos y Medios de Transmisión Óptica Emisores ópticos: Tipos y parámetros característicos Autor: Jose Manuel Sánchez Pena Revisado: Carmen Vázquez García Colaborador: Pedro Contreras Grupo de Displays

Más detalles

Amplificación óptica y óptica integrada

Amplificación óptica y óptica integrada Capítulo 8 Amplificación óptica y óptica integrada En el transcurso de esta asignatura hemos visto el sistema de transmisión, sus características y el emisor y el receptor. Cuando una conexión tiene una

Más detalles

Caracterización de un diodo Láser

Caracterización de un diodo Láser Práctica 6 Caracterización de un diodo Láser OBJETIVO Obtener la curva característica del diodo Láser Observar el efecto de la temperatura sobre este dispositivo Obtener el patrón de irradiancia del ILD.

Más detalles

FIBRA ÓPTICA INTRODUCCIÓN

FIBRA ÓPTICA INTRODUCCIÓN FIBRA ÓPTICA 1 INTRODUCCIÓN Sin duda, todos los tipos de redes que emplean algún tipo de cableado, apuntan hacia la fibra óptica, en cualquiera de sus aplicaciones prácticas, llámese FDDI, ATM, o inclusive

Más detalles

Comunicaciones ópticas II. Colección de Problemas

Comunicaciones ópticas II. Colección de Problemas Comunicaciones ópticas II. Colección de Problemas ROCÍO J. PÉREZ DE PRADO 1 COLECCIÓN DE PROBLEMAS. COMUNICACIONES ÓPTICAS 2012-2013 Departamento Ingeniería de Telecomunicación. Área de Teoría de la Señal

Más detalles

Proporcionar a los participantes una visión general acerca de los principios fundamentales de la tecnología de fibras ópticas.

Proporcionar a los participantes una visión general acerca de los principios fundamentales de la tecnología de fibras ópticas. Objetivo general: Proporcionar a los participantes una visión general acerca de los principios fundamentales de la tecnología de fibras ópticas. Dirigido a: Ingenieros electrónicos o en telecomunicaciones

Más detalles

Guía docente 2006/2007

Guía docente 2006/2007 Guía docente 2006/2007 Plan 304 Ing.Tec.Telec Esp Sist Electrónicos Asignatura 44452 DISPOSITIVOS FOTONICOS Grupo 1 Presentación Programa Básico TEMA1.- NATURALEZA DE LA LUZ. PROPIEDADES. TEMA2.- PROPIEDADES

Más detalles

Fibras Ópticas. Capítulo 2. 2.1 Modos

Fibras Ópticas. Capítulo 2. 2.1 Modos Capítulo 2 Fibras Ópticas. El tema anterior se ha basado en el análisis de guía-ondas planas, es decir, con cambio de índice de refracción en una sola dirección. Ahora vamos a tratar con un medio de transmisión

Más detalles

Guión. Conceptos Básicos DE AMPLIFICACIÓN. Haz láser a amplificar

Guión. Conceptos Básicos DE AMPLIFICACIÓN. Haz láser a amplificar Guión Ganancia Óptica Tipos de Amplificadores EDFA Tierras raras Bombeo óptico y transiciones Espectro de ganancia y saturación Estructuras SOA Ruido, figura de ruido, S/N Raman Diseño en transparencia

Más detalles

2.3. PARAMETROS CARACTERISTICOS DE LAS FIBRAS OPTICAS

2.3. PARAMETROS CARACTERISTICOS DE LAS FIBRAS OPTICAS Figura 2.3. Angulo límite de entrada. El mismo fenómeno se repite en la siguiente reflexión si el índice de refracción en todo el núcleo de la fibra es el mismo. De este modo, el rayo llegará al final

Más detalles

TRANSMISORES Y RECEPTORES OPTICOS

TRANSMISORES Y RECEPTORES OPTICOS Capitulo IV TRANSMISORES Y RECEPTORES OPTICOS 1. INTRODUCCION En un sistema óptico, el transmisor consta de un generador de portadora y un modulador. Los pulsos de información modulan a la portadora que

Más detalles

12.1. Verdadero 12.2. Falso 13. La señal que transmite una fibra óptica puede degradarse debido a la dispersión 13.1. Verdadero 13.2. Falso 14.

12.1. Verdadero 12.2. Falso 13. La señal que transmite una fibra óptica puede degradarse debido a la dispersión 13.1. Verdadero 13.2. Falso 14. TEST 1. La luz es guiada en el interior de una fibra óptica mediante el fenómeno de la reflexión total interna. 1.1. Verdadero 1.2. Falso 2. El Dr. Kao, conocido como el padre de las fibras ópticas ha

Más detalles

Evolución n de los sistemas de

Evolución n de los sistemas de El año a o 1970 constituye el punto de inflexión para el desarrollo de los sistemas de comunicaciones ópticas ya que es a finales de este año a o cuando ya se dispone tanto de un medio de transmisión n

Más detalles

CAPÍTULO 1: DESCRIPCIÓN DE LED Y OLED

CAPÍTULO 1: DESCRIPCIÓN DE LED Y OLED CAPÍTULO 1: DESCRIPCIÓN DE LED Y OLED Este capítulo se enfocará en explicar el principio de funcionamiento y en presentar una descripción general de los diodos de emisión de luz (LED, por sus siglas en

Más detalles

Tema 3: Efecto fotovoltaico

Tema 3: Efecto fotovoltaico Tema 3: Efecto fotovoltaico Generación de carga 1 Generación de carga Generación térmica Generación óptica Coeficiente de absorción Dimensiones de la célula fotovoltaica en PC1D Densidad de impurezas en

Más detalles

1.3. Mediciones básicas de parámetros ópticos, acústicos y de calor. 1.3.1. Parámetros. 1.3.2. Sensores Ópticos.

1.3. Mediciones básicas de parámetros ópticos, acústicos y de calor. 1.3.1. Parámetros. 1.3.2. Sensores Ópticos. 1.3. Mediciones básicas de parámetros ópticos, acústicos y de calor. 1.3.1. Parámetros. 1.3.2. Sensores Ópticos. En los sensores optoelectrónicos, los componentes fotoeléctricos emisores se utilizan para

Más detalles

Capítulo 2. Sistemas de comunicaciones ópticas.

Capítulo 2. Sistemas de comunicaciones ópticas. Capítulo 2 Sistemas de comunicaciones ópticas. 2.1 Introducción. En este capítulo se describen los diferentes elementos que conforman un sistema de transmisión óptica, ya que son elementos ópticos que

Más detalles

FUNDAMENTOS DE FIBRA ÓPTICA

FUNDAMENTOS DE FIBRA ÓPTICA FUNDAMENTOS DE FIBRA ÓPTICA Composición Una fibra óptica consiste en dos regiones concéntricas. La región interna es un filamento transparente llamado núcleo, cuyo diámetro suele estar comprendido entre

Más detalles

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRICIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS Prof. Rafael Martín Lamaison 5 de Marzo de 2004 COTEIDO Introducción: conceptos básicos Átomos Electrones

Más detalles

Física de Semiconductores Curso 2007

Física de Semiconductores Curso 2007 Física de Semiconductores Curso 007 Ing. Electrónica- P00 Ing. Electrónica/Electricista P88 3er. Año, V cuat. Trabajo Práctico Nro. 3: Bloque Sólidos: Semiconductores intrínsecos Objetivos: Estudiar las

Más detalles

Receptores. Receptores

Receptores. Receptores 1 Universidad Politécnica Madrid ETSI TELECOMUNICACIT ELECOMUNICACIÓN Departamento Tecnología Fotónica Comunicaciones Ópticas Receptores José M. Otón Abril 2005 Receptores Esquema general Materiales para

Más detalles

Preparado por M.Sc. Luis Diego Marín Naranjo Taller en sistemas DWDM 1

Preparado por M.Sc. Luis Diego Marín Naranjo Taller en sistemas DWDM 1 Preparado por M.Sc. Luis Diego Marín Naranjo Taller en sistemas DWDM 1 1 Introducción En este taller de varias prácticas experimentales, se analiza la aplicación de la fotónica en fibra óptica, con un

Más detalles

Y ACONDICIONADORES TEMA 5 (2) SENSORES OPTOELECTRÓNICOS

Y ACONDICIONADORES TEMA 5 (2) SENSORES OPTOELECTRÓNICOS SENSORES Y ACONDICIONADORES TEMA 5 (2) SENSORES OPTOELECTRÓNICOS (Fibras ópticas) Profesores: Enrique Mandado Pérez Antonio Murillo Roldán Tema 5-1 FIBRA ÓPTICA [MAND 09 pag 525] [PERE 04 pag. 451] La

Más detalles

PROYECTO FIN DE CARRERA

PROYECTO FIN DE CARRERA UNIVERSIDAD AUTÓNOMA DE MADRID ESCUELA POLITÉCNICA SUPERIOR PROYECTO FIN DE CARRERA Evaluación de sistemas de comunicaciones ópticas y de radio sobre fibra a través de la caracterización de sus diferentes

Más detalles

CONCEPTOS FUNDAMENTALES DE COMUNICACIONES ÓPTICAS

CONCEPTOS FUNDAMENTALES DE COMUNICACIONES ÓPTICAS Manual LCO Conceptos Fundamentales de Comunicaciones Ópticas CONCEPTOS FUNDAMENTALES DE COMUNICACIONES ÓPTICAS Aunque los intentos de transmitir información por medio de la luz se remontan a la antigüedad,

Más detalles

Test (1,5 puntos) Marque la respuesta CORRECTA. Respuesta correcta = +0,15 Respuesta en blanco = +0,0 Respuesta errónea = 0,15.

Test (1,5 puntos) Marque la respuesta CORRECTA. Respuesta correcta = +0,15 Respuesta en blanco = +0,0 Respuesta errónea = 0,15. Universidad de Alcalá Escuela Politécnica Superior Departamento de Teoría de la Señal y Comunicaciones Sistemas de Comunicación Apellidos: Nombre: DNI: Fecha Estelar Parte 1: Test y Cuestiones Para aprobar

Más detalles

III. Práctica 3: Tiempos de Respuesta de los Componentes de un Enlace

III. Práctica 3: Tiempos de Respuesta de los Componentes de un Enlace III. Práctica 3: Tiempos de Respuesta de los Componentes de un Enlace En esta Práctica se medirá el ancho de banda de un sistema óptico. Se estudiarán diferentes enlaces variando los elementos que lo componen

Más detalles

Transmisión de una señal por fibra óptica

Transmisión de una señal por fibra óptica PRÁCTICA 6 Transmisión de una señal por fibra óptica 1º INTRODUCCIÓN. En esta práctica haremos uso diversos tipos de fibra óptica para transmitir luz entre un fotoemisor y un fotodetector. Con este fin

Más detalles

OTRAS APLICACIONES CON FIBRAS ÓPTICAS

OTRAS APLICACIONES CON FIBRAS ÓPTICAS APLICACIONES El campo de aplicación de las fibras ópticas es muy amplio y aumenta día a día. Algunas de las aplicaciones más importantes son: - Telecomunicaciones: En este apartado cabe incluir la red

Más detalles

ILUMINACION DE ESTADO SÓLIDO LED

ILUMINACION DE ESTADO SÓLIDO LED FERNANDO GARRIDO ALVAREZ FERNANDO GARRIDO ALVAREZ INGENIERO INDUSTRIAL INGENIERO INDUSTRIAL CONSULTOR LUMINOTECNICO CONSULTOR LUMINOTECNICO ILUMINACION DE ESTADO SÓLIDO LED UNA APROXIMACION A SU CONOCIMIENTO

Más detalles

4. EL OTDR y LA FIBRA ÓPTICA. La demanda de fibra óptica en el mundo esta creciendo considerablemente, las redes

4. EL OTDR y LA FIBRA ÓPTICA. La demanda de fibra óptica en el mundo esta creciendo considerablemente, las redes 4. EL OTDR y LA FIBRA ÓPTICA La demanda de fibra óptica en el mundo esta creciendo considerablemente, las redes cada vez son mayores, más confiables y más potentes, lo que aumenta el número de operadores,

Más detalles

Determine literal y razonadamente:

Determine literal y razonadamente: Problemas propuestos - Comunicaciones Ópticas - Curso 2008/2009 - Diseño y Sistemas 1. Se tiene un sistema de comunicaciones por fibra óptica que utiliza tres regeneradores intermedios. Se sabe que los

Más detalles

Elementos de una Red DWDM Capítulo 3 Pag. 1

Elementos de una Red DWDM Capítulo 3 Pag. 1 Elementos de una Red DWDM Capítulo 3 Pag. 1 Cada uno de estos componentes incluye diferentes tecnologías ópticas específica a cada uno. Elementos de una Red DWDM Capítulo 3 Pag. 2 Elementos de una Red

Más detalles

DPSS DIODE-PUMPED SOLID-STATE LASER GONZALEZ-BARBA DAVID UGALDE-ONTIVEROS JORGE ALBERTO

DPSS DIODE-PUMPED SOLID-STATE LASER GONZALEZ-BARBA DAVID UGALDE-ONTIVEROS JORGE ALBERTO DPSS DIODE-PUMPED SOLID-STATE LASER GONZALEZ-BARBA DAVID UGALDE-ONTIVEROS JORGE ALBERTO Agenda que atenderemos Breve Introducción Qué son los DPSS? Operación del DPSS Por qué el uso del diodo láser? Generación

Más detalles

Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos

Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos II Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos En esta práctica se estudiará el comportamiento dinámico de los emisores y receptores ópticos y el comportamiento de la fibra

Más detalles

VII. Práctica E1: Analizador de Espectros Ópticos

VII. Práctica E1: Analizador de Espectros Ópticos VII. Práctica E1: Analizador de Espectros Ópticos VII.1. INTRODUCCIÓN AL ANALIZADOR DE ESPECTROS ÓPTICOS El analizador de espectros óptico (Optical Spectrum Analyzer, OSA) se utiliza para realizar medidas

Más detalles

Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica

Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE 0502 Proyecto Eléctrico Desarrollo de un sistema CWDM comunicador de voz por fibra óptica multimodo Por: Francisco Rodríguez

Más detalles

FIBRA ÓPTICA Perfil de Indice de Refracción

FIBRA ÓPTICA Perfil de Indice de Refracción FIBRA ÓPTICA Perfil de Indice de Refracción Fibra Optica Fibra Optica Ventajas de la tecnología de la fibra óptica Baja Atenuación Las fibras ópticas son el medio físico con menor atenuación. Por lo tanto

Más detalles

El sistema de suministro de potencia de un vehículo solar

El sistema de suministro de potencia de un vehículo solar Page 1 of 6 El sistema de suministro de potencia de un vehículo solar El sistema de suministro de potencia de un vehículo solar consistente en un conjunto de células fotovoltaicas (panel solar), un grupo

Más detalles

Qué causa la distorsión de los pulsos de entrada?

Qué causa la distorsión de los pulsos de entrada? 250 Distorsión en Fibras Opticas: En todas las fibras ópticas ocurre la distorsión de los pulsos de entrada. Esto es, los pulsos de entrada se ensanchan al pasar a través de la fibra, llegando al punto

Más detalles

Principios básicos de Absorciometría

Principios básicos de Absorciometría Principios básicos de Absorciometría Prof. Dr. Luis Salazar Depto. de Ciencias Básicas UFRO 2004 NATURALEZA DE LA LUZ MECÁNICA CUÁNTICA Isaac Newton (1643-1727) Niels Bohr (1885-1962) Validación del modelo

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica Introducción Conseguir que la tensión de un circuito en la salida sea fija es uno de los objetivos más importantes para que un circuito funcione correctamente. Para lograrlo, se

Más detalles

Estudio y caracterización de células solares fotovoltaicas

Estudio y caracterización de células solares fotovoltaicas Estudio y caracterización de células solares fotovoltaicas Esta práctica consta de tres partes: en la primera analizaremos varias células fotovoltaicas (monocristalina y policristalina), obteniendo su

Más detalles

SISTEMATIZACIÓN DE UN EXPERIMENTO DE DIFRACCIÓN DE LA LUZ

SISTEMATIZACIÓN DE UN EXPERIMENTO DE DIFRACCIÓN DE LA LUZ SISTEMATIZACIÓN DE UN EXPERIMENTO DE DIFRACCIÓN DE LA LUZ A. Cuenca y A. Pulzara Universidad Nacional de Colombia, Sede Manizales, A. A. 127 e-mail: apulzara@nevado.manizales.unal.edu.co. RESUMEN Para

Más detalles

Práctica B.1: Aplicación de dispositivos detectores de luz: fotorresistencia, fotodiodo y fototransistor.

Práctica B.1: Aplicación de dispositivos detectores de luz: fotorresistencia, fotodiodo y fototransistor. Práctica B.1: Aplicación de dispositivos detectores de luz: fotorresistencia, fotodiodo y fototransistor. Material Fotorresistencia (luz visible) NORP12. Leds rojo y verde. Fotodiodo (luz visible) BPW21

Más detalles

UNIVERSIDAD DE ZARAGOZA DEPARTAMENTO DE FÍSICA APLICADA CONSTRUCCIÓN Y ESTUDIO EXPERIMENTAL DE UN LÁSER SINTONIZABLE DE GUÍA

UNIVERSIDAD DE ZARAGOZA DEPARTAMENTO DE FÍSICA APLICADA CONSTRUCCIÓN Y ESTUDIO EXPERIMENTAL DE UN LÁSER SINTONIZABLE DE GUÍA UNIVERSIDAD DE ZARAGOZA DEPARTAMENTO DE FÍSICA APLICADA CONSTRUCCIÓN Y ESTUDIO EXPERIMENTAL DE UN LÁSER SINTONIZABLE DE GUÍA Por Jesús Cortés Rodicio Dirigido por Miguel Ángel Rebolledo 2003-2004 ÍNDICE

Más detalles

empleando láminas planoparalelas

empleando láminas planoparalelas Trabajo Académicamente Dirigido Curso 2003-2004 Láseres de fibra dopada con erbio con emisión multilínea empleando láminas planoparalelas como filtro Realizado por Francisco Javier Salgado Remacha Dirigido

Más detalles

2.1 Introducción. 2.2 El transistor bipolar en continua

2.1 Introducción. 2.2 El transistor bipolar en continua l transistor bipolar como amplificador 2.1 Introducción Los transistores de unión bipolar o transistores bipolares (ipolar Junction Transistor, JT) son unos dispositivos activos de tres terminales que

Más detalles

A.1. El diodo. Caracterización del diodo

A.1. El diodo. Caracterización del diodo A.1. El diodo A.1.1. Introducción El diodo es la pieza básica en electrónica de estado sólido y está basado en una sola unión p-n. A partir de combinaciones de más capas p o n podremos obtener los demás

Más detalles

B.8. Dispositivos para sistemas de comunicaciones ópticas

B.8. Dispositivos para sistemas de comunicaciones ópticas B.8. Dispositivos para sistemas de comunicaciones ópticas B.8.1. Introducción Hemos visto en los capítulos anteriores todas las familias de dispositivos que conforman los componentes optoelectrónicos.

Más detalles

FIBRA OPTICA ESCALONADA

FIBRA OPTICA ESCALONADA FIBRA OPTICA ESCALONADA En este tipo de fibra óptica multimodo viajan varios rayos ópticos simultáneamente. Estos se reflejan con diferentes ángulos sobre las paredes del núcleo, por lo que recorren diferentes

Más detalles

Av. Albarellos 2662 1º piso CABA - Argentina (C1419FSQ)

Av. Albarellos 2662 1º piso CABA - Argentina (C1419FSQ) FIBRA OPTICA Historia y evolución de un excelente medio de transmisión de datos. INTRODUCCIÓN Para navegar por la red mundial de redes, Internet, no sólo se necesitan un computador, un módem y algunos

Más detalles

CELDAS SOLARES INTRODUCCION

CELDAS SOLARES INTRODUCCION CELDAS SOLARES INTRODUCCION La energía eléctrica no esta presente en la naturaleza como fuente de energía primaria y, en consecuencia, sólo podemos disponer de ella mediante la transformación de alguna

Más detalles

Revista Facultad de Ingeniería ISSN: 0717-1072 facing@uta.cl Universidad de Tarapacá Chile

Revista Facultad de Ingeniería ISSN: 0717-1072 facing@uta.cl Universidad de Tarapacá Chile Revista Facultad de Ingeniería ISSN: 0717-1072 facing@uta.cl Universidad de Tarapacá Chile Zamorano L., Mario; Estrada C., Sergio Simulación de un enlace digital FDM/WDM por fibra óptica Revista Facultad

Más detalles

GENERALIDADES DE OPTICA AVANZADA.

GENERALIDADES DE OPTICA AVANZADA. TEMARIO Curso: GENERALIDADES DE OPTICA AVANZADA. PREPARADO POR: ROGER LEON Octubre 2005 INTRODUCCION La evolución de las comunicaciones puede analizarse según la historia de acuerdo a cada una de las generaciones

Más detalles

BOMBEO ÓPTICO COHERENTE INTRODUCCIÓN A LOS LÁSERES I

BOMBEO ÓPTICO COHERENTE INTRODUCCIÓN A LOS LÁSERES I BOMBEO ÓPTICO COHERENTE INTRODUCCIÓN A LOS LÁSERES I INTRODUCCIÓN Elaborado por: EDGAR DEL HIERRO G. El láser tiene 3 características: la coherencia (misma longitud de onda), la amplitud y la fase. Las

Más detalles

Curso sobre Controladores Lógicos Programables (PLC). Redes Digitales de Datos en Sistemas de Control de Procesos.

Curso sobre Controladores Lógicos Programables (PLC). Redes Digitales de Datos en Sistemas de Control de Procesos. Curso sobre Controladores Lógicos Programables (PLC). Por Ing. Norberto Molinari. Entrega Nº 28. Capitulo 5. Redes Digitales de Datos en Sistemas de Control de Procesos. Continuación... 5.13.4 Pérdidas

Más detalles

Medidas de efecto Hall en una muestra de germanio

Medidas de efecto Hall en una muestra de germanio PRÁCTICA 2 Medidas de efecto Hall en una muestra de germanio Temas tratados: semiconductores, teoría de bandas, banda de energía prohibida (band gap), fuerza de Lorentz, efecto Hall, concentración y tipo

Más detalles

Capacitando a los ciudadan@s, para un mejor acceso, uso, y aplicación de las TIC S!!!

Capacitando a los ciudadan@s, para un mejor acceso, uso, y aplicación de las TIC S!!! Información general del curso: LAS FIBRAS ÓPTICAS Y SUS TECNOLOGÍAS Objetivo general: Dirigido a: Incluye: Sinopsis de contenido: Proporcionar a los participantes una visión general acerca de los principios

Más detalles

Dispositivos de fibra óptica: fabricación y aplicaciones

Dispositivos de fibra óptica: fabricación y aplicaciones Dispositivos de fibra óptica: fabricación y aplicaciones Miguel V. Andrés Laboratorio de Fibras Ópticas de la Universidad de Valencia Departamento de Física Aplicada ICMUV miguel.andres@uv.es Objetivo

Más detalles

ENTRENADOR DE COMUNICACIONES ÓPTICAS, FIBRAS ÓPTICAS Y LÁSER MANUAL DE PRÁCTICAS EF-970B-E - 0 MI1001 -

ENTRENADOR DE COMUNICACIONES ÓPTICAS, FIBRAS ÓPTICAS Y LÁSER MANUAL DE PRÁCTICAS EF-970B-E - 0 MI1001 - ENTRENADOR DE COMUNICACIONES ÓPTICAS, FIBRAS ÓPTICAS Y LÁSER MANUAL DE PRÁCTICAS EF-970B-E - 0 MI1001 - I N D I C E 0. INTRODUCCIÓN...1 PRÁCTICA 1...3 1. MEDIDA DE LA POTENCIA ÓPTICA...3 1.1 Objetivos...3

Más detalles

TECNOLOGÍA DE FIBRA ÓPTICA Y SU APLICACIÓN A LA MONITORIZACIÓN DE ESTRUCTURAS CIVILES

TECNOLOGÍA DE FIBRA ÓPTICA Y SU APLICACIÓN A LA MONITORIZACIÓN DE ESTRUCTURAS CIVILES DE FIBRA ÓPTICA Y SU APLICACIÓN A LA MONITORIZACIÓN DE ESTRUCTURAS CIVILES Introducción a la Fibra Óptica FIBRA ÓPTICA Y SU ESTRUCTURA La fibra está compuesta de un núcleo, por donde se propaga la luz,

Más detalles

FUNDAMENTOS FÍSICOS DE LA TECNOLOGÍA LÁSER

FUNDAMENTOS FÍSICOS DE LA TECNOLOGÍA LÁSER JOSÉ LUIS MOLPECERES CRIADO. Licenciado en Ciencias Físicas FUNDAMENTOS FÍSICOS DE LA TECNOLOGÍA LÁSER INTRODUCCION. El láser, luz de características tremendamente peculiares, ha sido definido tradicionalmente

Más detalles

Efectos del ruido en las comunicaciones electrónicas. Alfonso Cuesta Hernández

Efectos del ruido en las comunicaciones electrónicas. Alfonso Cuesta Hernández Efectos del ruido en las comunicaciones electrónicas Alfonso Cuesta Hernández 17 de abril de 2001 2 www.ponchocuesta.50megs.com En general, el ruido eléctrico se define como cualquier energía eléctrica

Más detalles

El transistor de potencia

El transistor de potencia A 3.2 P A R T A D O El transistor de potencia 32 A Introducción a los transistores de potencia 3.2 A. Introducción a los transistores de potencia El funcionamiento y utilización de los transistores de

Más detalles

CAPÍTULO I. Propagación de RF

CAPÍTULO I. Propagación de RF CAPÍTULO I Propagación de RF 1.1 Características de la propagación de RF. Las ondas de radio son ondas electromagnéticas que poseen una componente eléctrica y una componente magnética y como tales, están

Más detalles

Colección Problemas. Dispositivos Electrónicos y Fotónicos II. R. Alcubilla A. Rodríguez

Colección Problemas. Dispositivos Electrónicos y Fotónicos II. R. Alcubilla A. Rodríguez Colección Problemas Dispositivos Electrónicos y Fotónicos II R. Alcubilla A. Rodríguez 1. En un MESFET defina, explicando su sentido físico y obteniendo expresiones que permitan calcularlos, los siguientes

Más detalles

2. Qué valores de intensidad y voltaje son los adecuados para un perfecto funcionamiento de los diodos LED?

2. Qué valores de intensidad y voltaje son los adecuados para un perfecto funcionamiento de los diodos LED? EL DIODO LED Un led 1 (de la sigla inglesa LED: Light-Emitting Diode: "diodo emisor de luz", también "diodo luminoso") es un diodo semiconductor que emite luz. Se usan como indicadores en muchos dispositivos,

Más detalles

Integrantes: Luis Valero Antoni Montiel Kelwin Contreras Gabriel Jiménez Jefferson Saavedra

Integrantes: Luis Valero Antoni Montiel Kelwin Contreras Gabriel Jiménez Jefferson Saavedra Integrantes: Luis Valero Antoni Montiel Kelwin Contreras Gabriel Jiménez Jefferson Saavedra Lógica de resistencia transistor La lógica de resistencia-transistor RTL es una clase de circuitos digitales

Más detalles

Generador ultrasónico. Esquema general

Generador ultrasónico. Esquema general Ultrasonidos Los ultrasonidos son aquellas ondas sonoras cuya frecuencia es superior al margen de audición humano, es decir, 20 KHz aproximadamente. Las frecuencias utilizadas en la práctica pueden llegar,

Más detalles

SOMI XVIII Congreso de Instrumentación Ingeniería Óptica JRA1879

SOMI XVIII Congreso de Instrumentación Ingeniería Óptica JRA1879 SENSOR DE TEMPERATURA UTILIZANDO FIBRA ÓPTICA BIRREFRINGENTE J. Rodríguez-Asomoza, D. Báez-López, A. Valera-Yep. Universidad de las Américas, Puebla (UDLA-P), Departamento de Ingeniería Electrónica. jrasom@mail.udlap.mx,

Más detalles

Tema 6: Ondas. periodicidad temporal: F( x, t ) = F( x, t + T ) tiempo. Onda: Perturbación espacial y/o temporal de una propiedad de un sistema

Tema 6: Ondas. periodicidad temporal: F( x, t ) = F( x, t + T ) tiempo. Onda: Perturbación espacial y/o temporal de una propiedad de un sistema Tema 6: Ondas Onda: Perturbación espacial y/o temporal de una propiedad de un sistema Propiedad del sistema velocidad de propagación Tiempo 1 Tiempo 2 Tiempo 3 Posición espacial Onda periódica: El valor

Más detalles

Preguntas a responder

Preguntas a responder Propiedades ópticas Preguntas a responder Qué pasa cuando la luz brilla sobre los materiales? Por qué los materiales tienen colores característicos? Por qué algunos materiales son transparentes y otros

Más detalles

FIBRAS OPTICAS INTRODUCCIÓN

FIBRAS OPTICAS INTRODUCCIÓN FIBRAS OPTICAS INTRODUCCIÓN Los sistemas clásicos de comunicación utilizan señales eléctricas soportadas por cable coaxial, radio, etc., según el tipo de aplicación. Estos sistemas presentan algunos inconvenientes

Más detalles

Fibras y cables comerciales

Fibras y cables comerciales Capítulo 5 Fibras y cables comerciales 5.1 Fibras En este capítulo intentaremos hacer un sumario de los tipos de fibras comerciales con los que nos podemos encontrar. Las características de cada fibra

Más detalles

FIBRAS ÓPTICAS. Cátedra de OPTOELECTRÓNICA Universidad Nacional de Tucumán

FIBRAS ÓPTICAS. Cátedra de OPTOELECTRÓNICA Universidad Nacional de Tucumán FIBRAS ÓPTICAS PRINCIPIO DE FUNCIONAMIENTO Cátedra de OPTOELECTRÓNICA Universidad Nacional de Tucumán Lafibra ópticaes unmedio de transmisiónempleado habitualmente enredes de datos; unhilomuy fino de material

Más detalles

Curso sobre Controladores Lógicos Programables (PLC). Redes Digitales de Datos en Sistemas de Control de Procesos.

Curso sobre Controladores Lógicos Programables (PLC). Redes Digitales de Datos en Sistemas de Control de Procesos. Curso sobre Controladores Lógicos Programables (PLC). Por Ing. Norberto Molinari. Entrega Nº 28. Capitulo 5. Redes Digitales de Datos en Sistemas de Control de Procesos. 5.13.1 Acoplamiento mecánico Para

Más detalles

EL LASER: TEORIA Y APLICACIONES

EL LASER: TEORIA Y APLICACIONES EL LASER: TEORIA Y APLICACIONES (SEGUNDA PARTE) Resumen de las Charlas dadas por el profesor de la E.T.S. I.T. D. José Antonio Martín Pereda a la Rama del I. E. E. E. de Madrid CHARLA OSCILADORES III LASER

Más detalles

En este capitulo de describe el arreglo experimental y el análisis de los resultados obtenidos de las pruebas realizadas a la guía de onda tipo ARROW.

En este capitulo de describe el arreglo experimental y el análisis de los resultados obtenidos de las pruebas realizadas a la guía de onda tipo ARROW. III.- SISTEMA DE ALINEACIÒN DE UNA GUIA DE ONDA En este capitulo de describe el arreglo experimental y el análisis de los resultados obtenidos de las pruebas realizadas a la guía de onda tipo ARROW. 1.-

Más detalles

TEMA 2. Dispositivos y modelos MOS.

TEMA 2. Dispositivos y modelos MOS. Ingeniería Técnica de Telecomunicación SS. EE. Curso 3º Microelectrónica I 20110/11 Resumen TEMA 2. Dispositivos y modelos MOS. 2.1 MOSFETs para VLSI: diseño físico-geométrico. Estructura del transistor

Más detalles

Medición del Band-Gap del Silicio, mediante el estudio de la dependencia de su resistividad con la temperatura.

Medición del Band-Gap del Silicio, mediante el estudio de la dependencia de su resistividad con la temperatura. Medición del Band-Gap del Silicio, mediante el estudio de la dependencia de su resistividad con la temperatura. Francisco Di Lorenzo y Alejandro Lazarte Laboratorio 5-1er Cuatrimestre del 2000 En el presente

Más detalles

Ampliación de Prácticas de Optoelectrónica CUESTIONARIOS AMPLIACIÓN DE PRÁCTICAS DE OPTOELECTRÓNICA PRÁCTICAS DE LABORATORIO

Ampliación de Prácticas de Optoelectrónica CUESTIONARIOS AMPLIACIÓN DE PRÁCTICAS DE OPTOELECTRÓNICA PRÁCTICAS DE LABORATORIO CUESTIONARIOS AMPLIACIÓN DE PRÁCTICAS DE OPTOELECTRÓNICA PRÁCTICAS DE LABORATORIO Grupo Orión. Universidad de Extremadura 1 ÍNDICE CUESTIONARIO DE INTRODUCCIÓN A LAS TECNOLOGÍAS CON FIBRAS ÓPTICAS 3 CUESTIONARIO

Más detalles

Universidad de Puerto Rico En Humacao Departamento de Física y Electrónica Programa de Bachillerato en Física Aplicada a la Electrónica

Universidad de Puerto Rico En Humacao Departamento de Física y Electrónica Programa de Bachillerato en Física Aplicada a la Electrónica Universidad de Puerto Rico En Humacao Departamento de Física y Electrónica Programa de Bachillerato en Física Aplicada a la Electrónica A. Título: FÍSICA DE DISPOSITIVOS SEMICONDUCTORES B. Codificación

Más detalles

Av. Albarellos 2662 1º piso CABA - Argentina (C1419FSQ)

Av. Albarellos 2662 1º piso CABA - Argentina (C1419FSQ) ELECTROACUSTICA Electroacústica básica y refuerzo sonoro. Qué es el sonido? El sonido es una variación de la presión de aire con el tiempo, que se propaga en un medio elástico como el aire. Comparado a

Más detalles

α g umbral = 2, 2 10 4 cm 1 n umbral = 1, 6 10 9 átomos n Ne = 4, 8 10 α g umbral = λ2 mn Amn n umbral = 2π 2 ν 1/2 1

α g umbral = 2, 2 10 4 cm 1 n umbral = 1, 6 10 9 átomos n Ne = 4, 8 10 α g umbral = λ2 mn Amn n umbral = 2π 2 ν 1/2 1 C A P Í T U L O 5 Láser 5.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. Calcule el coeficiente de ganancia y la diferencia de población umbrales para el láser de He-Ne a 400 K. La transición láser se

Más detalles

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF INTRODUCCION TEORICA: El análisis de una señal en el modo temporal con ayuda de un osciloscopio permite conocer parte de la información contenida

Más detalles

Tema 2. Sistemas de Comunicaciones Ópticas

Tema 2. Sistemas de Comunicaciones Ópticas Tema. Sistemas de Comunicaciones Ópticas 1 Refracción y reflexión Índice de refracción n = c = ε v r p Luz incidente con ángulo θ 1 se refleja y se refracta Medio 1: n 1 Medio : n θ C θ 1 θ 1 Si n 1 >n

Más detalles

Tema 3: Semiconductores

Tema 3: Semiconductores Tema 3: Semiconductores 3.1 Semiconductores intrínsecos y dopados. Los semiconductores son sustancias cuya conductividad oscila entre 10-3 y 10 3 Siemen/metro y cuyo valor varia bastante con la temperatura.

Más detalles

http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html

http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html PRACTICA NO. 1 CALIBRACION DE TRASNMISORES http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html Transductor de presión de silicio difundido Cuando no hay presión,

Más detalles

UNA APROXIMACION EXPERIMENTAL PARA EL ESTUDIO DE LA RADIACIÓN TERMICA DE LOS SÓLIDOS

UNA APROXIMACION EXPERIMENTAL PARA EL ESTUDIO DE LA RADIACIÓN TERMICA DE LOS SÓLIDOS UNA APROXIMACION EXPERIMENTAL PARA EL ESTUDIO DE LA RADIACIÓN TERMICA DE LOS SÓLIDOS Diana Reina, Frank Mendoza, Nelson Forero 1 Universidad Distrital Francisco José de Caldas RESUMEN Se ha diseñado y

Más detalles

FIBRA OPTICA PARTE - I

FIBRA OPTICA PARTE - I FIBRA OPTICA PARTE - I Ing. Daniel Rojas Registro CIP N 85322 Experiencia profesional: Networking, Radiofrecuencia, Espectro Radioeléctrico y Administración Pública MTC Situación Actual: Encargado de Radiofrecuencia

Más detalles