EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)"

Transcripción

1 EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars.

2 El méodo PERT se basa en la descomposcón ssemáca del proyeco en una sere de areas parcales o acvdades con el objevo de ncorporar raconaldad en la planfcacón, gesón, segumeno y conrol de dchas acvdades durane la vda del msmo. Defncones: cvdad: : ejecucón de una area que para su realzacón requere empo y recursos. conecmeno o suceso: : momeno de la vda del proyeco que por su relevanca merece la pena desacarse. ndca el prncpo o el fn de una acvdad o un conjuno de acvdades y no consume n empo n recursos.

3 Grafo:conjuno de punos y los arcos que los relaconan conendos en un plano. Puno relaconado con un puno j medane un arco a j Grafo elemenal PERT: el suceso esá relaconado con el suceso j medane la acvdad a j a j j La acvdad a j ene un nco,, un fn j y una duracón j El arco ene sendo desde hasa j

4 TIPOS DE CTIVIDDES: LINEL 1 B 3 CONVERGENTE DIVERGENTE 1 3 C B DIV. - CONV. B D E 4 1 CONV.-DIV C F B 4 1 B C C D

5 CTIVIDDES FICTICIS no consumen n empo n recursos, pero permen reflejar formalmene las relacones exsenes enre las dferenes acvdades que consuyen el proyeco y ofrecen la posbldad de realzar grafos con recas. *cvdades en paralelo m k j l *cvdad y B preceden a C precede a D B C D B m l k f f 1 f D j (f 1 y f son acvdades fccas represenadas con líneas de punos). C

6 Para consrur un GRFO PERT de un proyeco compleo: 1 Descomponer el proyeco en acvdades e denfcar el suceso nco y el suceso fn. Esablecer prelacones: acvdades que enen que ser necesaramene realzadas con anerordad a oras. 3 Organzar la nformacón en un cuadro de prelacones. 4 sgnar empos a las acvdades.

7 1.1. Suceso nco: : represena el prncpo de una o varas acvdades y no represena el fnal de nnguna. 1.. Suceso fn: : represena el fnal de una o varas acvdades y no represena el comenzo de nnguna.

8 Organzar la nformacón: PRECEDE suceso nco B C D,E F Sucesos y acvdades que preceden. CTIVIDDES B C D E F G Se nombran odas la acvdades del proyeco.

9 sgnar empos a las acvdades La duracón de las acvdades depende de crcunsancas aleaoras y probablíscas. Empírcamene, se demuesra que las acvdades de los proyecos se ajusan a una dsrbucón probablísca de po BET.

10 Dsrbucón BET cuya funcón de densdad es: f α ( ) = K( a) ( b) ϕ = varable aleaora, nervalo cerrado [ a,b] probabldad f ( ) = 0; a a m b f ( ) Donde: = 0; b K= consane α yϕ = parámeros

11 DISTRIBUCIÓN BET a + ( α + ϕ) m + b μ( meda) = α + ϕ + ( b a) ( α + 1)( ϕ + 1) σ (varanza) = ( α + ϕ + ) ( α + ϕ + 3) α = + μ = a + 4m + b 6 ϕ = α +ϕ =4 σ = σ = ( b a) (3 + )(3 ) ( b a) (9 ) ( b a) = = 6 (7) b a 6

12 Tempo efecvo, medo o PERT de una acvdad a + 4m + b = j 6 Esmacón opmsa (a): : empo mínmo de ejecucón de una acvdad cuando odas las varables que nervenen se desarrollan excepconalmene. Probabldad Esmacón pesmsa (b): : empo de ejecucón cuando concurren crcunsancas desfavorables. Probabldad Esmacón más probable (m): : cuando el empo de ejecucón no sufre n crcunsancas posvas n negavas.

13 EL LGORITMO PERT Una vez que se ha realzado: 1.- el grafo refleja las prelacones exsenes enre las dferenes acvdades..- La asgnacón de los empos de ejecucón a cada acvdad. Se desarrolla un proceso de cálculo en el que se deermnan los empos de los sucesos.

14 Tempo early j de un suceso cceder plenamene a un suceso requere la fnalzacón de odas las acvdades que convergen en él. El empo early de un suceso es el empo más emprano, mínmo y sufcene para alcanzarlo plenamene (lo más prono que se puede llegar a él cumplendo odas las condcones). Será, por lo ano, el empo máxmo necesaro correspondene a las dferenes ruas de acvdades que le preceden y convergen en él. j j j = máx( + j), Se calcula de zquerda a derecha, asgnando al suceso nco el empo 0.

15 Tempo las * de un suceso Es el empo más ardío, máxmo permdo, para alcanzar plenamene ne un suceso de manera que la duracón del proyeco no expermene reraso. raso. Debdo a que en el grafo PERT los empos crecen de zquerda a derecha, cuando se deermnan los máxmos permdos se deben de calcular los empos mínmos conados de derecha a zquerda. j j * = mn ( j* - j ), j Se calcula de derecha a zquerda, comenzando por el suceso o fn al que se le asgna un empo las gual a empo early ya esablecdo.

16 HOLGUR DE UN CONTECIMIENTO : H = * - Indca el empo que se puede rerasar alcanzar un suceso sn que la realzacón del proyeco expermene reraso. *, j * j, j HOLGUR TOTL DE UN CTIVIDD: H T j = * j Nº de undades de empo en que se puede rerasar esa acvdad con respeco al empo Per prevso, de manera que la duracón del proyeco no expermene nngún reraso j

17 * HOLGUR LIBRE DE UN CTIVIDD H Represena la pare de la holgura oal que puede ser consumda sn perjudcar a las acvdades sguenes. * HOLGUR INDEPENDIENTE DE UN CTIVIDD: H L j I j = = j j candad de holgura dsponble después de haber realzado la acvdad. * j j

18 CMINO CRÍTICO Las acvdades son crícas cuando su holgura oal es 0. El camno críco esá negrado por el conjuno de acvdades crícas que paren del suceso nco y llega hasa el suceso fnal. Esa rua defne el empo mínmo necesaro de ejecucón del proyeco. En la rua críca, la holgura o empo lbre de cada aconecmeno es cero.

Hallar la media y varianza. Obtener la F.G.M y obtenerlas de nuevo.

Hallar la media y varianza. Obtener la F.G.M y obtenerlas de nuevo. FGM-MARKOV 7.-Una varable aleaora ene de funcón de cuanía x Px ( ),3,3, 3, Hallar la meda y varanza. Obener la F.G.M y obenerlas de nuevo. En base a la funcón de cuanía µ α Ex P ( ),3 +,3 +, + 3,,3 σ α

Más detalles

Ejercicios T9c- VARIABLE ALEATORIA, MODELOS DE PROBABILIDAD UNIVARIANTES C

Ejercicios T9c- VARIABLE ALEATORIA, MODELOS DE PROBABILIDAD UNIVARIANTES C Ejerccos T9c- VARIABLE ALEATORIA, MODELOS DE PROBABILIDAD UNIVARIANTES C FGM-MARKOV 7.-Una varable aleaora ene de funcón de cuanía x Px ( ),3,3, 3, Hallar la meda y varanza. Obener la F.G.M y obenerlas

Más detalles

TIPOS DE TENDENCIAS Y SUS CONSEQUENCIAS. Tendencias estocásticas versus deterministas.

TIPOS DE TENDENCIAS Y SUS CONSEQUENCIAS. Tendencias estocásticas versus deterministas. TIPOS D TNDNCIAS Y SUS CONSQUNCIAS. Tendencas esocáscas versus deermnsas. Concepos báscos. Parmos de la base que una sere emporal es la realzacón de un proceso esocásco. Tal y como vmos en los modelos

Más detalles

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

TEMA 4: CANALES DIGITALES EN BANDA BASE CON RUIDO

TEMA 4: CANALES DIGITALES EN BANDA BASE CON RUIDO PROBLEMA EMA 4: CANALES DIGIALES EN BANDA BASE CON RUIDO Se desea realzar una ransmsón bnara de símbolos equprobables, para ello se recurre a una codfcacón NRZ de po AMI y cuyas señales se ndcan a connuacón:

Más detalles

Semana 12: Tema 9 Movimiento Rotacional

Semana 12: Tema 9 Movimiento Rotacional Semana : Tema 9 Movmeno Roaconal 9. Velocdad y Aceleracón angular 9. Roacón con aceleracón angular consane 9.3 Energía cnéca roaconal 9.4 Cálculo de momeno de nerca y el eorema de los ejes paralelos Capíulo

Más detalles

1. Introducción, n, concepto y clasificación

1. Introducción, n, concepto y clasificación Tema 5: Números índces. Inroduccón, n, concepo y clasfcacón 2. Números índces smples. Defncón y propedades 3. Números índces complejos Números índces complejos sn ponderar Números índces complejos ponderados

Más detalles

En este capítulo se presenta a detalle el esquema de relajación Lagrangeana utilizado para

En este capítulo se presenta a detalle el esquema de relajación Lagrangeana utilizado para CAPITULO 4 Descrpcón del algormo propueso En ese capíulo se presena a dealle el esquema de relaacón Lagrangeana ulzado para la obencón de coas nferores; así como ambén, la descrpcón de la heurísca prmal

Más detalles

Capítulo 3 Metodología.

Capítulo 3 Metodología. Capíulo 3 Meodología. 3.1. Represenacón paramérca de la relacón enre el ngreso per cápa de los hogares y las caraceríscas soco-demográfcas de sus membros. La meodología ulzada en ese rabajo se basa en

Más detalles

Estadísticas de Cuentas Nacionales Trimestrales

Estadísticas de Cuentas Nacionales Trimestrales Esadíscas de Cuenas Naconales Trmesrales Precos y volumen en cuenas naconales 3 al 13 de agoso de 2009 Precos y volumen en cuenas naconales Sea v el valor de una canasa de benes y servcos en el período

Más detalles

MUESTRAS CON ROTACIÓN DE PANELES

MUESTRAS CON ROTACIÓN DE PANELES 487 MUESTRAS CON ROTACIÓN DE PANELES THOMAS POLFELDT Consulor, INE Sueca (Sascs Sweden). 488 Muesras con roacón de paneles ÍNDICE Págna. Defncones Generales... 489. Por Qué una Muesra de Roacón?... 489

Más detalles

Cálculo y Estadística

Cálculo y Estadística PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una empresa emplea res

Más detalles

Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

Movimiento Rectilíneo Uniformemente Acelerado (MRUA) 7. Movmeno Reclíneo Unorme Acelerado Movmeno Reclíneo Unormemene Acelerado (MRUA) elocdad Meda o elocdad promedo: La velocdad meda represena la relacón enre el desplazameno oal hecho por un móvl y el empo

Más detalles

1. Variable aleatoria. Clasificación

1. Variable aleatoria. Clasificación Tema 7: Varable Aleatora Undmensonal 1. Varable aleatora. Clasfcacón. Caracterzacón de una varable aleatora. Varable Aleatora dscreta. Varable Aleatora contnua 3. Característcas de una varable aleatora.

Más detalles

Análisis de Supervivencia y su Aplicación para Predecir la Calidad de Vida de los Nacidos Extremadamente Prematuros

Análisis de Supervivencia y su Aplicación para Predecir la Calidad de Vida de los Nacidos Extremadamente Prematuros UNIVERSIDAD DE EL SALVADOR FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA ESCUELA DE MATEMÁTICA DEPARTAMENTO DE ESTADÍSTICA. TRABAJO DE GRADUACIÓN: Análss de Supervvenca y su Aplcacón para Predecr la Caldad

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Redes de Comunicaciones

Redes de Comunicaciones Redes de Comuncacones Tema 3. Teleráfco. Dmensonado de semas Ramón güero Calvo Lus Muñoz GuCérrez (conrbucón) Deparameno de Ingenería de Comuncacones Ese ema se publca bajo Lcenca: Crea:ve Commons BY-

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Cálculo Estocástico Variación Cuadrática para Martingalas Continuas y Acotadas

Cálculo Estocástico Variación Cuadrática para Martingalas Continuas y Acotadas 1 Cálculo Esocásco Varacón Cuadráca para Marngalas Connuas y Acoadas Gullermo Garro Defncón Varacón fna. Un proceso X es de varacón fna o acoada s sus rayecoras son de varacón fna, c.s. Es decr, s exse

Más detalles

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo P S 2015 M C P S 2015 Inroduccón El Premo Salmón es hoy el prncpal reconocmeno enregado a los Fondos Muuos en Chle. Movo de orgullo y cenro de campañas publcaras, ese reconocmeno ha cambado su foco hace

Más detalles

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo REF.: Modfca Crcular N 2062 que nsruye respeco al raameno de recálculo de pensón, en pólzas de seguros de rena valca del D.L. N 3.500, de 1980. Sanago, CIRCULAR N Para odas las endades aseguradoras y reaseguradoras

Más detalles

Nélida Diaz, Francisco Jiménez y Mauricio López División de Tiempo y Frecuencia. Resumen

Nélida Diaz, Francisco Jiménez y Mauricio López División de Tiempo y Frecuencia. Resumen Nuevo esquemade generacón de laescalade empo UTCCNM Nélda Daz, Francsco Jménez y Maurco López Dvsón de Tempo y Frecuenca Resumen La escala de Tempo Unversal Coordnado del CENAM, UTCCNM, se genera desde

Más detalles

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes. REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI

Más detalles

Diplomatura de Ciencias Empresariales. Estadística Económica. Sara Mateo.

Diplomatura de Ciencias Empresariales. Estadística Económica. Sara Mateo. Dlomaura de Cencas Emresarales. Esadísca Económca. Sara Maeo. úmeros Índces nroduccón: Una de las rncales areas de la esadísca es el análss de varables, ano consderadas ndvdualmene como en conjuno, ara

Más detalles

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI Undad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI 3.1. DINÁMICA DE LA GESTIÓN DE PROYECTOS. 3.1.1. GESTIÓN DE PROYECTOS. La gestón

Más detalles

MODELOS DE SERIES DE TIEMPO. porque su esperanza (condicional) depende de su valor en el período pasado:

MODELOS DE SERIES DE TIEMPO. porque su esperanza (condicional) depende de su valor en el período pasado: Apunes de Teoría Economérca I. Profesor: Vvana Fernández MODELOS DE SERIES DE TIEMPO I CONCEPTOS PRELIMINARES. Procesos Auorregresvos y de Promedo Móvl Se dce que sgue un proceso auorregresvo: es rudo

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Físca General Proyeco PMME - Curso 8 Insuo de Físca Faculad de Inenería UdelaR M O V I M I E N T O E P R O Y E C T I L M O V I M I E N T O R E L A T I V O Vanessa íaz Florenca Clerc Un olero Juan paea

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias. Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la

Más detalles

INDICE DE COSTES DE LA CONSTRUCCIÓN

INDICE DE COSTES DE LA CONSTRUCCIÓN INDICE DE COSTES DE LA CONSTRUCCIÓN. INTRODUCCION Y OBJETIVOS El índce de coses de la consruccón es un ndcador coyunural que elabora el Mnsero de Fomeno y que ene como objevo medr la evolucón, en érmnos

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

Probabilidad Grupo 23 Semestre Segundo examen parcial

Probabilidad Grupo 23 Semestre Segundo examen parcial Probabldad Grupo 3 Semestre 015- Segundo examen parcal La tabla sguente presenta 0 postulados, algunos de los cuales son verdaderos y otros son falsos. Analza detendamente cada postulado y elge tu respuesta

Más detalles

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por:

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por: 7 Consdere los ejerccos.b.c a Encuenre un nueo modelo en arable de esados consderando la ransformacón dada por: x x x x b Para.d halle la ransformacón por auoalores Resoleremos el ncso a para el ejercco.c

Más detalles

TRABAJO PRACTICO Nº1: NÚMEROS ÍNDICES

TRABAJO PRACTICO Nº1: NÚMEROS ÍNDICES Números Índces TRABAJO PRACTICO Nº1: NÚMEROS ÍNDICES FIUBA 71.6 - ESTRUCTURA ECONOMICA ECONÓMICA ARGENTINA REV.1 1986 1988 199 199 1994 1996 1998 4 6 8 J-88 J-9 J-9 J-94 J-96 J-98 J- J- J-4 J-6 J-8 J-1

Más detalles

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Sabes cuáles son las caraceríscas del momeno reclíneo unormemene acelerado? INTRODUCCION Prmero debemos saber que denro de la cnemáca exsen derenes pos de

Más detalles

Función Financiera 12/03/2012

Función Financiera 12/03/2012 Funcón Fnancera /03/0 Asgnaura: Admnsracón Fnancera Bblografía: Albero Macaro - Cr. Julo César Torres Profesor Tular Regular Faculad de Cencas Económcas y Jurídcas Unversdad Naconal de La Pampa Cr. Julo

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

Estadística Clase 6. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 6. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Esadísca 011 Clase 6 Maesría en Fnanzas Unversdad del CEMA Profesor: Albero Landro Assene: Julán R. Sr Clase 6 1. Análss de Regresón. Especfcacón y Esmacón 3. Supuesos del modelo de regresón lneal 4. Propedades

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Presentación. INEGI. Sistema de Indicadores Compuestos Coincidentes y Adelantado Metodología

Presentación. INEGI. Sistema de Indicadores Compuestos Coincidentes y Adelantado Metodología Presenacón Ese documeno corresponde a la oa meodológca de la publcacón Ssema de Indcadores Compuesos: Concdene y Adelanado y se ncorpora en esa seccón con el propóso de negrarlo al acervo meodológco que

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

El efecto traspaso de la tasa de interés en el Perú: Un análisis a nivel de bancos ( )

El efecto traspaso de la tasa de interés en el Perú: Un análisis a nivel de bancos ( ) El efeco raspaso de la asa de nerés en el Perú: Un análss a nvel de bancos (2002-2005) Rocío Gondo Erck Lahura Dona Rodrguez Marzo, 2006 CONTENIDO Objevo Imporanca Trabajos Prevos Trabajos Prevos Perú

Más detalles

SE PUEDE MEDIR LA NEGOCIACIÓN INFORMADA?: UNA REVISIÓN DE LA METODOLOGÍA BASADA EN LAS COVARIANZAS DE LAS SERIES DE PRECIOS

SE PUEDE MEDIR LA NEGOCIACIÓN INFORMADA?: UNA REVISIÓN DE LA METODOLOGÍA BASADA EN LAS COVARIANZAS DE LAS SERIES DE PRECIOS Invesgacones Europeas de Dreccón y Economía de la Empresa Vol. 5, Nº, 009, pp. 0-, IN: 35-53 E PUEDE MEDIR L NEGOCICIÓN INFORMD?: UN REVIIÓN DE L METODOLOGÍ BD EN L COVRINZ DE L ERIE DE PRECIO Farnós Vñas,

Más detalles

Ondas y Rotaciones. Aplicaciones I. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012

Ondas y Rotaciones. Aplicaciones I. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012 Ondas y Roacones Aplcacones I Jame Felcano Hernández Unversdad Auónoma Meropolana - Izapalapa Méco, D. F. 5 de agoso de 0 INTRODUCCIÓN. En esa hoja de rabajo vamos a aplcar el conocmeno que hemos consrudo

Más detalles

Cuestión 1 (2 puntos)

Cuestión 1 (2 puntos) Unversdad Carlos III de Madrd Deparameno de ecnología Elecrónca COOCAORIA EXRAORDIARIA CURSO 007/08: de Sepembre de 008 Elecrónca de Poenca 3º Ingenería écnca Indusral: Elecrónca Indusral Cuesón ( punos)

Más detalles

-PROTHIUS- Sistemas avanzados de producción: Nociones sobre planificación agregada mediante programación matemática. Joaquín Bautista Valhondo

-PROTHIUS- Sistemas avanzados de producción: Nociones sobre planificación agregada mediante programación matemática. Joaquín Bautista Valhondo Cáedra Nssan -PROHUS- Ssemas avanzados de produccón: Nocones sobre planfcacón agregada medane programacón maemáca oaquín Bausa Valhondo D-6/2008 Rec. ML/ SAP-999-bv Deparameno de Organzacón de Empresas

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Indicadores Cíclicos para la Medición de la Actividad Económica. Julieta Fuentes Dirección de Política Económica y Fiscal. Ministerio de Hacienda

Indicadores Cíclicos para la Medición de la Actividad Económica. Julieta Fuentes Dirección de Política Económica y Fiscal. Ministerio de Hacienda Indcadores Cíclcos para la Medcón de la Acvdad Económca Julea Fuenes Dreccón de Políca Económca y Fscal. Mnsero de Hacenda Sepembre 6 Conendo*. Movacón. Meodologías de consruccón de ndcadores cíclcos.

Más detalles

Macroeconomía II. FCE-UBA Primer Examen Parcial Mayo 2015 INSTRUCCIONES. (Prof. D. Pierri)

Macroeconomía II. FCE-UBA Primer Examen Parcial Mayo 2015 INSTRUCCIONES. (Prof. D. Pierri) FCE-UA Prmer Examen Parcal Mayo 215 Macroeconomía II (Prof. D. Perr) INSRUCCIONES I. El examen consa de 1 punos con la sguene composcón: Ejercco 1 (3 punos), Ejercco 2 (4 punos), Ejercco 3 (3 punos). II.

Más detalles

Examen Final de Econometría Grado

Examen Final de Econometría Grado Examen Fnal de Economería Grado 8 de Juno de 017 Hora: 15:30 Apelldos: Grado (ADE/ ECO): Nombre del profesor(a): Nombre: Grupo: Emal: Anes de empezar a resolver el examen, rellene TODA la nformacón que

Más detalles

Dirección General de Asuntos Económicos y Sociales Ministerio de Economía y Finanzas

Dirección General de Asuntos Económicos y Sociales Ministerio de Economía y Finanzas Meodología de valuacón de pasvos conngenes cuanfcables y del flujo de ngresos dervados de la exploacón de los proyecos generados por la suscrpcón de conraos de concesón bajo la modaldad de Asocacón Públco

Más detalles

Método de Runge-Kutta para Ecuaciones Diferenciales

Método de Runge-Kutta para Ecuaciones Diferenciales Análss Numérco Carlos Armando De Casro Paares Méodo de Runge-Kua para Ecuacones Derencales Uno de los méodos más ulzados para resolver numércamene problemas de ecuacones derencales ordnaras con condcones

Más detalles

Circuitos Limitadores 1/8

Circuitos Limitadores 1/8 Crcuos Lmadores 1/8 1. Inroduccón Un crcuo lmador (recorador) es aquel crcuo que ene la capacdad de lmar pare de una señal de c.a. sn dsorsonar la pare resane de la señal. El crcuo lmador combna dodos

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff Concepos fundamenales Índce CONCEPOS FUNDMENLES Magnudes elécrcas y undades Componenes, dsposos y crcuos 3 Señales 4 Leyes de Krchhoff Concepos fundamenales Magnudes elécrcas y undades Magnud es una propedad

Más detalles

EJERCICIO Usando los datos sobre el consumo de gasolina en los Estados Unidos que se muestran en el cuadro 1, estime los modelos siguientes:

EJERCICIO Usando los datos sobre el consumo de gasolina en los Estados Unidos que se muestran en el cuadro 1, estime los modelos siguientes: EJERCICIO echa de enrega: Novembre 9,. Usando los daos sobre el consumo de gasolna en los Esados Undos que se muesran en el cuadro, esme los modelos sguenes: a) Esme, consderando el período 95 97, los

Más detalles

CAPÍTULO IV BASES Y DESARROLLO DEL PROGRAMA COMPUTACIONAL. En este capítulo describiremos los modelos y herramientas que utilizaremos para la

CAPÍTULO IV BASES Y DESARROLLO DEL PROGRAMA COMPUTACIONAL. En este capítulo describiremos los modelos y herramientas que utilizaremos para la CAPÍTULO IV BASES DESARROLLO DEL PROGRAMA COMPUTACIONAL En ese capíulo descrbremos los modelos y herramenas que ulzaremos para la proyeccón y smulacón de algunas de las varables como son los rendmenos

Más detalles

Gestión de Operaciones. Capítulo 2: Pronósticos de Demanda

Gestión de Operaciones. Capítulo 2: Pronósticos de Demanda Gesón de Operacones Capíulo 2: Pronóscos de Demanda Inroduccón Objevo: Permen esudar la demanda fuura, accón mporane en el dseño de un produco. Ejemplos : Compac, fue líder en la vena de PCs durane los

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES oro hasco rgoyen, Dpo. Economía Aplcada, UAM. EJEMPLO DE MODELOS EONOMÉTROS Ver el aso 9 (pag. 55 y ss.) del lbro de A. Puldo y A. López (999), Predccón y Smulacón aplcada a la economía y gesón de empresas.

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Examen Fnal Pregunta ( punto) Responda brevemente a las sguentes preguntas: a) Cuál es el obetvo en el aprendzae del Perceptron

Más detalles

Los esquemas de la reproduccio n de Marx

Los esquemas de la reproduccio n de Marx Los esquemas de la reproducco n de Marx Alejandro Valle Baeza Los esquemas de la reproduccón smple y amplada consuyen sólo una pare del análss del proceso de crculacón del capal. Fueron presenados en la

Más detalles

PARTE II FUNDAMENTO ECONOMÉTRICO

PARTE II FUNDAMENTO ECONOMÉTRICO PARTE II FUNDAMENTO ECONOMÉTRICO La economería de seres de empo esá en consane evolucón, lo que ha oblgado a los economsas a replanearse los modelos revsar la valdez empírca de la eoría. En ese aparado

Más detalles

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales ... Méodo de Euler Haca Adelane Anexo -4. Méodos Numércos Aplcados a Ecuacones Dferencales Párase del más smple po de ecuacón dferencal ordnara, que la de po lneal de prmer orden, el clásco Problema de

Más detalles

-PROTHIUS- Organización Industrial. Métodos y tiempos, Asignación de máquinas e interferencias. Joaquín Bautista Valhondo. D-23/2011 (Rec.

-PROTHIUS- Organización Industrial. Métodos y tiempos, Asignación de máquinas e interferencias. Joaquín Bautista Valhondo. D-23/2011 (Rec. Cáedra ssan -PROTHIUS- Organzacón Indusral. Méodos y empos, Asgnacón de máqunas e nerferencas. Joaquín Bausa Valhondo D-23/2011 Rec. OP-BCC Deparameno de Organzacón de Empresas Unversdad Polécnca de Caaluña

Más detalles

3.- Programación por metas.

3.- Programación por metas. Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa SOLUCIONARIO GUÍA Íem Alernaa Deena 1 C En un gráco elocdad / empo, al realzar el cálculo de la pendene y área bajo la cura, obenemo la aceleracón y danca recorrda, repecamene. A Según la expreón para

Más detalles

TEMA N 2.- TEORÍA DE REDES (PERT Y CPM)

TEMA N 2.- TEORÍA DE REDES (PERT Y CPM) UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 2.1 Defncón de proyecto y actvdad TEMA N 2.- TEORÍA DE REDES (PERT Y CPM) Asgnatura: Investgacón Operatva

Más detalles

Para un dado que no está cargado asignamos equiprobabilidad a los valores posibles de la variable aleatoria X:

Para un dado que no está cargado asignamos equiprobabilidad a los valores posibles de la variable aleatoria X: 7. Varables Aleatoras 57 Defnr una varable aleatora en un eermento aleatoro consste en asocar un valor numérco a cada suceso elemental del eermento. Interesa fundamentalmente asgnar robabldades a dchos

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:

Más detalles

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos Bloque Análss de crcutos almentados en corrente contnua Teoría de Crcutos . Métodos sstemátcos de resolucón de crcutos : Método de mallas Métodos sstemátcos de resolucón de crcutos Permten resolver los

Más detalles

DIFERENCIAS EN EL MERCADO DE TRABAJO ENTRE LAS PROVINCIAS ESPAÑOLAS RESUMEN

DIFERENCIAS EN EL MERCADO DE TRABAJO ENTRE LAS PROVINCIAS ESPAÑOLAS RESUMEN VI Congreso Galego de Esaísca e Invesgacón de Operacóns Vgo 5-7 de Novembro de 2003 DIFERENCIAS EN EL MERCADO DE TRABAJO ENTRE LAS PROVINCIAS ESPAÑOLAS Mª Esher Lopez Vzcaíno 1, Mª Esher Calvo Ocampo 1,

Más detalles

3 LEYES DE DESPLAZAMIENTO

3 LEYES DE DESPLAZAMIENTO eyes de desplazamento EYES DE DESPAZAMIENTO En el capítulo dos se expone el método de obtencón de las leyes de desplazamento dseñadas por curvas de Bézer para mecansmos leva palpador según el planteamento

Más detalles

INDICADORES DEL SISTEMA EDUCATIVO COSTARRICENSE

INDICADORES DEL SISTEMA EDUCATIVO COSTARRICENSE Acualzado al 6 de juno, 2018 INDICADORES DEL SISTEMA EDUCATIVO COSTARRICENSE MARZO, 2017 PUBLICACIÓN Nº 377-17 Conendo Indcadores del Ssema Educavo Cosarrcense Presenacón... 1 Porcenaje de Repenes... 2

Más detalles

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL José E. Durán Lma, Ofcal de Asunos Económcos Claudo Aravena, Analsa Esadísco Carlos Ludeña, Consulor Inernaconal Asesoría Técnca de la

Más detalles

Unidad 17 Distribuciones de probabilidad. Distribuciones binomial y normal

Unidad 17 Distribuciones de probabilidad. Distribuciones binomial y normal Undad 7 Dstrbucones de probabldad. Dstrbucones bnomal y normal PÁGINA 89 SOLUCIONES. La probabldad es: 4 P(V y M) = = 8. Sabemos que P( Defectuoso) = 0,05. El número de chps que cabe esperar defectuosos

Más detalles

TEMA 7. ANÁLISIS DE SUPERVIVENCIA

TEMA 7. ANÁLISIS DE SUPERVIVENCIA TEMA 7. ANÁLISIS DE SUPERVIVENCIA CONTENIDOS 7. Funcón de supervvenca. 7.2 Estmacón no paramétrca de la funcón de supervvenca. 7.2. Tempos de supervvenca dscretos. Estmador de Kaplan-Meer. 7.2.2 Tempos

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica . Inoduccón a las Ondas. Ondas en cuedas 3. Ondas sonoas acúsca Modulo II: Ondas. Ecuacón de ondas en una cueda ensa. Enegía de una onda en una cueda.3 Aenuacón.4 Refleón ansmsón de ondas.5 Supeposcón

Más detalles

ANEXOS DEL INFORME. Recopilación de Información para la Construcción del Indicador INDICE DE PRECIOS AL CONSUMIDOR

ANEXOS DEL INFORME. Recopilación de Información para la Construcción del Indicador INDICE DE PRECIOS AL CONSUMIDOR ANEXOS DEL NFORME Recolacón de nformacón ara la Consruccón del ndcador NDCE DE RECOS AL CONSUMDOR ANEXO. MÉTODO DE CÁLCULO A EL ÍNDCE DE LASEYRES ENCADENADO DE ESAÑA Se raa de un índce agregado, calculado

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

PyE_ EF1_TIPO1_

PyE_ EF1_TIPO1_ SEMESTRE 00- TIPO DURACIÓN MÁIMA.5 HORAS DICIEMBRE DE 00 NOMBRE. El índce de clardad se determnó en los celos de Morelos, para cada uno de los 365 días de un año, obtenéndose los sguentes datos. Límtes

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

a = = t 0 t 0 v ( t ) = lim v = lim v = = t 0 t 0 a = = 0501) Movimiento: Conceptos Básicos v = = t - t Aceleración Distancia Recorrida Velocidad

a = = t 0 t 0 v ( t ) = lim v = lim v = = t 0 t 0 a = = 0501) Movimiento: Conceptos Básicos v = = t - t Aceleración Distancia Recorrida Velocidad Escalar + a ( ) ( ) Meda ( + ) ( ) d a ( ) lm a lm d Insanánea (a) a + - - ( ) ( ) celeracón 5) Momeno: Concepos áscos Dsanca ecorrda Idea: Cuena-Klómeros de un auomól Sempre umena Dependenca Descrpcón

Más detalles

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón lecarden@esm.mx Deparameno de Ingenería Indusral y de

Más detalles

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.

Más detalles

CAPÍTULO III. BASES METODOLÓGICAS

CAPÍTULO III. BASES METODOLÓGICAS CAPÍTULO III. BASES METODOLÓGICAS Como se ha menconado, el modelo a desarrollar conempla úncamene la operacón de vda. En el sguene puno de ese capíulo se presenan los ramos que negran esa operacón de acuerdo

Más detalles

3. El cambio en el sistema de pensiones y su impacto sobre la cobertura

3. El cambio en el sistema de pensiones y su impacto sobre la cobertura . El cambo en el ssema de pensones y su mpaco sobre la coberura El prmer objevo de ese rabajo es medr el mpaco que la reforma al ssema de pensones ha endo sobre la coberura; medda esa úlma como el número

Más detalles

Adolfo Rodríguez Vargas

Adolfo Rodríguez Vargas Documeno de Invesgacón 06-010 Consruccón de gráfcos de abanco con bandas asmércas: una aplcacón para el pronósco de nflacón en Cosa Rca Adolfo Rodríguez Vargas Julo 010 Banco Cenral de Cosa Rca Dvsón Económca

Más detalles

Tema 1. Conceptos generales

Tema 1. Conceptos generales Análss de Datos I Esquema del Tema Tema. Conceptos generales. COCEPTOS PREVIOS. DEFIICIÓ DE MEDICIÓ 3. DEFIICIÓ DE ESCALAS DE MEDIDA 4. VARIABLES CLASIFICACIÓ Y OTACIÓ REGLAS DEL SUMATORIO 5. EJERCICIOS

Más detalles