EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)"

Transcripción

1 EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars.

2 El méodo PERT se basa en la descomposcón ssemáca del proyeco en una sere de areas parcales o acvdades con el objevo de ncorporar raconaldad en la planfcacón, gesón, segumeno y conrol de dchas acvdades durane la vda del msmo. Defncones: cvdad: : ejecucón de una area que para su realzacón requere empo y recursos. conecmeno o suceso: : momeno de la vda del proyeco que por su relevanca merece la pena desacarse. ndca el prncpo o el fn de una acvdad o un conjuno de acvdades y no consume n empo n recursos.

3 Grafo:conjuno de punos y los arcos que los relaconan conendos en un plano. Puno relaconado con un puno j medane un arco a j Grafo elemenal PERT: el suceso esá relaconado con el suceso j medane la acvdad a j a j j La acvdad a j ene un nco,, un fn j y una duracón j El arco ene sendo desde hasa j

4 TIPOS DE CTIVIDDES: LINEL 1 B 3 CONVERGENTE DIVERGENTE 1 3 C B DIV. - CONV. B D E 4 1 CONV.-DIV C F B 4 1 B C C D

5 CTIVIDDES FICTICIS no consumen n empo n recursos, pero permen reflejar formalmene las relacones exsenes enre las dferenes acvdades que consuyen el proyeco y ofrecen la posbldad de realzar grafos con recas. *cvdades en paralelo m k j l *cvdad y B preceden a C precede a D B C D B m l k f f 1 f D j (f 1 y f son acvdades fccas represenadas con líneas de punos). C

6 Para consrur un GRFO PERT de un proyeco compleo: 1 Descomponer el proyeco en acvdades e denfcar el suceso nco y el suceso fn. Esablecer prelacones: acvdades que enen que ser necesaramene realzadas con anerordad a oras. 3 Organzar la nformacón en un cuadro de prelacones. 4 sgnar empos a las acvdades.

7 1.1. Suceso nco: : represena el prncpo de una o varas acvdades y no represena el fnal de nnguna. 1.. Suceso fn: : represena el fnal de una o varas acvdades y no represena el comenzo de nnguna.

8 Organzar la nformacón: PRECEDE suceso nco B C D,E F Sucesos y acvdades que preceden. CTIVIDDES B C D E F G Se nombran odas la acvdades del proyeco.

9 sgnar empos a las acvdades La duracón de las acvdades depende de crcunsancas aleaoras y probablíscas. Empírcamene, se demuesra que las acvdades de los proyecos se ajusan a una dsrbucón probablísca de po BET.

10 Dsrbucón BET cuya funcón de densdad es: f α ( ) = K( a) ( b) ϕ = varable aleaora, nervalo cerrado [ a,b] probabldad f ( ) = 0; a a m b f ( ) Donde: = 0; b K= consane α yϕ = parámeros

11 DISTRIBUCIÓN BET a + ( α + ϕ) m + b μ( meda) = α + ϕ + ( b a) ( α + 1)( ϕ + 1) σ (varanza) = ( α + ϕ + ) ( α + ϕ + 3) α = + μ = a + 4m + b 6 ϕ = α +ϕ =4 σ = σ = ( b a) (3 + )(3 ) ( b a) (9 ) ( b a) = = 6 (7) b a 6

12 Tempo efecvo, medo o PERT de una acvdad a + 4m + b = j 6 Esmacón opmsa (a): : empo mínmo de ejecucón de una acvdad cuando odas las varables que nervenen se desarrollan excepconalmene. Probabldad Esmacón pesmsa (b): : empo de ejecucón cuando concurren crcunsancas desfavorables. Probabldad Esmacón más probable (m): : cuando el empo de ejecucón no sufre n crcunsancas posvas n negavas.

13 EL LGORITMO PERT Una vez que se ha realzado: 1.- el grafo refleja las prelacones exsenes enre las dferenes acvdades..- La asgnacón de los empos de ejecucón a cada acvdad. Se desarrolla un proceso de cálculo en el que se deermnan los empos de los sucesos.

14 Tempo early j de un suceso cceder plenamene a un suceso requere la fnalzacón de odas las acvdades que convergen en él. El empo early de un suceso es el empo más emprano, mínmo y sufcene para alcanzarlo plenamene (lo más prono que se puede llegar a él cumplendo odas las condcones). Será, por lo ano, el empo máxmo necesaro correspondene a las dferenes ruas de acvdades que le preceden y convergen en él. j j j = máx( + j), Se calcula de zquerda a derecha, asgnando al suceso nco el empo 0.

15 Tempo las * de un suceso Es el empo más ardío, máxmo permdo, para alcanzar plenamene ne un suceso de manera que la duracón del proyeco no expermene reraso. raso. Debdo a que en el grafo PERT los empos crecen de zquerda a derecha, cuando se deermnan los máxmos permdos se deben de calcular los empos mínmos conados de derecha a zquerda. j j * = mn ( j* - j ), j Se calcula de derecha a zquerda, comenzando por el suceso o fn al que se le asgna un empo las gual a empo early ya esablecdo.

16 HOLGUR DE UN CONTECIMIENTO : H = * - Indca el empo que se puede rerasar alcanzar un suceso sn que la realzacón del proyeco expermene reraso. *, j * j, j HOLGUR TOTL DE UN CTIVIDD: H T j = * j Nº de undades de empo en que se puede rerasar esa acvdad con respeco al empo Per prevso, de manera que la duracón del proyeco no expermene nngún reraso j

17 * HOLGUR LIBRE DE UN CTIVIDD H Represena la pare de la holgura oal que puede ser consumda sn perjudcar a las acvdades sguenes. * HOLGUR INDEPENDIENTE DE UN CTIVIDD: H L j I j = = j j candad de holgura dsponble después de haber realzado la acvdad. * j j

18 CMINO CRÍTICO Las acvdades son crícas cuando su holgura oal es 0. El camno críco esá negrado por el conjuno de acvdades crícas que paren del suceso nco y llega hasa el suceso fnal. Esa rua defne el empo mínmo necesaro de ejecucón del proyeco. En la rua críca, la holgura o empo lbre de cada aconecmeno es cero.

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

Movimiento Rectilíneo Uniformemente Acelerado (MRUA) 7. Movmeno Reclíneo Unorme Acelerado Movmeno Reclíneo Unormemene Acelerado (MRUA) elocdad Meda o elocdad promedo: La velocdad meda represena la relacón enre el desplazameno oal hecho por un móvl y el empo

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo P S 2015 M C P S 2015 Inroduccón El Premo Salmón es hoy el prncpal reconocmeno enregado a los Fondos Muuos en Chle. Movo de orgullo y cenro de campañas publcaras, ese reconocmeno ha cambado su foco hace

Más detalles

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI Undad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI 3.1. DINÁMICA DE LA GESTIÓN DE PROYECTOS. 3.1.1. GESTIÓN DE PROYECTOS. La gestón

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes. REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI

Más detalles

Nélida Diaz, Francisco Jiménez y Mauricio López División de Tiempo y Frecuencia. Resumen

Nélida Diaz, Francisco Jiménez y Mauricio López División de Tiempo y Frecuencia. Resumen Nuevo esquemade generacón de laescalade empo UTCCNM Nélda Daz, Francsco Jménez y Maurco López Dvsón de Tempo y Frecuenca Resumen La escala de Tempo Unversal Coordnado del CENAM, UTCCNM, se genera desde

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

INDICE DE COSTES DE LA CONSTRUCCIÓN

INDICE DE COSTES DE LA CONSTRUCCIÓN INDICE DE COSTES DE LA CONSTRUCCIÓN. INTRODUCCION Y OBJETIVOS El índce de coses de la consruccón es un ndcador coyunural que elabora el Mnsero de Fomeno y que ene como objevo medr la evolucón, en érmnos

Más detalles

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo REF.: Modfca Crcular N 2062 que nsruye respeco al raameno de recálculo de pensón, en pólzas de seguros de rena valca del D.L. N 3.500, de 1980. Sanago, CIRCULAR N Para odas las endades aseguradoras y reaseguradoras

Más detalles

Función Financiera 12/03/2012

Función Financiera 12/03/2012 Funcón Fnancera /03/0 Asgnaura: Admnsracón Fnancera Bblografía: Albero Macaro - Cr. Julo César Torres Profesor Tular Regular Faculad de Cencas Económcas y Jurídcas Unversdad Naconal de La Pampa Cr. Julo

Más detalles

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por:

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por: 7 Consdere los ejerccos.b.c a Encuenre un nueo modelo en arable de esados consderando la ransformacón dada por: x x x x b Para.d halle la ransformacón por auoalores Resoleremos el ncso a para el ejercco.c

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Sabes cuáles son las caraceríscas del momeno reclíneo unormemene acelerado? INTRODUCCION Prmero debemos saber que denro de la cnemáca exsen derenes pos de

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES oro hasco rgoyen, Dpo. Economía Aplcada, UAM. EJEMPLO DE MODELOS EONOMÉTROS Ver el aso 9 (pag. 55 y ss.) del lbro de A. Puldo y A. López (999), Predccón y Smulacón aplcada a la economía y gesón de empresas.

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff Concepos fundamenales Índce CONCEPOS FUNDMENLES Magnudes elécrcas y undades Componenes, dsposos y crcuos 3 Señales 4 Leyes de Krchhoff Concepos fundamenales Magnudes elécrcas y undades Magnud es una propedad

Más detalles

Ondas y Rotaciones. Aplicaciones I. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012

Ondas y Rotaciones. Aplicaciones I. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012 Ondas y Roacones Aplcacones I Jame Felcano Hernández Unversdad Auónoma Meropolana - Izapalapa Méco, D. F. 5 de agoso de 0 INTRODUCCIÓN. En esa hoja de rabajo vamos a aplcar el conocmeno que hemos consrudo

Más detalles

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL José E. Durán Lma, Ofcal de Asunos Económcos Claudo Aravena, Analsa Esadísco Carlos Ludeña, Consulor Inernaconal Asesoría Técnca de la

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón lecarden@esm.mx Deparameno de Ingenería Indusral y de

Más detalles

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa SOLUCIONARIO GUÍA Íem Alernaa Deena 1 C En un gráco elocdad / empo, al realzar el cálculo de la pendene y área bajo la cura, obenemo la aceleracón y danca recorrda, repecamene. A Según la expreón para

Más detalles

Los esquemas de la reproduccio n de Marx

Los esquemas de la reproduccio n de Marx Los esquemas de la reproducco n de Marx Alejandro Valle Baeza Los esquemas de la reproduccón smple y amplada consuyen sólo una pare del análss del proceso de crculacón del capal. Fueron presenados en la

Más detalles

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales ... Méodo de Euler Haca Adelane Anexo -4. Méodos Numércos Aplcados a Ecuacones Dferencales Párase del más smple po de ecuacón dferencal ordnara, que la de po lneal de prmer orden, el clásco Problema de

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos Bloque Análss de crcutos almentados en corrente contnua Teoría de Crcutos . Métodos sstemátcos de resolucón de crcutos : Método de mallas Métodos sstemátcos de resolucón de crcutos Permten resolver los

Más detalles

3 LEYES DE DESPLAZAMIENTO

3 LEYES DE DESPLAZAMIENTO eyes de desplazamento EYES DE DESPAZAMIENTO En el capítulo dos se expone el método de obtencón de las leyes de desplazamento dseñadas por curvas de Bézer para mecansmos leva palpador según el planteamento

Más detalles

SIGLAS Y NOTACIÓN EMPLEADA

SIGLAS Y NOTACIÓN EMPLEADA SIGLAS Y NOTAIÓN EMPLEADA α PND a Parámero que ene un valor 4 para vehículos lgeros y de 6 para vehículos pesados Incremeno de la accesbldad para el usuaro que anes no realzaba desplazamenos moorzados

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

3.- Programación por metas.

3.- Programación por metas. Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del

Más detalles

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere Represenacón VEC Dado que las relacones económcas enre varables no se presenan esrcamene en un sendo específco, es decr, puede exsr enre ellas esquemas de reroalmenacón o complejos mecansmos de rasmsón

Más detalles

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica . Inoduccón a las Ondas. Ondas en cuedas 3. Ondas sonoas acúsca Modulo II: Ondas. Ecuacón de ondas en una cueda ensa. Enegía de una onda en una cueda.3 Aenuacón.4 Refleón ansmsón de ondas.5 Supeposcón

Más detalles

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS TMA 7 MODLO IS-LM N CONOMÍAS ABIRTAS l modelo IS-LM en economías aberas Concepos fundamenales n el ema aneror analzamos el po de cambo como s fuera un nsrumeno de políca económca. Sn embargo ése se deermna

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

5. Los sistemas de pensiones y el ahorro nacional

5. Los sistemas de pensiones y el ahorro nacional 5. Los ssemas de pensones y el ahorro naconal Uno de los aspecos más mporanes ras la reforma a un ssema de pensones es su mpaco sobre el ahorro naconal dado el vínculo enre ése y el desempeño de la economía.

Más detalles

Tema 1. Conceptos generales

Tema 1. Conceptos generales Análss de Datos I Esquema del Tema Tema. Conceptos generales. COCEPTOS PREVIOS. DEFIICIÓ DE MEDICIÓ 3. DEFIICIÓ DE ESCALAS DE MEDIDA 4. VARIABLES CLASIFICACIÓ Y OTACIÓ REGLAS DEL SUMATORIO 5. EJERCICIOS

Más detalles

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS 3 39 Ssema de generacón elécrca con pla de combusble de óxdo sóldo almenado con resduos foresales y su opmzacón medane algormos basados

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

MUESTREO EN POBLACIONES FINITAS

MUESTREO EN POBLACIONES FINITAS MUESTREO EN POBLACIONES FINITAS Antono Morllas A.Morllas: Muestreo 1 MUESTREO EN POBLACIONES FINITAS 1. Conceptos estadístcos báscos. Etapas en el muestreo 3. Tpos de error 4. Métodos de muestreo 5. Tamaño

Más detalles

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70 Análss del caso promedo Técncas Avanzadas de Programacón - Javer Campos 70 Análss del caso promedo El plan: Probabldad Análss probablsta Árboles bnaros de búsqueda construdos aleatoramente Tres, árboles

Más detalles

ESTRUCTURA DE LAS SIMILARIDADES

ESTRUCTURA DE LAS SIMILARIDADES ESTRUCTURA DE LAS SIMILARIDADES Ramón Gonzalez del Campo Lus Garmenda 2 Jord Recasens 3 SIC. Faculad de Informáca, rgonzale@esad.ucm.es 2 DISIA. Faculad de Informáca. UCM, lgarmend@fd.ucm.es 3 Unversa

Más detalles

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 Una fuene lumnosa eme luz monocromáca de longud de onda en el vacío lo = 6 l0-7 m (luz roja) que se propaga en el agua de índce de refraccón

Más detalles

PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x

PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x Dstrbucones de Probabldad dscretas-bn1b DISTRIBUIONES DISRETAS DE PROBABILIDAD Dstrbucones dscretas son aquellas en las que la varable sólo puede tomar valores aslados. Ejemplo: lanzar una moneda ( valores:

Más detalles

INTRODUCCIÓN A LOS MODELOS OCULTOS DE MARKOV. Luis Miguel Bergasa Pascual

INTRODUCCIÓN A LOS MODELOS OCULTOS DE MARKOV. Luis Miguel Bergasa Pascual ITRODUCCIÓ A LOS MODELOS OCULTOS DE MARKOV Lus Mguel Bergasa Pascual Deparameno de Elecrónca. Unversdad de Alcalá. Emal:bergasa@depeca.uah.es Lus M. Bergasa. Deparameno de Elecrónca COTEIDOS Inroduccón

Más detalles

Pronóstico con Modelos Econométricos

Pronóstico con Modelos Econométricos Pronósco con Modelos conomércos Hldegar A. Ahumada UD A common complan (n he UK): When weaher forecass go awr, meeorologss ge a new supercompuer When economs ms-forecas, we ge our budges cu (Hendr, 200)

Más detalles

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad Vda Utl, característcas de la Fabldad e Invabldad y dstrbucones teórcas en el terreno de la fabldad Realzado por: Mgter. Leandro D. Torres Vda Utl Este índce se refere a una vda útl meda nomnal y se puede

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP

METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP MARZO DE 20 TABLA DE CONTENIDO. GENERALIDADES:... 3.. VALOR BASE... 3.2. NÚMERO DE EMISORES QUE COMPONEN EL ÍNDICE... 3.3. ACCIONES POR EMISOR... 3.4. PARTICIPACIÓN

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

Metodología de Selección y Cálculo. de Índices Bursátiles

Metodología de Selección y Cálculo. de Índices Bursátiles Bolsa de Comerco de Sanago» Índces Bursáles Meodología de Seleccón y Cálculo de Índces Bursáles Gerenca de Planfcacón y Desarrollo Dcembre 2007 Gerenca de Planfcacón y Desarrollo» 399-3854 Bolsa de Comerco

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Términos y Condiciones Generales de Contratación del Contrato de Futuro del Dólar de los Estados Unidos de América (Entrega en Especie)

Términos y Condiciones Generales de Contratación del Contrato de Futuro del Dólar de los Estados Unidos de América (Entrega en Especie) Acualzadas al 12 de sepembre de 2012 Térmnos y Condcones Generales de Conraacón del Conrao de Fuuro del Dólar de los Esados Undos de Amérca (Enrega en Espece) I. OBJETO. 1. Acvo Subyacene. Dólar: moneda

Más detalles

Medida de los radios de curvatura de un espejo cóncavo y otro convexo. Medida de la focal de una lente convergente y otra divergente.

Medida de los radios de curvatura de un espejo cóncavo y otro convexo. Medida de la focal de una lente convergente y otra divergente. TÉCNICAS EXPERIMENTALES II. MÓDULO DE ÓPTICA PRÁCTICA I: BANCO ÓPTICO. OBJETIVO DE LA PRÁCTICA Medda de los rados de curvaura de un espejo cóncavo y oro convexo. Medda de la focal de una lene convergene

Más detalles

En España operaron empresas en 2014, un 0,4% más que el año anterior. En 2014 se crearon empresas y desaparecieron 277.

En España operaron empresas en 2014, un 0,4% más que el año anterior. En 2014 se crearon empresas y desaparecieron 277. 25 de novembre de 2016 Indcadores de Demografía Empresaral Año 2014 En España operaron 3.432.072 empresas en 2014, un 0,4% más que el año aneror En 2014 se crearon 347.605 empresas y desapareceron 277.327

Más detalles

FASCÍCULO: MATRICES Y DETERMINANTES

FASCÍCULO: MATRICES Y DETERMINANTES FSÍULO: MRIES Y DEERMINNES on el avance de la ecnología en especal con el uso de compuadoras personales, la aplcacón de los concepos de marz deermnane ha cobrado alcances sn precedenes en nuesros días.

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS

MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS TESIS DE GRADO PARA OPTAR AL TITULO DE MAGISTER EN INGENIERÍA

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS NORMA PARTIULAR 3.2 NORMAS PARA LA ONSTITUIÓN DE PREVISIONES PARA RIESGOS REDITIIOS a. Prevsones para resgos credcos ) Prevsón según caegoría de resgo ) Mono de resgo sujeo a prevsón ) Deduccón de garanías

Más detalles

Figura 1.1 Definición de componentes de tensiones internas.

Figura 1.1 Definición de componentes de tensiones internas. . ELEMENTOS DE TENSORES CARTESIANOS. Inroduccón: Para descrbr endades o varables físcas se requere de valores o componenes. El número de componenes necesaras deermna la nauraleza ensoral de la varable.

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades oa de Clase 5 Inroduccón a modelos de Daa Panel: Generaldades. Por qué daos de panel? Los modelos de daos de panel son versones mas generales de los modelos de core ansversal seres de empo vsos hasa el

Más detalles

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios Teoría de Modelos y Smulacón Enrque Eduardo Tarfa Facultad de Ingenería - Unversdad Naconal de Jujuy Generacón de Números Aleatoros Introduccón Este capítulo trata sobre la generacón de números aleatoros.

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMERÍA Noa: Los ejerccos con asersco no corresponden al programa acual de Prncpos

Más detalles

SISTEMAS DE ECUACIONES SIMULTANEAS

SISTEMAS DE ECUACIONES SIMULTANEAS Apunes de eoría Economérca I. Profesor: Vvana Fernández SISEMAS DE ECUACIONES SIMULANEAS I INRODUCCION A la fecha, nos hemos cenrado en modelos unecuaconales, eso es, aquellos que nvolucran sólo una ecuacón

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático qco sθ qz Ez= 4 zπε0 2+ R2 = 4πε0 [z2 +R2 ]3/ 2 El campo de las cargas en reposo. Campo electrostátco ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electromagnétco.

Más detalles

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Ing. Federco G. Salazar Termodnámca del Equlbro TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO V. EQUILIBRIO DE REACCIÓN QUÍMICA Contendo 1. Conversón y Coordenada de Reaccón. 2. Ecuacones Independentes y Regla

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c.

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c. Estadístca robablístca 6. Tablas de contngenca y dagramas de árbol. En los problemas de probabldad y en especal en los de probabldad condconada, resulta nteresante y práctco organzar la nformacón en una

Más detalles

LA MODELIZACIÓN DE PROCESOS

LA MODELIZACIÓN DE PROCESOS L MODELIZIÓN DE ROESOS En ese capíulo, se presena una meodología en desarrollo para modelos dnámcos de procesos químcos. Después de esudar ese capíulo, el esudane debería ser capaz de: Escrbr las ecuacones

Más detalles

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A CI4A: ANALISIS ESTRUCTURAL Prof.: Rcardo Herrera M. Programa CI4A NÚMERO NOMBRE DE LA UNIDAD OBJETIVOS DURACIÓN 4 semanas Prncpo de los trabajos vrtuales y teoremas de Energía CONTENIDOS.. Defncón de trabajo

Más detalles

EL MÉTODO PERT. Para ello debemos seguir 4 pasos:

EL MÉTODO PERT. Para ello debemos seguir 4 pasos: EL MÉTODO PERT El método PERT (Program Evaluation and Review Technique Técnica de evaluación y revisión de programas) es un método que sirve para planificar proyectos en los que hace falta coordinar un

Más detalles

EJERCICIOS: Análisis de circuitos en el dominio del tiempo

EJERCICIOS: Análisis de circuitos en el dominio del tiempo EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Ejercicios resueltos y exámenes

Ejercicios resueltos y exámenes Prncpos de Economería y Economería Empresaral I Ejerccos resuelos y exámenes Recoplados por Ezequel Urel I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

Tema 8: DESIGUALDAD, Xisco Oliver Economía del Bienestar (2º GECO)

Tema 8: DESIGUALDAD, Xisco Oliver Economía del Bienestar (2º GECO) Tema 8: DESIGUALDAD, REDISTRIBUCIÓN Y POBREZA Xsco Olver 20610 - Economía del Benestar (2º GECO) Motvacón Benestar: el objetvo últmo del Estado es maxmzar el benestar El benestar se obtene a partr de las

Más detalles

6 Impacto en el bienestar de los beneficiarios del PAAM

6 Impacto en el bienestar de los beneficiarios del PAAM 6 Impacto en el benestar de los benefcaros del PAAM Con el fn de evaluar el efecto del PAAM sobre sus benefcaros, se consderó como hpótess que el Programa ha nfludo en el mejoramento de la caldad de vda

Más detalles

NOMBRE Apellido Paterno Apellido Materno Nombre(s) Porcentaje de defectos producidos Máquina Porcentaje de producción

NOMBRE Apellido Paterno Apellido Materno Nombre(s) Porcentaje de defectos producidos Máquina Porcentaje de producción UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIONES

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y Bobnas 4. Inroduccón 4. ondensadores 4.3 Energía almacenada en un condensador 4.4 Asocacón de condensadores 4.5 Bobnas 4.6 Energía almacenada en una bobna 4.7 Asocacón de bobnas

Más detalles

T8 T9. Capítulo. Dinámica de los sistemas libres de un grado de libertad

T8 T9. Capítulo. Dinámica de los sistemas libres de un grado de libertad Capíulo T8 T9 Dnáca de los sseas lbres de un grado de lberad 9. INTODUCCIÓN A lo largo de ese capíulo, se va a planear la respuesa de los sseas dnácos resolvendo analícaene las ecuacones que aparecen.

Más detalles

Autor: Jorge Mauricio Oviedo 1

Autor: Jorge Mauricio Oviedo 1 odelos Economércos ulecuaconales de Esmacón de Demandas Auor: Jorge aurco Ovedo Resumen: En ese arículo se efecúa una revsón de los prncpales éodos Economércos para esmar ecuacones smuláneas de demanda

Más detalles

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente.

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente. AUTO-INDUCTANCIA: Una bobna puede nducr una fem en s msma.s la correne de una bobna camba, el flujo a ravés de ella, debdo a la correne, ambén se modfca. Así como resulado del cambo de la correne de la

Más detalles

Tema 2 Circuitos Dinámicos de Primer Orden

Tema 2 Circuitos Dinámicos de Primer Orden Tema 2: Crcuos Dnámcos de Prmer Orden Tema 2 Crcuos Dnámcos de Prmer Orden A nade en su sano juco se le habría ocurrdo preparar enonces odos esos componenes (ranssores, ressores y condensadores a parr

Más detalles

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c.

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c. .. TIPOS DE CORRIENTES Y DE ELEMENTOS DE CIRCUITOS Contnua: Corrente cuyo valor es sempre constante (no varía con el tempo). Se denota como c.c. t Alterna: Corrente que varía snusodalmente en el tempo.

Más detalles

Análisis estadístico de incertidumbres aleatorias

Análisis estadístico de incertidumbres aleatorias Análss estadístco de ncertdumbres aleatoras Errores aleatoros y sstemátcos La meda y la desvacón estándar La desvacón estándar como error de una sola medda La desvacón estándar de la meda úmero de meddas

Más detalles