Dominios euclídeos. Enteros de Gauss.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Dominios euclídeos. Enteros de Gauss."

Transcripción

1 Tema 8.- Dominios euclídeos. Enteros de Gauss. 8.1 Dominios euclídeos. Recordamos la definición de dominio euclídeo que ya hemos visto. Definición Sea A un dominio de integridad. Diremos que A es un dominio euclídeo si existe una aplicación δ : A \{0} N tal que: 1. Si a, b A \{0} y a b, entonces δ(a) δ(b). 2. (División entera con resto respecto de δ) Dados D, d A, d 0,existen c, r A tales que D = dc + r y r =0obienδ(r) <δ(d). Proposición Sea (A, δ) un dominio euclídeo. 1. Si u es una unidad de A, δ(u) es el valor mínimo de δ. 2. Si a, b A \{0} son asociados, entonces δ(a) =δ(b). 3. Si a, b A \{0}, a b y δ(a) =δ(b), entonces a y b son asociados. 4. Un elemento a A \{0} es una unidad, si y sólo si δ(a) =δ(1). Prueba: La primera afirmación es consecuencia inmediata de que una unidad divide a todo elemento, y de la primera condición de dominio euclídeo. La segunda afirmación es trivial. Para la tercera afirmación, dividimos a por b: a = cb + r. Si r 0, entonces δ(r) <δ(b). Como a b, existea A tal que b = a a. Por tanto r = a cb = (1 ca )a, por lo que δ(a) δ(r), que contradice la hipótesis. Por ello r =0,yb a como queríamos. La última afirmación es consecuencia fácil de las anteriores. Un ejemplo de dominio es A = Z[ m] C, conm entero libre de cuadrados. En ellos podemos definir una aplicación norma, que verifica siempre la primera condición de dominio euclídeo, y en algunos casos también la segunda: N : A N, con N(a + b m)= (a + b m)(a b m) = a 2 mb 2. Proposición N verifica las siguientes propiedades: 1. N(xy) =N(x)N(y) paratodox, y Z[ m]. 2. Si u Z[ m], N(u) =1siysólo si u es una unidad. 3. Si x, y Z[ m], x y y N(x) =N(y), si y sólo si x e y son asociados. 4. Si x Z[ m]yn(x) esunnúmero primo, entonces x es irreducible. La demostración es un fácil ejercicio. Nota

2 1. Con las propiedades anteriores, es un ejercicio elemental probar que Z[ 3] no es DFU, puesto que 2 es un elemento irreducible, pero no primo, ya que divide a 4 = (1 + 3)(1 3), pero no divide a ningún factor. 2. El caso m = 1 es el del anillo de los enteros de Gauss, Z[i], que es dominio euclídeo, cuando definimos una división entera en él. Sean x, y Z[i], b 0. Entonces el cociente complejo de x y y es u + vi C, conu, v Q. Sean m, n Z unas aproximaciones enteras que redondean u, v, es decir tales que m u 1 2 y n v 1 2. Entonces r = x (m + ni)y Z[i]. Por la elección anterior, se tiene que r = y[(u m)+i(v n)], por lo que N(r) 1 2N(y) <N(y). Se tiene así que x =(m + ni)y + r, con N(r) <N(y), por lo que Z[i] queda dotado de estructura de dominio euclídeo, con la norma N como aplicación δ. 3. De un modo análogo se podría dotar a Z[ 2] de una estructura de dominio euclídeo. Definición Un dominio A se dice de ideales principales, (DIP), cuando todos sus ideales lo son. El resultado siguiente nos da una gran cantidad de ejemplos. Proposición Todo dominio euclídeo es un dominio de ideales principales. Prueba: Sea (A, δ) un dominio euclídeo, e I un ideal no nulo de A. Sea a I \{0} un elemento con δ(a) mínimo. Vamos a probar que I =(a). Una inclusión es clara. Recíprocamente, sea b I, que dividimos por a, obteniendo b = ca+r. Sir no es cero, como estáeni y δ(r) <δ(a), llegamos a contradicción con la elección de a. Portantor = 0, y se tiene lo deseado. No es cierto el recíproco. Hay dominios de ideales principales que no son euclídeos, como Z[ ], pero esta comprobación es bastante difícil. Z[X], con X una variable, es un ejemplo de un dominio que no es DIP. Para ello verifíquese que (2,X) no es un ideal principal en Z[X]. 8.2 Factorización. El resultado fundamental de esta sección es el siguiente: Teorema Todo DIP es un DFU. Definición Se dice que un anillo A verifica la condición de cadena ascendente para ideales (o, brevemente, la CCA) si toda cadena estrictamente creciente de ideales de A I 1 I 2 I

3 es finita. Equivalentemente, toda cadena ascendente infinita de ideales I 1 I 2 I 3... es estacionaria, es decir, existe un entero n>0talquei j = I n,paratodoj n. Proposición Sea A un DIP; entonces verifica la CCA. Prueba: Sea I 1 I 2 I 3... una cadena ascendente de ideales, y sea I = j 1 I j la unión de todos ellos; entonces I es un ideal. En efecto, sean a, b I, digamos a I j y b I k. Si, por ejemplo, k j, entonces a, b I k,luegoa b I k I. Si a I, digamos a I j,yx A, entonces ax I j I. Ahora bien, el ideal I es principal; escribamos I = Ad. Entonces d I n para un cierto n, luego I n = I. Así, para todo j n es I j = I = I n. Esto prueba la proposición. Proposición Sea A un DIP; entonces A verifica la condición (DFU1). Prueba: Sea a una no unidad distinta de cero. Tenemos que probar que a se descompone en producto finito de elementos irreducibles. Si a es irreducible, no hay nada que probar. Si a no es irreducible, se puede escribir a = bc donde b y c no son asociados de a, ni unidades. Así Aa Ab y Aa Ac. Repitiendo el razonamiento con b, por ejemplo, y así sucesivamente, la CCA implica que este proceso es finito, lo que nos lleva a que a debe tener un divisor irreducible p 1. Entonces Aa A a. p 1 Si a 1 = a/p 1 es irreducible, entonces a = a 1 p 1 es una descomposición factorial de a, y nuestra demostración habrá concluido. Supongamos que a 1 no es irreducible. Aplicando a a 1 = a/p 1 el mismo razonamiento, llegamos a la existencia de un divisor irreducible p 2 de a 1, y a una terna Aa Aa 1 Aa 2, con a 1 = p 2 a 2. Por CCA, este proceso debe tener un fin, es decir, debe existir un entero positivo n tal que a/(p 1 p n 1 ) = p n sea irreducible. Así a = p 1 p n 1 p n, lo que prueba la proposición. Proposición (Identidad de Bezout) SeaA un DIP, y sean a, b A dos elementos no nulos. Entonces existe un elemento d = αa + βb con α, β A, tal que d =mcd(a, b). 3

4 Prueba: Sea (a, b) el ideal engendrado por a, b; entonces existe d A tal que (a, b) =Ad. Como Aa Ad y Ab Ad, esd a y d b. El hecho de que d =mcd(a, b) viene, ahora, de que d es de la forma d = αa + βb. La demostración del teorema termina con la siguiente Proposición Sea A un DIP; entonces A verifica (DFU3). Prueba: Sea p A, irreducible, con p ab, y supongamos que p no divide a a. Entonces 1 = mcd(a, p) y, por la proposición anterior, 1 = αa + βp. Así, b = αab + βbp, de donde se deduce que p b. Estopruebalaproposición. Nota En el caso de un dominio euclídeo A, se puede generalizar el algoritmo de Euclides para Z, de cálculo del máximo común divisor de dos elementos a, b A \{0}: Se construye la sucesión r 0,r 1,r 2,...,r n, poniendo r 0 = a, r 1 = b, ypara cada j 2, r j es el resto de dividir r j 2 por r j 1. El proceso acaba alcanzando el cero en cierto r n. Entonces r n 1 =mcd(a, b). La validez del algoritmo se basa en dos cuestiones. Por una parte mcd(r i,r i+1 )=mcd(r i+1,r i+2 ), para cada i =0,...,n 3, y por otra que el algoritmo debe acabar puesto que δ va decreciendo en la sucesión creada. 8.3 Enteros de Gauss En esta sección vamos a estudiar el primer ejemplo no inmediato de divisibilidad. Definición El anillo de los enteros de Gauss es el subanillo Z[i] C definido por Z[i] ={a + bi C a, b Z} Queremos describir los elementos irreducibles de Z[i]. Ya sabemos que los enteros de Gauss de norma prima son irreducibles, pero queremos calcularlos todos. Vamos a ver un resultado previo que es de interés por sí mismo. Proposición Sea K un cuerpo. Todo subgrupo finito de K es cíclico. Prueba: Sea G K subgrupo finito. Elegimos x G de orden maximal a = o(x). Sea y G, deordenb. Entonces o(xy) =mcm(a, b) a. Entonces b divide a a. Esto significa que g a =1paracualquierg G. Sea G = m. Todo elemento de G es raíz del polinomio X a 1, por lo que m a. Por otro lado, para cada g G, elordendeg divide a m. Enparticular,a divide a m, y tenemos a = m. Proposición Sea p Z + primo. Las condiciones siguientes son equivalentes: 1. p no es irreducible en Z[i]. 2. p es suma de dos cuadrados. 4

5 3. p =2op 1( mod 4). Prueba: 1 2. Si p =(a + bi)(c + di), con ambos factores no unidades, se tiene que N(a + bi) > 1yN(c + di) > 1. Tomando normas al principio: p 2 = N(p) = (a 2 + b 2 )(c 2 + d 2 ). Como p es primo, se tiene que p = a 2 + b Se deduce de observar que, si a Z, a 2 0, 1( mod 4) Como 2 = (1 + i)(1 i), basta considerar el caso p 1( mod 4). Tenemos que (Z/Zp) es cíclico de orden 4k, por lo que contiene un subgrupo de orden 4 igual a {1,α,α 2,α 3 }.Como0=α 4 1=(α 2 1)(α 2 +1),resulta que la ecuación X 2 +1tienesolución en Z/Zp. Seau un representante de una solución. Entonces u 2 +1=(u + i)(u i) =kp para algún k Z. Si p fuese primo en Z[i], entonces p divide a u+i o p divide a u i. Si unificamos, llegamos aqueexistem, n Z tales que u ± i = p(m ++ni) y comparando las partes imaginarias nos queda pn = ±1, que contradice el carácter primo de p en Z. Por tanto, p divide a un producto en Z[i] perono divide a ninguno de sus factores. Corolario Un número primo p Z + es irreducible en Z[i] siysólo si p 3( mod 4). Veamos finalmente que ya hemos descrito todos los numeros irreducibles de Z[i]. Proposición Un entero de Gauss es irreducible si y sólo si es de una de las dos formas siguientes: 1. Es asociado de un número primo p>0, con p 3( mod 4), i.e. p, p,ip, ip. 2. Tiene norma prima. Prueba: Queda probar que si z = a + bi Z[i] es irreducible, entonces es de una de las formas enunciadas. Si a =0ob = 0, entonces z es asociado con p. Si a 0 y b 0, entonces N(z) = a 2 + b 2 = (a + bi)(a bi) es una descomposición en factores irreducibles. Por ser Z[i] undfu,n(z) debe ser un número primo, porque en otro caso una descomposición en Z sería distinta de la anterior. 8.4 Sumas de cuadrados. Enunciamos un problema de Diofanto (250 d.c.): cuándo un número entero es suma de dos cuadrados? de tres cuadrados? de cuatro cuadrados?... 5

6 Nota Para cada a, b, c, d Z se tiene que (a 2 +b 2 )(c 2 +d 2 )=N(a+bi)N(c+di) =N((a+bi)(c+di)) = (ac bd) 2 +(ad+bc) 2. Teorema (Fermat-Euler 1749). Un entero positivo n es suma de dos cuadrados, si y sólo si sus factores primos congruentes con 3 módulo 4, aparecen en la factorización de n con exponentes pares. Prueba: Sea n = m 2 q,demodoquelosfactoresprimosdeq son 2 o congruentes con 1 módulo 4. Por la proposición y la nota anterior, se tiene que n es suma de dos cuadrados. Recíprocamente, supongamos que n = a 2 + b 2. La descomposición en Z[i] en factores irreducibles de a + bi será, por la proposición 8.3.5, a + bi = up 1 p r (c 1 + d 1 ) (c s + id s ), donde u es una unidad, p 1,...,p r Z son números primos, con p i 3( mod 4), para i = 1,...,r, y c j + id j Z[i] son elementos de norma c 2 j + d2 j, para j =1,...,s, que por la proposición no puede ser congruente con 3 módulo 4. Conjugando la expresión anterior, se obtiene una descomposición de a bi, y multiplicándolas, queda: n =(a + bi)(a bi) =p 2 1 p2 r (c2 1 + d2 1 ) (c2 s + d2 s ), que verifica lo enunciado. Enunciamos sin demostrar los siguientes teoremas. La demostración del primero puede verse en el libro de Delgado-Fuertes-Xambó varias veces citado. Teorema (Fermat-Lagrange 1770). Todoenteropositivoessumade cuatro cuadrados. Teorema (Waring-Hilbert 1909). Para cada número natural q existe otro w q tal que todo entero positivo n es suma de w q potencias q-ésimas: n = a q 1 + aq w q. Se sabe, por ejemplo que w 2 =4,w 3 =9oquew 4 = 19 (1986). 6

Tema 1. Anillos e ideales. Operaciones. Divisibilidad

Tema 1. Anillos e ideales. Operaciones. Divisibilidad Tema 1. Anillos e ideales. Operaciones. Divisibilidad y factorización. La parte correspondiente a Anillos e ideales. Operaciones se corresponde con el capítulo 1 del libro Atiyah, M.F., Macdonald, I.G.,

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2016 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad 1.1 Grupos Al haber alterado el orden de los temas, este apartado ya se ha visto en el tema 9 1.2 Anillos y cuerpos Definición 1.2.1.

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2017 Olalla (Universidad de Sevilla) El anillo de

Más detalles

4.1 Anillo de polinomios con coeficientes en un cuerpo

4.1 Anillo de polinomios con coeficientes en un cuerpo Tema 4 Polinomios 4.1 Anillo de polinomios con coeficientes en un cuerpo Aunque se puede definir el conjunto de los polinomios con coeficientes en un anillo, nuestro estudio se va a centrar en el conjunto

Más detalles

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd) TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss.

Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss. Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss. 7.1 Divisibilidad Definición 7.1.1. Sea A un dominio de integridad. 1. Sean a, b A, cona 0. Sediráquea divide a b, oquea es un divisor

Más detalles

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014 Apuntes de teoría Departamento de Álgebra Universidad de Sevilla Tema 2: Anillos e ideales. Divisibilidad y factorización. 2.1. Anillos, subanillos

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Ejercicios de Álgebra Básica. Curso 2015/16

Ejercicios de Álgebra Básica. Curso 2015/16 Ejercicios de Álgebra Básica. Curso 2015/16 Tema 3: El anillo de los números enteros Divisibilidad en Z Ejercicio 1. Probar que para todo número n, n y n + 1 son primos entre sí. Ejercicio 2. Probar que

Más detalles

Veamos que la operación multiplicación heredada de Z m es interna:

Veamos que la operación multiplicación heredada de Z m es interna: Tema 3 El cuerpo (, +,.) (p número primo) 3.1 El grupo multiplicativo En el tema anterior se vio que (Z m, +,.) es un anillo conmutativo con elementos identidad. No preguntamos ahora para qué elementos

Más detalles

Tema 1 Aritmética entera

Tema 1 Aritmética entera Tema 1 Aritmética entera Tema 1 Aritmética entera 1.1 Los números enteros 1.1.1 Relaciones de orden Una relación en un conjunto A es un subconjunto R del producto cartesiano AxA. Se dice que dos elementos

Más detalles

Álgebra. Curso

Álgebra. Curso Álgebra. Curso 2012-2013 1 de julio de 2013 Resolución Primera parte Ejercicio. 1. (A) Dado F C[X] tal que (F, F ) = 1, prueba que C[X]/(F ) es un anillo reducido, esto es, sin elementos nilpotentes no

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. DIVISIBILIDAD DE NÚMEROS ENTEROS. En el conjunto de los números enteros

AMPLIACIÓN DE MATEMÁTICAS. DIVISIBILIDAD DE NÚMEROS ENTEROS. En el conjunto de los números enteros AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE NÚMEROS ENTEROS. En el conjunto de los números enteros Z = {..., n,..., 2, 1, 0, 1, 2, 3,..., n, n + 1,...} tenemos definidos una suma y un producto para los

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS Tema 1 Anillos e ideales. Operaciones. Divisibilidad y factorización. Tema 2 Conjuntos algebraicos afines y sistemas de ecuaciones polinómicas. Anillos noetherianos. Cálculos en

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2016 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2016 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

En un anillo la operación de multiplicación no siempre tiene un elemento como el 0 de la adición.

En un anillo la operación de multiplicación no siempre tiene un elemento como el 0 de la adición. Capítulo 5 Anillos Definición 5.1. Un anillo es un conjunto no vacío A en el cual hay definidas dos operaciones + (adición) y (multiplicación) que satisface los axiomas: 1. (Clausura) Para cada a, b A,

Más detalles

Dominios Euclideos. Eugenio Miranda Palacios

Dominios Euclideos. Eugenio Miranda Palacios Dominios Euclideos Eugenio Miranda Palacios 4. Dominios Euclídeos 4.1. Definiciones y resultados básicos Definición 4.1. Sea A un dominio de integridad. Una función euclídea es una función φ : A {0} Z

Más detalles

Álgebra Básica. Departamento de Álgebra.

Álgebra Básica. Departamento de Álgebra. Ejercicios de Álgebra Básica. Curso 2010/11 Ejercicio 1. Construir las tablas de verdad de las siguientes proposiciones: (1). p q (2). [(p q) q] p (3). [(p q) r] p (q r) (4). [(p q) q] p (5). [(p q) p]

Más detalles

0. Enteros. 10. Prueba que el cuadrado de todo número impar deja resto 1 al dividirlo por 8. es un número entero.

0. Enteros. 10. Prueba que el cuadrado de todo número impar deja resto 1 al dividirlo por 8. es un número entero. Introducción al Álgebra (curso 00-003) 1 0. Enteros 1. Para los números enteros a y b que se citan, halla su máximo común divisor y mínimo común múltiplo, así como enteros n y m tales que na + mb sea el

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

Divisibilidad en Z. Apéndice A. A.0 Subgrupos de Z

Divisibilidad en Z. Apéndice A. A.0 Subgrupos de Z Apéndice A Divisibilidad en Z Todo número compuesto es medido por algún número primo. Todo número o bien es número primo o es medido por algún número primo. Euclides, Elementos, Libro VII Cualquier número

Más detalles

Ejercicios de Álgebra Básica. Curso 2016/17

Ejercicios de Álgebra Básica. Curso 2016/17 Tema 4: Polinomios Ejercicios de Álgebra Básica. Curso 2016/17 El anillo k[x]. Divisibilidad Ejercicio 1. Sea A un anillo. Prueba que, si A es dominio de integridad, A[x] = A y demuestra con un contraejemplo

Más detalles

Anillo de polinomios con coeficientes en un cuerpo

Anillo de polinomios con coeficientes en un cuerpo Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.

Más detalles

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017 Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017 SOLUCIONES Ejercicio 1 (5 puntos). Sea A un anillo conmutativo y K un cuerpo. a) Definir: i) Unidad en A. ii) Elemento irreducible

Más detalles

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2,

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2, Ejercicios de Álgebra Básica. Curso 2012/13 Ejercicio 1. Probar, usando el método de inducción, la fórmula de la suma de n términos de una progresión geométrica de razón r, S n = ra n a 1 r 1. Ejercicio

Más detalles

Tema 2 Aritmética modular

Tema 2 Aritmética modular 1 Tema 2 Aritmética modular 2.1 Relaciones de equivalencia Definición 2.1 Una relación que verifique las propiedades reflexiva, simétrica y transitiva se denomina relación de equivalencia. Dos elementos

Más detalles

una aplicación biyectiva h : A A.

una aplicación biyectiva h : A A. Álgebra Básica Examen de septiembre 9-9-016 apellidos nombre Observaciones: -) Los cuatro ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global. -)

Más detalles

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02 PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez pies3coma14@hotmail.com 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que

Más detalles

Clase 2: Algoritmo de Euclídes

Clase 2: Algoritmo de Euclídes Clase 2: Algoritmo de Euclídes Dr. Daniel A. Jaume, * 8 de agosto de 2011 1. Máximo común divisor Para entender que es el máximo común divisor de un par de enteros (no simultáneamente nulos). Lidearemos

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

1. NÚMEROS PRIMOS Y COMPUESTOS.

1. NÚMEROS PRIMOS Y COMPUESTOS. . NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene

Más detalles

6.1. Anillos de polinomios.

6.1. Anillos de polinomios. 1 Tema 6.-. Anillo de polinomios. División y factorización. Lema de Gauss. 6.1. Anillos de polinomios. Definición 6.1.1. Sea A un anillo. El anillo de polinomios en la indeterminada X con coeficientes

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r AMPLIACIÓN DE MATEMÁTICAS CONGRUENCIAS DE ENTEROS. Dado un número natural m N\{0} sabemos (por el Teorema del Resto) que para cualquier entero a Z existe un único resto r de modo que con a = qm + r r {0,

Más detalles

Extensiones algebraicas. Cuerpos de descomposición.

Extensiones algebraicas. Cuerpos de descomposición. Temas 10-11.- 10-11.1 Extensiones algebraicas. Cuerpos de descomposición. Si k es un subcuerpo de K, diremos que K es una extensión de k, que notaremos K k. Si K k es una extensión y E K es un subconjunto,

Más detalles

Anexo: El anillo de polinomios K[x].

Anexo: El anillo de polinomios K[x]. El anillo de polinomios K[x] 1 Anexo: El anillo de polinomios K[x]. 1. Construcción del anillo de polinomios K[x]. Dado un cuerpo K, se define m K[x] = { a i x i a i K, i = 0,..., m, m N {0}}, i=0 donde

Más detalles

Álgebra. Curso de junio de Grupo B

Álgebra. Curso de junio de Grupo B Álgebra. Curso 2008-2009 9 de junio de 2009. Grupo B Primera parte Ejercicio. 1. Sea D un dominio noetheriano que no es un cuerpo. Demuestra que son equivalentes: (a) D es un dominio de Dedekind. (b) Todo

Más detalles

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E Relaciones de orden Diremos que una relación R es de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Generalmente usaremos la notación en lugar de R para expresar relaciones de

Más detalles

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios Semana 14 [1/19] 8 de junio de 2007 División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema

Más detalles

Álgebra Básica Primera parte

Álgebra Básica Primera parte Álgebra Básica Primera parte 21-1-2016 apellidos nombre Observaciones: -) Todos los ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global, según se

Más detalles

Exámenes de álgebra básica de enero de Grupos 1 y 3.

Exámenes de álgebra básica de enero de Grupos 1 y 3. Exámenes de álgebra básica de enero de 2019. Grupos 1 y 3. GRUPOS 1. Calcular razonadamente todos los subgrupos normales de S 4. Un subgrupo H de un grupo G es normal si y solamente si para cada g G se

Más detalles

Aritmética Entera MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Aritmética Entera F. Informática.

Aritmética Entera MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Aritmética Entera F. Informática. Aritmética Entera MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Aritmética Entera F. Informática. UPM 1 / 18 Estructura de los números enteros Estructura de los números enteros Definición

Más detalles

Anillos. 3.1 Anillos. a b c d e a a a a a a b a b c d e c a c e b d d a d b e c e a e d c b

Anillos. 3.1 Anillos. a b c d e a a a a a a b a b c d e c a c e b d d a d b e c e a e d c b Capítulo 3 Anillos Hemos utilizado estructuras en las que hay dos operaciones, como la suma y el producto en Z. El objeto más básico de este tipo es un anillo, cuyos axiomas son bastante parecidos a los

Más detalles

Divisibilidad y primeros resultados

Divisibilidad y primeros resultados Divisibilidad y primeros resultados En este capítulo recordamos conceptos ya conocidos por el estudiante en cursos anteriores y. Divisibilidad En esta primera sección repasamos algunos resultados conocidos

Más detalles

Álgebra. Curso

Álgebra. Curso Álgebra. Curso 2012-2013 14 de junio de 2013 Resolución Ejercicio. 1. (2 puntos) Utiliza el teorema del descenso (o alternativamente la localización en primos) para probar el siguiente resultado: Sea K

Más detalles

ESTRUCTURAS ALGEBRAICAS 05-06

ESTRUCTURAS ALGEBRAICAS 05-06 ESTRUCTURAS ALGEBRAICAS 05-06 Tema 1 Anillos e ideales. Morfismos de anillos. Anillos de polinomios. Teorema de la base de Hilbert. Divisibilidad y factorización. Tema 2 Operaciones con ideales. Ideales

Más detalles

ÁLGEBRA 3 Segundo cuatrimestre 2014

ÁLGEBRA 3 Segundo cuatrimestre 2014 ÁLGEBRA 3 Segundo cuatrimestre 2014 Práctica 0: Preliminares 1. Sea A un anillo. (a) Existen en A ideales maximales y, de hecho, todo ideal propio de A está contenido en uno maximal. (b) Un ideal p de

Más detalles

Tarea 2 de Álgebra Superior II

Tarea 2 de Álgebra Superior II Tarea 2 de Álgebra Superior II Divisibilidad 1. Sean a, b, c, d Z. Determine si los siguientes enunciados son verdaderos o falsos. Si son verdaderos, probar el resultado, y si son falsos, dar un contraejemplo.

Más detalles

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R.

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R. Capítulo 7 Anillos 7.1 Definiciones Básicas El concepto de Anillo se obtiene como una generalización de los números enteros, en donde están definidas un par de operaciones, la suma y el producto, relacionadas

Más detalles

Aritmética Entera y Modular.

Aritmética Entera y Modular. Tema 5 Aritmética Entera y Modular. 5.1 Divisibilidad en Z. Definición 1. Si a, b Z, a 0, se dice que a divide a b, y se indica por a b, si existe k Z, tal que b = ak. También se dice que a es un divisor

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

Material de Apoyo. 1. Notación Usual. Q Los números racionales (fracciones). R Los números reales. ], a] El intervalo {x R : x a}.

Material de Apoyo. 1. Notación Usual. Q Los números racionales (fracciones). R Los números reales. ], a] El intervalo {x R : x a}. Material de Apoyo 1. Notación Usual N Los números naturales {1, 2, 3,...}. Z Los enteros {..., 3, 2, 1, 0, 1, 2, 3,...}. Q Los números racionales (fracciones). R Los números reales. P Los números primos

Más detalles

TEORIA DE NUMEROS. Temas: MAXIMO COMUN DIVISOR ALGORITMO MCD(A,B) IDENTIDAD DE BEZOUT ALGORITMO ST(A,B) EL TEOREMA FUNDAMENTAL DE LA ARITMETICA.

TEORIA DE NUMEROS. Temas: MAXIMO COMUN DIVISOR ALGORITMO MCD(A,B) IDENTIDAD DE BEZOUT ALGORITMO ST(A,B) EL TEOREMA FUNDAMENTAL DE LA ARITMETICA. . 1 TEORIA DE NUMEROS Temas: CLASE 2 HS: MAXIMO COMUN DIVISOR ALGORITMO MCD(A,B) IDENTIDAD DE BEZOUT ALGORITMO ST(A,B) CLASE 1:15 H: EL TEOREMA FUNDAMENTAL DE LA ARITMETICA. GENERACION DE LA DESCOMPOSICIÓN

Más detalles

6.1 Teorema de estructura de los módulos finitamente generados

6.1 Teorema de estructura de los módulos finitamente generados Tema 6.- Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones: ecuaciones lineales con coeficientes enteros, formas canónicas de Jordan 6.1 Teorema de estructura de

Más detalles

Las demostraciones de las propiedades (1) y (2) quedan a cargo del estudiante.

Las demostraciones de las propiedades (1) y (2) quedan a cargo del estudiante. Sección II CONCEPTOS PREVIOS.. Definición.. Se dice que un número entero! es divisible por otro entero! (distinto de cero) si existe un tercer entero! tal que! =!!. Se expresa como!!, que se lee! es divisible

Más detalles

DIVISIBILIDAD: Resultados

DIVISIBILIDAD: Resultados DIVISIBILIDAD: Resultados Página 1 de 9 Se enumeran a continuación, como referencia, ciertos resultados sobre divisibilidad. 1.1 Definición. Dados los enteros a y b, se dice que a divide a b (Notación:

Más detalles

Propiedades de números enteros (lista de problemas para examen)

Propiedades de números enteros (lista de problemas para examen) Propiedades de números enteros (lista de problemas para examen) Denotamos por Z al conjunto de los números enteros y por N al conjunto de los números enteros positivos: N = 1, 2, 3,...}. Valor absoluto

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios Sea (A, +,.) un anillo conmutativo. Indicamos con A[x] al conjunto de polinomios en una indeterminada x con coeficientes en

Más detalles

4to Concurso Unversitario de Matemáticas Galois-Noether 2014 Segunda Etapa

4to Concurso Unversitario de Matemáticas Galois-Noether 2014 Segunda Etapa 4to Concurso Unversitario de Matemáticas Galois-Noether 2014 Segunda Etapa Sábado 9 de agosto 2014 Bienvenido a la Segunda Etapa del Concurso Universitario de Matemáticas Galois-Noether Instrucciones Lee

Más detalles

La estructura de un cuerpo finito.

La estructura de un cuerpo finito. 9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica

Más detalles

Tema 8.- Anillos y cuerpos

Tema 8.- Anillos y cuerpos Tema 8.- Anillos y cuerpos Definición.- Un anillo es una terna (A, +, ) formada por un conjunto A y dos operaciones internas y binarias +, verificando: 1. El par (A, +) es un grupo abeliano, cuyo elemento

Más detalles

1. Dominio de integridad: Si a, b son enteros, y a 0, b 0 entonces

1. Dominio de integridad: Si a, b son enteros, y a 0, b 0 entonces 1 Números enteros 1.1 Operaciones Pretendemos precisar nuestro conocimiento intuitivo de los números enteros, lo denotamos por Z (del alemán Zahl número). Definición 1 Los números enteros admiten tres

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2014 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I.

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I. Leandro Marín Septiembre 2010 Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización Los Números Enteros Llamaremos números enteros al conjunto infinito

Más detalles

Gu ıa Departamento. Matem aticas U.V.

Gu ıa Departamento. Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas 1. Determinar el cociente y el residuo de 541 y de -541al dividir por 17 391 y -391 al dividir por 17 Guía de Teoría de Números 2. Sea a Z,n N comparar

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

Dominios de factorización única

Dominios de factorización única CAPíTULO 3 Dominios de factorización única 1. Dominios euclídeos En la sección dedicada a los números enteros hemos descrito todos los ideales de Z. En este apartado introducimos una familia de anillos

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Anexo: CUERPOS FINITOS Mayo de 2017 Anexo: CUERPOS FINITOS A.1. Algunas

Más detalles

TEMA 4. Anillos de polinomios.

TEMA 4. Anillos de polinomios. TEMA 4 Anillos de polinomios. Ejercicio 4.1. Encontrar un polinomio f(x) de grado 3 tal que: f(0) = 6, f(1) = 12 y f(x) (3x + 3) mod (x 2 + x + 1). Ejercicio 4.2. Demostrar que en un D.E. todos los ideales

Más detalles

Teoría de Números. Orlando Ochoa Castillo 25 de septiembre de 2011

Teoría de Números. Orlando Ochoa Castillo 25 de septiembre de 2011 Teoría de Números Orlando Ochoa Castillo 25 de septiembre de 2011 1. Divisibilidad La Teoría de Números es un tema muy importante en las Olimpiadas de Matemáticas, esta área estudia el comportamiento de

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo Así como al estudiar conjuntos hablamos de la existencia de términos primitivos (que no se definen), para definir algunos conjuntos,

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Anillos finitos locales

Anillos finitos locales Anillos finitos locales XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Estructura de los anillos finitos Un anillo conmutativo A es local si tiene un único ideal maximal

Más detalles

ALGEBRA III Práctica 1

ALGEBRA III Práctica 1 1 er cuatrimestre 2002 ALGEBRA III Práctica 1 Nota: En esta práctica anillo significa anillo conmutativo con 1 0. 1. Sea A un anillo. Probar que: (i) A tiene ideales maximales y todo ideal propio I está

Más detalles

Inversa de una matriz

Inversa de una matriz Capítulo 2 Álgebra matricial 2.1. Inversa de una matriz Inversa de una matriz Para una matriz cuadrada A n n, la matriz B n n que verifica las condiciones AB = I n y B A=I n se denomina inversa de A, y

Más detalles

Campos finitos y teoría de Galois

Campos finitos y teoría de Galois Campos finitos y teoría de Galois José Ibrahim Villanueva Gutiérrez 1. Campos finitos 1.0.1. Campos finitos Recordemos la siguiente definición. Definición 1. Un campo K es un conjunto con dos operaciones

Más detalles

Teoría de Números. 22 de julio de 2012

Teoría de Números. 22 de julio de 2012 Teoría de Números Naoi Sato 22 de julio de 2012 Resumen Estas notas sobre teoría de números fueron originariamente escritas en 1995 para estudiantes de nivel OIM. Cubre sólo

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Apartado A1 del Anexo: Algunas estructuras algebraicas interesantes Mayo

Más detalles

Ejercicio 4. Graficar los siguientes conjuntos en el plano complejo:

Ejercicio 4. Graficar los siguientes conjuntos en el plano complejo: ALGEBRA I - Práctica N 5 - Primer cuatrimestre de 2002 Números complejos Ejercicio 1. Im(z 1 ): En cada uno de los siguientes casos hallar Re(z), Im(z), z, Re(z 1 ) e i) z = (1 + 2i) + i.(2 + i) ii) z

Más detalles

El Algoritmo de Euclides

El Algoritmo de Euclides El Algoritmo de Euclides Pablo L. De Nápoli Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 25 de abril de 2014 Pablo L. De Nápoli (Departamento de Matemática

Más detalles

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois.

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 1 Tema 9.-. Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 9.1. Caracteres de un grupo. A la hora de resolver una ecuación f(x) = 0 con f(x) k[x], tomamos un

Más detalles

MATEMÁTICAS TEMA 50. Polinomios. Operaciones. Fórmula de Newton. Divisibilidad de polinomios. Fracciones algebraicas

MATEMÁTICAS TEMA 50. Polinomios. Operaciones. Fórmula de Newton. Divisibilidad de polinomios. Fracciones algebraicas MATEMÁTICAS TEMA 50 Polinomios. Operaciones. Fórmula de Newton. Divisibilidad de polinomios. Fracciones algebraicas ÍNDICE. 1. Introducción. 2. El anillo de los polinomios. 3. Potencia de un polinomio.

Más detalles

Notas sobre polinomios

Notas sobre polinomios Notas sobre polinomios Glenier Bello 1. Definiciones y conceptos básicos 1.1. Un polinomio es una función f : C C del tipo f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, donde n es un entero no negativo

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

Anillos de Galois. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014

Anillos de Galois. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014 Anillos de Galois XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Definición y primeras propiedades Un anillo asociativo A se llama anillo de Galois (denotado GR por sus siglas

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) Divisibilidad Álgebra I Práctica 3 - Números enteros (Parte 1 1. Decidir cuáles de las siguientes afirmaciones son verdaderas para todo a, b, c Z i a b c a c y b c, ii 4 a a, iii a b a ó b, iv 9 a b 9

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS RAÍCES MÚLTIPLES. Dado un polinomio con coeficientes en un cuerpo existirá siempre un elemento del cuerpo que anula el polinomio? Siempre existe un cuerpo donde podamos encontrar

Más detalles