OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON"

Transcripción

1 OTRAS HERRAMIETAS ESTADISTICAS UTILES Dra. ALBA CECILIA GARZON

2 Que es un Test de Significancia estadística? El término "estadísticamente significativo" invade la literatura y se percibe como una etiqueta que indicase "garantía de calidad".

3 Qué es un Test de Significancia estadística? Cuantifican hasta que punto la variabilidad de la muestra puede ser responsable de los resultados de un estudio en particular. La H o (hipótesis nula) representa la afirmación de que no hay asociación entre las dos variables estudiadas y la H a (hipótesis alternativa) afirma que hay algún grado de relación o asociación entre las dos variables. Es una aseveración H o (hipótesis nula) = No hay diferencia entre ambos tratamientos. H a (hipótesis alternativa) = Sí existe diferencia

4 Qué es un Test de Significancia estadística? Son estadísticamente diferentes? son verdaderamente diferentes? NO SOLO PARECER DIFERENTES!! Se necesita una prueba para decir si son estadísticamente diferentes?

5

6 Qué se entiende por Nivel de Significancia? Probabilidad de rechazar la hipótesis nula cuando es verdadera : El nivel de confianza (1-α), indica la probabilidad de aceptar la hipótesis planteada, cuando es verdadera en la población.

7 Qué estadísticos usar?

8 Que estadísticos usar LOS ESTADÍSTICOS z Y t. La elección de uno de estos depende de la cantidad de muestras que se toman Si el tamaño de la muestra de la prueba son iguales a 30 o mas se utiliza el estadístico z En caso contrario se utiliza el estadístico t.

9

10 Test de significancia mas usados TEST T Y TEST F TEST T En un laboratorio de alimentos un analista hizo 10 replicas de una muestra de carne para detección de enterobacterias, obteniendo un promedio de 54,000 UFC/g. El valor asignado es de 44,100 UFC/g. Ho: No existe diferencia significativa entre el valor medio obtenido y el valor asignado. Test t para una muestra

11 TEST T Se hace recuento en UFC/g de Hongos y Lavaduras en carne y leche en polvo empleando un método tradicional. Obteniendo un promedio del recuento de 806 UFC/g de hongos y levaduras en carne y 910 UFC/g en leche en polvo. Ho: No existe diferencia entre el valor medio obtenido en el recuento de UFC/g en de la carne y el valor medio obtenido en la leche en polvo. Test t NO pareado o independiente

12 TEST T Se hace recuento en UFC/g de Bacillus cereus. en carne empleando un medio tradicional Agar selectivo de Bacillus cereus (Mossel) y en un método comercial en placa. Obteniendo un promedio del recuento de 200 UFC/g en el medio tradicional Agar selectivo de Bacillus cereus (Mossel) y 223 UFC/g en el método comercial en placa. Ho: No existe diferencia entre el valor medio obtenido en el recuento de UFC/g en el medio Agar selectivo de Bacillus cereus (Mossel) y el valor medio obtenido por el método comercial en placa. Test t pareado

13 TEST DE SIGNIFICANCIA E INTERVLOS DE CONFIANZA t- test f-test Son usadas a menudo para determinar si la diferencia que existe entre dos cantidades que están midiendo el desempeño de un parámetro son significativas Estos test son llamados test de significancia 13

14 TEST DE SIGNIFICANCIA E INTERVLOS DE CONFIANZA Hipótesis Nula: No existe diferencia entre las dos cantidades. Cuando las Pruebas Estadísticas T o F test son grandes, la hipótesis nula es rechazada. Es decir que la diferencia es estadísticamente significativa. Cuando estas estadísticas son pequeñas no tienen diferencia estadísticamente significativa la Hipótesis Nula es aceptada. 14

15 15

16 T TEST PAREADO Se emplea para evaluar dos medias y determinar si existe diferencia entre ellas. Pareado si las dos medias son tomadas de la misma muestra estadística : Comparación son las misma muestras procesadas en dos métodos. No pareados cuando se comparan dos medias de diferente muestra estadística ejemplo cuando se compara la media de los valores de obtenidos en un queso vs la media de los valores de obtenidos en quajada en un ensayo microbiológico. 16

17 T Test Pareado El Sesgo o Bias se calcula : mediante la diferencia de las dos medias. BIAS =Y-X Valor de T bias T = s d / N El valor de t expresa la magnitud del error sistemático en múltiplos de (DS) 17

18 T Test Pareado Si el valor de t obtenido en la ecuación es mayor que el valor de T crítico obtenido en la tabla la hipótesis nula es rechazada es decir que existe diferencia significativa entre las medias, es decir que existe un error sistemático. El valor critico de t es calculado en función de la probabilidad y los grados de libertad de la prueba. bias T = s d / N Bias = y - x 18

19 Grados de libertad cuando se hacen replicas, en ejercicios de r y R.

20 F Test Es usado para comparar la varianza del método probado con la varianza del método de comparación. La varianza es simplemente el cuadrado de la DS. Mientras el T test muestra si existe diferencia significativa entre las medias el test F muestra si existe diferencia significativa entre las varianzas. 20

21 F Test En pocas palabras el test t es usado para estimar si existe Error sistemático (inexactitud y el test F es usado para error aleatorio (imprecisión). Cuando el valor de F tést es mayor que el valor crítico de F encontrado en la tabla, la hipótesis nula es rechazada, y entonces la diferencia estadística entre las varianzas es significativa. 21

22 F Test Método Probado (Y) N= 21 DS = 5 Método Comparativo (X) N= 31 DS = 4 F = DSy 2 /(DS)x 2 = 25/16 = 1.56 En la tabla el valor crítico para F es < 1.93 luego no existe diferencia significativa. 22

23 23

24 Ejercicio En un estudio de validación de un método comercial para detectar bacterias del género Bacillus cereus, este tiene una DS log10 de 0,40, y el método de comparación tiene una DS log10 de 0,60. Ambas estimaciones se hicieron sobre 21 muestras. Cual es el valor del F calculado Cual es el valor del F critico La diferencia observada en precisión es estadísticamente significativa 24

25 CRITERIO DE ACEPTABILIDAD EN LOS TEST DE REPETIBILIDAD

26 TROMPETA Y ECUACION DE HORWITZ El Coeficiente de Variación (CV) Horwitz, es propuesto como un valor de referencia para evaluar el desempeño de en pruebas Interlaboratorios Establece el modelo general de reproducibilidad y Repetibilidad, pudiendo evaluar la homogeneidad de la varianza. Horwitz dedujo una expresión para predecir el valor esperado para la desviación estándar relativa para la precisión intermedia (o interlaboratorio) a partir de la concentración de analito, c. ECUACIÓN HORWITZ: (2^(1-(0,5*(LOG10( CONCENTRACION MEDIA/ )))))

27 Microgramos

28 2. VALIDEZ DE UN DUPLICADO 5.5 veces la DS obtenida bajo condiciones de Repetibilidad.

29 MANEJO DE VALORES ABERRANTES

30 FILTROS ESTADISTICOS FILTRO DE DIXON

31 MÉTODO DE DIXON PARA VALORES ABERRANTES 1. Ordenar los valores de Mayor a menor. Dato mayor Xn y el anterior Xn-1 Dato menor X1 y el siguiente X2 2. El menor valor es aberrante si: X2-X1 > (Xn-X1)/3 3. El mayor valor es aberrante si : Xn-Xn-1 > (Xn-X1)/3 4. Se prueba pareado. 31

32 CEPA ATCC ATCC NOMBRE: MATRIZ: METODO: UNIDADES: Sthafilococcus aureus CARNE DIRECTO UFC/gr UCF/gr LOG10 ARREGLO ORDENADO DCE LOS DATOS 01/08/ ,26 4,00 02/08/ ,23 4,00 03/08/ ,04 4,04 04/08/ ,00 4,04 05/08/ ,26 4,08 06/08/ ,18 4,18 07/08/ ,23 4,20 08/08/ ,20 4,20 09/08/ ,48 4,23 10/08/ ,23 4,23 11/08/ ,08 4,23 12/08/ ,00 4,23 13/08/ ,20 4,23 14/08/ ,23 4,23 15/08/ ,26 4,26 16/08/ ,23 4,26 17/08/ ,23 4,26 18/08/ ,28 4,28 19/08/ ,04 4,28 20/08/ ,28 4,48 XN 4,48 XN-1 4,28 X1 4 X2 4,04 MAYOR ABERRANTE MENOR ABERRANTE XN-XN-1 0,2 (XN-X1)/3 0,16 EL VALOR ES ABERRANTE X2-X1 0,04 (XN-X1)/3 0,16 EL VALOR NO ES ABERRANTE 32

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre 2011-1 Profesor: Jaime Soto PRUEBA DE HIPÓTESIS Ejemplo El jefe de la Biblioteca de la URBE manifiesta

Más detalles

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14 Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca

Más detalles

RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1

RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1 IV. RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1 Ver gráficos en ANEXO 1 4.2 SELECTIVIDAD Placebo de excipientes: No

Más detalles

> NT-32 rev. 2 ENAC Tipo III: Métodos basados en métodos de referencia Tipo IV: Otros métodos.

> NT-32 rev. 2 ENAC Tipo III: Métodos basados en métodos de referencia Tipo IV: Otros métodos. > NT-32 rev. 2 ENAC Tipo III: Métodos basados en métodos de referencia. Métodos descritos en procedimientos internos del laboratorio, que están basados claramente en métodos de referencia y que no suponen

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Objetivos de la clase Objetivos de la estadística. Concepto y parámetros

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Pruebas de hipótesis

Pruebas de hipótesis Pruebas de hipótesis Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Prueba de hipótesis Uno de los objetivos de la estadística es hacer

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

VALIDACIÓN DE MÉTODOS DE ANÁLISIS VALIDACIÓN DE MÉTODOS 1

VALIDACIÓN DE MÉTODOS DE ANÁLISIS VALIDACIÓN DE MÉTODOS 1 VALIDACIÓN DE MÉTODOS DE ANÁLISIS VALIDACIÓN DE MÉTODOS 1 Índice 1. Por qué validar un método de análisis? 2. Cuándo validar un método de análisis? 3. Validación de métodos de análisis. 3.1. Selectividad

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA INFERENCIA ESTADISTICA ESTIMACION 2 maneras de estimar: Estimaciones puntuales x s 2 Estimaciones por intervalo 2 ESTIMACION Estimaciones por intervalo Limites de Confianza LCI

Más detalles

ENSAYOS DE INTERCOMPARACIÓN-PROFICIENCY TESTS

ENSAYOS DE INTERCOMPARACIÓN-PROFICIENCY TESTS ENSAYOS DE INTERCOMPARACIÓN-PROFICIENCY TESTS Concepto. Según la Guía ISO 30, los ejercicios de intercomparación o ensayos interlaboratorios se definen como la serie de medidas realizadas sobre uno o varios

Más detalles

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN Adela del Carpio Rivera Doctor en Medicina UNIVERSO Conjunto de individuos u objetos de los que se desea conocer algo en una investigación Población o universo

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS Gestor de Calidad Página: 1 de 5 1. Propósito Establecer una guía para el cálculo de la incertidumbre asociada a las mediciones de los ensayos que se realizan en el. Este procedimiento ha sido preparado

Más detalles

Incertidumbre, Validación y Trazabilidad en el Laboratorio de Análisis Clínicos. Cómo cumplir con requisitos de la ISO 15189

Incertidumbre, Validación y Trazabilidad en el Laboratorio de Análisis Clínicos. Cómo cumplir con requisitos de la ISO 15189 Incertidumbre, Validación y Trazabilidad en el Laboratorio de Análisis Clínicos Cómo cumplir con requisitos de la ISO 15189 Calidad en mediciones químicas Validación de métodos Estoy midiendo lo que intentaba

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología Exemple Examen Part II (c) Problema 1 - Solución. En un estudio sobre la elección de la carrera universitaria entre envió cuestionarios a una muestra aleatoria simple de estudiantes preguntando la carrera

Más detalles

Introducción a la Estadística Aplicada en la Química

Introducción a la Estadística Aplicada en la Química Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00

Más detalles

El primer paso en la realización de una investigación es planear las hipótesis de investigación. Definamos el concepto de hipótesis:

El primer paso en la realización de una investigación es planear las hipótesis de investigación. Definamos el concepto de hipótesis: El primer paso en la realización de una investigación es planear las hipótesis de investigación. Definamos el concepto de hipótesis Definición 1.- Una hipótesis es una afirmación que está sujeta a verificación

Más detalles

HERRAMIENTAS DE CALIDAD EN PROCESOS METROLÓGICOS

HERRAMIENTAS DE CALIDAD EN PROCESOS METROLÓGICOS HERRAMIENTAS DE CALIDAD EN PROCESOS METROLÓGICOS Ing. Claudia Santo Directora de Metrología Científica e Industrial 17/05/2016 MEDELLÍN, COLOMBIA MEDIR Cómo sabemos que nuestras meciones son correctas?

Más detalles

CONTROL ESTADISTICO DE LA CALIDAD

CONTROL ESTADISTICO DE LA CALIDAD CICLO 2012-I Módulo:2 Unidad:2 Semana: 2 CONTROL ESTADISTICO DE LA CALIDAD ING. ENRIQUE MONTENEGRO MARCELO PRUEBAS DE HIPOTESIS CONTENIDOS TEMÁTICOS 1. DEFINICIÓN DE HIPOTESIS 2. PROCEDIMIENTO DE UNA PRUEBA

Más detalles

EVALUACION DE RESULTADOS INTRA-LABORATORIO. EDWIN GUILLEN Servicio Nacional de Metrología INDECOPI Simposio de Metrología Lima PERU - Mayo del 2010

EVALUACION DE RESULTADOS INTRA-LABORATORIO. EDWIN GUILLEN Servicio Nacional de Metrología INDECOPI Simposio de Metrología Lima PERU - Mayo del 2010 EVALUACION DE RESULTADOS INTRA-LABORATORIO EDWIN GUILLEN Servicio Nacional de Metrología INDECOPI Simposio de Metrología Lima PERU - Mayo del 2010 1 EVALUACION DE RESULTADOS INTRA-LABORATORIO INTRODUCCION

Más detalles

PATRONES DE DISTRIBUCIÓN ESPACIAL

PATRONES DE DISTRIBUCIÓN ESPACIAL PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. 1 PROBABILIDAD Probabilidad de un evento es la posibilidad relativa de que este ocurra al realizar el experimento Es la frecuencia de que algo ocurra dividido

Más detalles

Aseguramiento de la calidad analítica Pruebas estadísticas AQS 5

Aseguramiento de la calidad analítica Pruebas estadísticas AQS 5 Aseguramiento de la calidad analítica Pruebas estadísticas AQS 5 Métodos Contenido Hipótesis Prueba de distribución normal Método gráfico Asignación del valor en la red de probabilidad Métodos numéricos

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011 Diseños factoriales José Gabriel Palomo Sánchez gabrielpalomo@upmes EUAT UPM Julio de 2011 Índice 1 Diseños factoriales con dos factores 1 Denición 2 Organización de los datos 3 Ventajas de los diseños

Más detalles

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de

Más detalles

Estadística II / PRUEBAS DE HIPOTESIS. Una hipótesis estadística es una afirmación o conjetura acerca de una o mas poblaciones.

Estadística II / PRUEBAS DE HIPOTESIS. Una hipótesis estadística es una afirmación o conjetura acerca de una o mas poblaciones. PRUEBAS DE HIPOTESIS La prueba de hipótesis es un procedimiento estadístico que comienza con una suposición que se hace con respecto a un parámetro de población, luego se recolectan datos de muestra, se

Más detalles

Validación de los métodos microbiológicos CARACTERISTICAS DE LOS RESULTADOS DE MEDICION DE METODOS MICROBIOLOGICOS

Validación de los métodos microbiológicos CARACTERISTICAS DE LOS RESULTADOS DE MEDICION DE METODOS MICROBIOLOGICOS Validación de los métodos microbiológicos CARACTERISTICAS DE LOS RESULTADOS DE MEDICION DE METODOS MICROBIOLOGICOS Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Objetivos de la clase Conceptos

Más detalles

Comparación de dos métodos de aprendizaje sobre el mismo problema

Comparación de dos métodos de aprendizaje sobre el mismo problema Comparación de dos métodos de aprendizaje sobre el mismo problema Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid Contenido 1. Motivación 2.

Más detalles

Contrastes de Hipótesis paramétricos y no-paramétricos.

Contrastes de Hipótesis paramétricos y no-paramétricos. Capítulo 1 Contrastes de Hiptesis paramétricos y no-paramétricos. Estadística Inductiva o Inferencia Estadística: Conjunto de métodos que se fundamentan en la Teoría de la Probabilidad y que tienen por

Más detalles

CLASE X ANÁLISIS PROBABILISTICO DE LAS VARIABLES PRECIPITACIÓN TOTAL ANUAL Y CAUDAL MEDIO ANUAL

CLASE X ANÁLISIS PROBABILISTICO DE LAS VARIABLES PRECIPITACIÓN TOTAL ANUAL Y CAUDAL MEDIO ANUAL Universidad Nacional Agraria La Molina IA-406 Hidrología Aplicada CLASE X ANÁLISIS PROBABILISTICO DE LAS VARIABLES PRECIPITACIÓN TOTAL ANUAL Y CAUDAL MEDIO ANUAL 1. Longitud necesaria de registro Diversos

Más detalles

TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO

TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO PROCESO ANALÍTICO Conjunto de operaciones analíticas intercaladas que se

Más detalles

Conceptos del contraste de hipótesis

Conceptos del contraste de hipótesis Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de

Más detalles

Tests de Hipótesis basados en una muestra. ESTADÍSTICA (Q) 5. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA CONOCIDA

Tests de Hipótesis basados en una muestra. ESTADÍSTICA (Q) 5. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA CONOCIDA 2 5. TESTS DE HIPÓTESIS PARA LA MEDIA DE UNA POBLACIÓN NORMAL CON VARIANZA CONOCIDA 5. Desarrollo de un ejemplo Interesa saber si el método de absorción atómica de vapor frío para determinar mercurio introduce

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

Taller de Validación de Métodos Verificación de Procedimientos de Medidas Cualitativos: Enfermedades Infecciosas. PONENTE: Gabriel A.

Taller de Validación de Métodos Verificación de Procedimientos de Medidas Cualitativos: Enfermedades Infecciosas. PONENTE: Gabriel A. Taller de Validación de Métodos Verificación de Procedimientos de Medidas Cualitativos: Enfermedades Infecciosas PONENTE: Gabriel A. Migliarino Agenda Introducción Evaluación de Procedimientos de Medida

Más detalles

Aplicaciones de apoyo al diagnóstico médico. Identificación de objetos amigos y enemigos. Identificación de zonas afectadas por un desastre natural.

Aplicaciones de apoyo al diagnóstico médico. Identificación de objetos amigos y enemigos. Identificación de zonas afectadas por un desastre natural. Capítulo 5 Evaluación En muchas ocasiones requerimos hacer una evaluación muy precisa de nuestros algoritmos de aprendizaje computacional porque los vamos a utilizar en algún tipo de aplicación que así

Más detalles

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA Lima Perú 2013 DISEÑO COMPLETAMENTE ALEATORIZADO Es el diseño más simple y sencillo de realizar, en el cual los tratamientos

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con Hasta ahora hemos supuesto que conocemos o podemos calcular la función/densidad de probabilidad (distribución) de las variables aleatorias. En general, esto no es así. Más bien se tiene una muestra experimental

Más detalles

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL 1 PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL Prof.: MSc. Julio R. Vargas A. I. INTRODUCCION El presente trabao está orientado a aplicar los conocimientos de estadística inferencial a un caso práctico

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

ANALÍTICOS, FISICOQUÍMICOS Y

ANALÍTICOS, FISICOQUÍMICOS Y VALIDACIÓN DE MÉTODOS ANALÍTICOS, FISICOQUÍMICOS Y MICROBIOLÓGICOS Guatemala, 11 de septiembre de 2012 1 VALIDACIÓN DE MÉTODOS ANALÍTICOS I. GENERALIDADES 2 OBJETIVOS DEL CURSO 1. Intentamos contestar

Más detalles

Estadística II / PRUEBAS DE HIPOTESIS. Una hipótesis estadística es una afirmación o conjetura acerca de una o mas poblaciones.

Estadística II / PRUEBAS DE HIPOTESIS. Una hipótesis estadística es una afirmación o conjetura acerca de una o mas poblaciones. La prueba de hipótesis es un procedimiento estadístico que comienza con una suposición que se hace con respecto a un parámetro de población, luego se recolectan datos de muestra, se producen estadísticas

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Prueba de Hipótesis. Para dos muestras

Prueba de Hipótesis. Para dos muestras Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de

Más detalles

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta o llene los espacios en blanco (0,5 puntos c/u): 1. (V F) La prueba

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

Prueba de hipótesis para la diferencia de medias

Prueba de hipótesis para la diferencia de medias Estadística Técnica Prueba de hipótesis para la diferencia de medias Cladera Ojeda, Fernando Conceptos previos Inferencia estadística Población Muestra Parámetro Estadístico Hipótesis estadística Pruebas

Más detalles

61/182 VALOR DIANA VALOR DIANA MÉTODO ALTERNATIVO A ALTA PROBABILIDAD ACEPTACIÓN LÍMITE DE ACEPTACIÓN LÍMITE DE MÉTODO ACEPTACIÓN

61/182 VALOR DIANA VALOR DIANA MÉTODO ALTERNATIVO A ALTA PROBABILIDAD ACEPTACIÓN LÍMITE DE ACEPTACIÓN LÍMITE DE MÉTODO ACEPTACIÓN VALOR DIANA VALOR DIANA MÉTODO ALTERNATIVO A ALTA PROBABILIDAD ACEPTACIÓN LÍMITE DE ACEPTACIÓN REGIÓN DE ACEPTACIÓN LÍMITE DE ACEPTACIÓN MÉTODO ALTERNATIVO B BAJA PROBABILIDAD ACEPTACIÓN REGIÓN DE ACEPTACIÓN

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

Visto el artículo 5,párrafo 4 de la Convención internacional de unificación de métodos de análisis y de valoración de vinos del 13 de octubre de 1954,

Visto el artículo 5,párrafo 4 de la Convención internacional de unificación de métodos de análisis y de valoración de vinos del 13 de octubre de 1954, RESOLUCIÓN OENO 6-2000 PROTOCOLO DE VALIDACIÓN DE MÉTODOS DE ANÁLISIS ASAMBLEA GENERAL Visto el artículo 5,párrafo 4 de la Convención internacional de unificación de métodos de análisis y de valoración

Más detalles

Elaboró: Luis Casas Vilchis

Elaboró: Luis Casas Vilchis Correlación de Pearson (r P, r) Una correlación se define como la coincidencia en el patrón de valores altos de una variable con los valores altos en la otra variable, y bajos con bajos y moderados con

Más detalles

Curso Comparabilidad de resultados

Curso Comparabilidad de resultados Curso Comparabilidad de resultados Director: Gabriel A. Migliarino. Docente: Evangelina Hernández. Agenda Introducción. n. Protocolos iniciales de comparación de métodos. m * EP9-A2. CLSI. * Comparación

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Pruebas de Hipótesis Multiples

Pruebas de Hipótesis Multiples Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Pruebas de hipótesis para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua En muchas situaciones cuando queremos sacar conclusiones sobre una muestra,

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

ESTIMACION DEL TAMAÑO DE LA MUESTRA Y DE LA POTENCIA

ESTIMACION DEL TAMAÑO DE LA MUESTRA Y DE LA POTENCIA ESTIMACION DEL TAMAÑO DE LA MUESTRA Y DE LA POTENCIA HIPOTESIS Y PRINCIPIOS Sabemos a quién y qué vamos a estudiar. Ahora hay que decidir cuántos individuos contendrá la muestra. Hipótesis nula (H o )

Más detalles

ENUMERACIÓN DE MICROORGANISMOS EN ALIMENTOS SUBPROGRAMA: RECUENTO DE STAPHYLOCOCCUS AUREUS EN LECHE

ENUMERACIÓN DE MICROORGANISMOS EN ALIMENTOS SUBPROGRAMA: RECUENTO DE STAPHYLOCOCCUS AUREUS EN LECHE Instituto de Salud Pública Ministerio de Salud DEPARTAMENTO SALUD AMBIENTAL PROGRAMA DE EVALUACIÓN EXTERNA DE CALIDAD PEEC MICROBIOLOGÍA DE ALIMENTOS ENUMERACIÓN DE MICROORGANISMOS EN ALIMENTOS SUBPROGRAMA:

Más detalles

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

Reconocimiento de Patrones

Reconocimiento de Patrones Reconocimiento de Patrones Técnicas de validación (Clasificación Supervisada) Jesús Ariel Carrasco Ochoa Instituto Nacional de Astrofísica, Óptica y Electrónica Clasificación Supervisada Para qué evaluar

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X 2 CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo):

DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X 2 CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo): DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo): son aquellas que representan los valores muestrales observados

Más detalles

Unidad VI Pruebas de Hipótesis Dos Muestras

Unidad VI Pruebas de Hipótesis Dos Muestras Ahora el análisis se hará extensivo a dos muestras, se verá la similitud que existe con la construcción de intervalos de confianza para dos muestras. En el material adjunto se detalla el procedimiento,

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Departamento de Salud Pública Facultad de Medicina UNAM

Departamento de Salud Pública Facultad de Medicina UNAM OBSERVACIÓN Y MEDICIÓN CLÍNICA Departamento de Salud Pública Facultad de Medicina UNAM Dra. Laura Moreno Altamirano Dra. Nora Ibarra Araujo Epidemiología Clínica La Epidemiología Clínica es la aplicación

Más detalles

en Enfermería del Trabajo

en Enfermería del Trabajo revista noviembre:maquetación 1 16/11/2011 6:27 Página 30. 203 Metodología de la investigación Metodología de Investigación en Enfermería del Trabajo Autor Romero Saldaña M Enfermero Especialista en Enfermería

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

Marco de referencia. a) Es útil saber si la estrategia de tratamiento sin un. biológico (menos costosa), tiene mejor o igual eficacia

Marco de referencia. a) Es útil saber si la estrategia de tratamiento sin un. biológico (menos costosa), tiene mejor o igual eficacia Marco de referencia a) Es útil saber si la estrategia de tratamiento sin un biológico (menos costosa), tiene mejor o igual eficacia que la estrategia con un biológico en AR temprana. b) No hay estudios

Más detalles

PEEC-Noticias Junio 2012

PEEC-Noticias Junio 2012 PEEC-Noticias Junio 2012 Subprograma Hemoglobina Glicosilada Dra Lorena Gatti-Dr Bernardo Záccara METODOS UTILIZADOS PARA LA DETERMINACION DE HEMOGLOBINA GLICOSILADA: En la figura 1 se muestran los métodos

Más detalles

Estadísticamente significativo o clínicamente relevante?

Estadísticamente significativo o clínicamente relevante? Adolfo Figueiras Guzmán rof. Titular de edicina reventiva e Saúde ública (USC) Estadísticamente significativo o clínicamente relevante? Índice 1. 1. Introducción 2. 2. Objetivos 3. 3. Desarrollo Conceptos

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

Incertidumbre de la medición en ensayos instrumentales.

Incertidumbre de la medición en ensayos instrumentales. de la medición en ensayos instrumentales. Silva, M L; Friedrichs, M; Navarro, M Av. Figueroa Alcorta 608 GC Bs. As TEL: 6957- FAX:6950 Maria_L_Silva@aguasargentinas.com.ar Mónica_N_Friedrichs@aguasargentinas.com.ar

Más detalles

Verificación de Técnicas Analíticas Caso de Aplicación

Verificación de Técnicas Analíticas Caso de Aplicación Verificación de Técnicas Analíticas Caso de Aplicación Agenda Introducción Conceptos Generales Caso de Aplicación Conclusiones Introducción Validación de Métodos Estudios de evaluación que se realizan

Más detalles

4. Prueba de Hipótesis

4. Prueba de Hipótesis 4. Prueba de Hipótesis Como se ha indicado anteriormente, nuestro objetivo al tomar una muestra es extraer alguna conclusión o inferencia sobre una población. En nuestro interés es conocer acerca de los

Más detalles

Prueba de Hipótesis. Tipos de inferencias (2)

Prueba de Hipótesis. Tipos de inferencias (2) Prueba de Hipótesis Tipos de inferencias (2) PRUEBA DE HIPOTESIS: busca responder a una pregunta sobre el valor de un parámetro en la población (siempre utilizando los resultados de la muestra) Esta pregunta

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Control Estadístico Interno de la Calidad en Serología

Control Estadístico Interno de la Calidad en Serología Control Estadístico Interno de la Calidad en Serología Agenda Introducción Buenas Prácticas Reglas de Control Planificación Introducción Luego de la Evaluación de los Procedimientos de Medida Voy a comenzar

Más detalles

Validación de métodos de ensayo

Validación de métodos de ensayo Validación de métodos de ensayo Validación verificación de que los requisitos especificados son adecuados para un uso determinado Ejemplo: Un procedimiento de medición ordinariamente usado para la medición

Más detalles

ANÁLISIS DE FRECUENCIAS

ANÁLISIS DE FRECUENCIAS ANÁLISIS DE FRECUENCIAS EXPRESIONES PARA EL CÁLCULO DE LOS EVENTOS PARA EL PERÍODO DE RETORNO T Y DE LOS RESPECTIVOS ERRORES ESTÁNDAR DE ESTIMACIÓN REQUERIDOS PARA LA DETERMINACIÓN DE LOS INTERVALOS DE

Más detalles