Econometria de Datos en Paneles

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Econometria de Datos en Paneles"

Transcripción

1 Universidad de San Andres Agosto de 2011

2 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i ) para varias regiones i = 1,..., n I resulta muy importante Critica: I capta el efecto de otros efectos regionales, que tambien son determinantes del crimen.

3 En terminos econometricos Existe una variable omitida y relacionada positivamente con I. El estimador de MCO que regresa y en I es sesgado (hacia arriba) Solucion? Controlar por esta varaible omitida. Paneles al rescate: una solucion simple sin tener que incorporar nuevas variables

4 Datos en paneles Una base de datos en panel contiene informacion para varios individuos (empresas, paises, etc.) en el tiempo. El aspecto fundamental es esta bidimensionalidad de los datos. Ejemplos: PSID: 6500 familias desde La EPH tiene una estructura de panel rotativo.

5 Ventajas Porque paneles? Control de heterogeneidades no observables Con N individuos y T periodos podriamos estimar N modelos de series de tiempo y T modelos de corte transversal. Las ventajas de disponer de un panel tienen que ver con la posibilidad de agregar esta informacin de alguna manera. Ejemplo: y it = x it β + u it Supone que el modelo lineal subyacente es el mismo para todos los individuos y periodos. Mayor informacion sobre un mismo parametro. Mayor eficiencia.

6 Desventajas No siempre es posible agregar informacion temporal y de corte transversal (pueden ser ms observaciones pero de poblaciones heterogeneas). Los paneles son costosos de implementar y administrar. Problemas de selectividad: auto-seleccion, no respuesta, attrition. Dimension temporal corta

7 El Modelo El modelo basico es: y it = x itβ + u it u it = µ i + δ t + ɛ it i = 1,..., N, t = 1,..., T. x it es un vector de K variables explicativas, incluyendo una constante. El termino de error incluye tres componentes, que representan las tres posibles fuentes de variabilidad no observable. Supondremos δ t = 0 y que ɛ it satisface todos los supuestos clasicos.

8 Caso mas simple: µ i = 0 En este caso, u it = ɛ it satisface todos los supuestos del teorema de Gauss-Markov: E(ɛ it ) = 0 { σ 2 si i = h y t = s E(ɛ it e hs ) = 0 si i h o t s El estimador de MCO es MELI. La estructura de panel no agrega informacion

9 En terminos matriciales Y = Xβ + u Y NT 1, X NT + K, apilando las observaciones por individuo, primero ordenadas temporalmente. Entonces: ˆβ MCO = (X X) 1 X Y

10 El estimador de efectos fijos y it = x itβ + µ i + ɛ it Las realizaciones de µ i pueden ser estimadas con un panel (no con un corte transversal!). Puede ser visto un modelo lineal en donde cada individuo tiene su propia ordenada al origen: y it = µ i + β 1 }{{} +β 2 x 2,it + + β K x K,it + ɛ it El modelo se puede estimar usando N 1 variables binarias por individuo, para evitar la trampa de variables binarias.

11 En terminos matriciales Y = Xβ + Dµ + u Y es NT 1, X es NT K, X incluye el intercepto. D es una matriz de N 1 variables binarias por individuo. 1 N , Z = 1 N N N NT (N 1)T

12 Reescribamos el modelo como: con Ẋ [X D] y δ [β µ ]. Y = Xβ + Dµ + u = Ẋδ + u Entonces, el estimador de efectos fijos es: ˆδ EF = ( ˆβEF ˆµ EF ) = (Ẋ Ẋ) 1 Ẋ Y que no es otra cosa que un estimador de MCO agregando N 1 variables binarias por individuo.

13 Efectos fijos y transformacion within Comencemos con el modelo y it = x itβ + µ i + ɛ it Tomando promedios por individuo: ȳ i = x iβ + µ i + ɛ i Restando y it ȳ i = (x it x i ) β + ɛ it ɛ i o yit = x it β + ɛ it con m it m it m i, m = y, x, ɛ.

14 Resultado: ˆβ EF = (X X ) 1 X Y (Prueba: Teorema de Frisch,Waugh, Lovell) Existen dos formas identicas de computar ˆβ EF. Regresar Y en X y las variables binarias por individuo. ˆβEF son los coeficientes estimados para X. En dos pasos: 1) Expresar las variables en desvios con respecto a la media por individuo. 2) MCO en base a estos desvios.

15 Terminologia: Modelo within y it ȳ i = (x it x i ) β + ɛ it ɛ i Modelo between ȳ i = x iβ + µ i + ɛ i

16 Propiedades de ˆβ EF Es insesgado (X y Dµ son exogenas con respecto a ɛ). Es consistente, cuando N o T. Importante: la insesgadez y consistencia de ˆβ EF no presupone que X y Dµ son ortogonales (puede haber correlacion entre X y Dµ

17 Efectos fijos y control de heterogeneidades no observables Supongamos que el modelo es y it = x itβ + z iδ + µ i + ɛ it z i no es observable, pero esta correlacionada con x it. La transformacion within de este modelo es y it = x it β + ɛ it La tranformacion within elimina cualquier variable que no varia en el tiempo (z i y µ i ): estimar por efectos fijos permite controlar por la presencia de z i.

18 Es relevante notar que sin datos de panel, no podriamos haber dado cuenta de z i (que no sea incluyendola en el nodelo. Con datos de corte transversal el modelo es y i = x iβ + z iδ + µ i + ɛ i, de modoe que omitir z i conduce a sesgos. Observar que la tranformacion within es inaplicable (trivialmente cero). Este es el sentido en el cual la disponibilidad de paneles permite controlar por variables omitidas que no varian en el tiempo.

19 Una exploracion grafica

20 Verbalizacion Y = tasa de criminalidad X = ineficiencia del sistema judicial (mas ineficiente, mas criminalidad). Dos regiones Determinante omitido del crimen, a que varia solo por region y correlacionado (positivamete) con la ineficiencia judicial: densidad poblacional.

21

22

23 El estimador de efectos aleatorios El modelo es el mismo En terminos matriciales y it = x itβ + µ i + ɛ it Y = Xβ + Dµ + ɛ Si Dµ es ortogonal a X, y si E(µ i X) = 0, entonces, el estimador de MCO que regresa Y en X es insesgado. Es decir, si Dµ es ortogonal a X, la omision de las variables binarias no sesga al estimador de MCO.

24 Efectos fijos vs aleatorios Discusion muy extraña. Es mas una cuestion de tratamiento Y = Xβ + Dµ + ɛ Efectos fijos (controla por Dµ) Y = Xβ + Dµ + ɛ Efectos aleatorios (trata a Dµ como variable omitida) Y = Xβ + Dµ + ɛ

25 Y = Xβ + Dµ + ɛ Y = Xβ + u, u Dµ + ɛ Problema: u no satisface los supuestos clasicos, aun cuando Dµ y ɛ por separado lo hagan. Prueba simple: supuestos clasicos por separado (esperanza nula, no correlacion ni heterocedasticidad), ademas, no correlacion entre Dµ y ɛ. Entonces V (u) = V (Dµ + ɛ) = DV (µ)d + V (ɛ) = σ 2 µ + σ 2 ɛ I NT que no es un escalar por la matriz identidad (los elementos fuera de la diagonal no son cero).

26 Intuicion: u it = µ i + ɛ it Trivialmente, u it esta correlacionado con u i,t 1 ya que ambos comparten µ i : la presencia permanente de µ i hace que la especificacion de efectos aleatorios induzca autocorrelacion. Si bien MCO es insesgado, no es eficiente, por la presencia de autocorrelacion. Eficiente? Minimos cuadrados generalizados.

27 MCG para efectos aleatorios Consideremos un modelo lineal basico: Y = X β + u en donde valen todos los supuestos clasicos, salvo que: V (u) = Ω Ω es una matriz simetrica y positiva definida (permite, potencialmente, autocorrelacion y heterocedasticidad). Teorema (Aitken): el MELI de β es: ˆβ MCG = (X Ω 1 X) 1 X Ω 1 Y

28 En nuestro caso con θ = (σ 2 µ, σ 2 ɛ ) V (u) = σ 2 µdd + σ 2 ɛ I NT Ω(θ) La implementacion de MCG requiere primero estimar θ (los componentes de varianzas). Estimador de efectos aleatorios: estimador MCG.

29 Resumen Porque paneles? Y = Xβ + Dµ + ɛ X Dµ: MCO, EF, EA y between son todos consistentes parar β. EA es eficiente. X Dµ: solo EF es consistente para β. La practica gravita mayoritariamente a EF.

30 Test de Hausman H 0 : X Dµ, H A : X Dµ Test de Hausman: bajo H 0 H = ( ˆβ EA ˆβ EF ) (Ω EF Ω EA ) 1 ( ˆβ EA ˆβ EF ) χ 2 (K) Rechazar si H es significativamente distinto de cero. Intuicion: bajo H 0, ˆβ EA y ˆβ EF son consistentes, H deberia ser pequeño. Bajo H A, solo ˆβ EF es consistente, H deberia ser alto. Permitiria, bajo H 0, explotar las ganancias de eficiencia de estimar por EA.

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Análisis de Regresión Múltiple: Estimación

Análisis de Regresión Múltiple: Estimación Análisis de Regresión Múltiple: Estimación Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México

Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México Presentan: Dr. Miguel

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Tema 4. El Modelo de Regresión Lineal con Series Temporales.

Tema 4. El Modelo de Regresión Lineal con Series Temporales. Tema 4. El Modelo de Regresión Lineal con Series Temporales. En este tema, estudiaremos en detalle la estimación e inferencia del modelo de regresión con datos de series temporales. Dadas las diferencias

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Tensores cartesianos.

Tensores cartesianos. Tensores cartesianos. Transformación de coordenadas. Consideremos dos sistemas de coordenadas cartesianas ortogonales en el plano, identificados como σ y σ. Supongamos que ambos tienen un origen común,

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Econometría de Económicas

Econometría de Económicas Econometría de Económicas Apuntes para el tema 6 Curso 2004-2005 Profesoras Amparo Sancho Guadalupe Serrano Modelos de panel de datos Datos de Panel son aquellos que surgen de la observación de una misma

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013 ema 3.1: Modelo lineal general: hipótesis y estimación Universidad Complutense de Madrid 2013 Introducción El objetivo es especificar y estimar un Modelo Lineal General (MLG) en donde una variable de interés

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Econometria Notas de clase

Econometria Notas de clase Econometria Notas de clase Walter Sosa Escudero Nota preliminar: estas Notas de Clase sirven al unico proposito de apoyar el dictado de cursos de econometria a nivel de grado. De ninguna manera intentan

Más detalles

Hoja de Ejercicios 4 Análisis de regresión con información cualitativa

Hoja de Ejercicios 4 Análisis de regresión con información cualitativa Hoja de Ejercicios 4 Análisis de regresión con información cualitativa Nota: En aquellos ejercicios en los que se incluyen estimaciones y referencia al archivo de datos utilizado, el estudiante debería

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Análisis de Componentes de la Varianza

Análisis de Componentes de la Varianza Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable

Más detalles

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012 Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Estimación de homografías

Estimación de homografías Estimación de homografías Visión en Robótica 1er cuatrimestre de 2013 1 Introducción del problema Una homografía es una transformación proyectiva que determina una correspondencia entre puntos El problema

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

Datos de Panel. Guía para el uso de Eviews. Alfredo Baronio Ana Vianco

Datos de Panel. Guía para el uso de Eviews. Alfredo Baronio Ana Vianco Datos de Panel Guía para el uso de Eviews Alfredo Baronio Ana Vianco Departamento de Matemática y Estadística Facultad de Ciencias Económicas Universidad Nacional de Río Cuarto Noviembre de 2014 1 Contenido

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Vectores Autorregresivos (VAR)

Vectores Autorregresivos (VAR) Vectores Autorregresivos (VAR) 1 Procesos estocasticos multivariados Y t = [Y 1t, Y 2t,, Y Nt ], t = 1, 2,..., T Estamos interesados en el comportamiento temporal de N variables simultaneamente. E(Y t

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Regresión con heterocedasticidad y autocorrelación

Regresión con heterocedasticidad y autocorrelación Regresión con heterocedasticidad y autocorrelación Tema 6 Regresión con heterocedasticidad La heterocedasticidad significa que var( i ) cte Es la norma, no la excepción, en especial con datos transversales

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

3.1 Proyección de la Demanda. Fundación Bariloche. Noviembre de Documento PDF.

3.1 Proyección de la Demanda. Fundación Bariloche. Noviembre de Documento PDF. 3.1 Proyección de la Demanda. Fundación Bariloche. Noviembre de 2008. Documento PDF. 5. PROYECCIONES DE LA DEMANDA DE ENERGIA Estudio Prospectiva de la Demanda de Energía de República Dominicana Informe

Más detalles

MODELOS LINEALES. Francesc Carmona. Departament d Estadística

MODELOS LINEALES. Francesc Carmona. Departament d Estadística MODELOS LINEALES Francesc Carmona Departament d Estadística Barcelona, 19 de diciembre de 2003 Prólogo Las páginas que siguen constituyen una parte de las exposiciones teóricas y prácticas de asignaturas

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Estimación no-paramétrica Máximo Camacho Alonso Universidad de Murcia

Estimación no-paramétrica Máximo Camacho Alonso Universidad de Murcia Estimación no-paramétrica Máximo Camacho Alonso Universidad de Murcia www.um.es/econometria/tecpre mcamacho@um.es Maximo Camacho Estimación no-paramétrica 1 Contenido del tema Introducción: ventajas e

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

ECONOMETRÍA I. Tema 5: Análisis de regresión múltiple con información cualitativa

ECONOMETRÍA I. Tema 5: Análisis de regresión múltiple con información cualitativa ECONOMETRÍA I Tema 5: Análisis de regresión múltiple con información cualitativa Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA

Más detalles

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1 MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE ESTADÍSTICA Código:603358 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: OBLIGATORIA

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Examen de Grado Sección de Econometría Agosto y se obtienen los siguientes resultados. Observe que parte de la información ha sido omitida.

Examen de Grado Sección de Econometría Agosto y se obtienen los siguientes resultados. Observe que parte de la información ha sido omitida. Examen de Grado Sección de Econometría Agosto 2015 Pregunta 1. (40 puntos). Suponga que estamos interesados en determinar cuáles características del colegio y/o del hogar determinan el resultado de una

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Regresión con autocorrelación

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Regresión con autocorrelación ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Regresión con autocorrelación Introducción: Consideramos la regresión y t = β 0 + β 1 x 1t + + β k x kt + + β K x Kt + u t = β x t + u t con las hipótesis

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Física Cuántica Partículas idénticas.

Física Cuántica Partículas idénticas. Física Cuántica Partículas idénticas. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2004-2005 p. 1/18 Partículas idénticas Qué son varias partículas idénticas? Las que tienen

Más detalles

Estadística Espacial en Ecología del Paisaje

Estadística Espacial en Ecología del Paisaje Estadística Espacial en Ecología del Paisaje Introducción H. Jaime Hernández P. Facultad de Ciencias Forestales U. de Chile Tipos de datos en análisis espacial Patrones espaciales puntuales Muestras geoestadísticas

Más detalles

Matriz inversa generalizada y descomposición del valor singular

Matriz inversa generalizada y descomposición del valor singular Matriz inversa generalizada y descomposición del valor singular Divulgación Fernando Velasco Luna y Jesús Hernández Suárez Laboratorio de Investigación y Asesoría Estadística, Facultad de Estadística e

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

Pilar González Casimiro Susan Orbe Mandaluniz ARGITALPEN ZERBITZUA SERVICIO EDITORIAL. ISBN:

Pilar González Casimiro Susan Orbe Mandaluniz ARGITALPEN ZERBITZUA SERVICIO EDITORIAL.  ISBN: Pilar González Casimiro Susan Orbe Mandaluniz ARGITALPEN ZERBITZUA SERVICIO EDITORIAL www.argitalpenak.ehu.es ISBN: 978-84-9860-605-8 Prácticas para el Aprendizaje de la ECONOMETRÍA Pilar González Casimiro

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Funciones de Regresión No Lineales (SW Cap. 6)

Funciones de Regresión No Lineales (SW Cap. 6) Funciones de Regresión No Lineales (SW Cap. 6) Todo anteriormente ha sido lineal en las X s La aproximación de que la función de regresión es lineal puede ser satisfactoria para algunas variables pero

Más detalles

1. VALORES FALTANTES 2. MECANISMOS DE PÉRDIDA

1. VALORES FALTANTES 2. MECANISMOS DE PÉRDIDA 1. VALORES FALTANTES Los valores faltantes son observaciones que en un se tenía la intención de hacerlas, pero por distintas razones no se obtuvieron. Puede ser que no se encuentre a un encuestado, entonces

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo no Estacionarias Carlos Capistrán Carmona ITAM Tendencias Una tendencia es un movimiento persistente de largo plazo

Más detalles

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno para S.D.O. Lineales 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos

Más detalles

Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales. x n

Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales. x n Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales 1. Función de distribución binomial: Si X distribuye bin ( n, p), entonces f n x x n

Más detalles

Economía Aplicada. ¾Es importante el tamaño de la clase? Un experimento controlado

Economía Aplicada. ¾Es importante el tamaño de la clase? Un experimento controlado Economía Aplicada ¾Es importante el tamaño de la clase? Un experimento controlado Basado en (1999), Experimental Estimates of Education Production Functions, QJE Outline 1 La Idea 2 Proyecto STAR Detalles

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Identificación Paramétrica

Identificación Paramétrica Identificación Paramétrica Métodos para la Obtención de un Modelo Discreto Un modelo, incluyendo el ruido o perturbación, a tiempo discreto puede ser representado por la siguiente i ecuación Donde: ( )

Más detalles

T4. Modelos con variables cualitativas

T4. Modelos con variables cualitativas T4. Modelos con variables cualitativas Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

MÓDULO: MÉTODOS CUANTITATIVOS

MÓDULO: MÉTODOS CUANTITATIVOS MÓDULO: MÉTODOS CUANTITATIVOS 1.- Nombre del módulo y las asignaturas: Métodos Cuantitativos Econometría Avanzada Econometría Financiera 2.-Número de créditos ECTS: Econometría Avanzada: 6 ECTS. Econometría

Más detalles

Elaboración de un modelo econométrico.

Elaboración de un modelo econométrico. 1 Elaboración de un modelo econométrico. Con este documento se presenta una guía que puede servir al alumno de las asignaturas de Econometría para elaborar un informe o proyecto en el que se recojan los

Más detalles

Cálculo numérico. Aritmética en punto flotante.

Cálculo numérico. Aritmética en punto flotante. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2012. Sistemas de números en punto flotante F F está caracterizado por los enteros β, L, U, p en donde β es la

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Fundamentos de Estadística

Fundamentos de Estadística Fundamentos de Estadística Introducción a la Estadística Prof. Dr. Eduardo Valenzuela Domínguez eduardo.valenzuela@usm.cl Universidad Técnica Federico Santa María Dr. Eduardo Valenzuela D.; MEE 2005 p.

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Muestreo aleatorio simple Resumen teórico Resumen teórico de los principales conceptos estadísticos Muestreo aleatorio

Más detalles

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Medidas de tendencia central y dispersión

Medidas de tendencia central y dispersión Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 3, Marzo 2011. Open Access, Creative Commons. Medidas de tendencia central y dispersión Autor: Fernando Quevedo Ricardi (1) Filiación:

Más detalles

Percepción de los Precios por Parte de los Hogares: El caso de la Electricidad en el Perú

Percepción de los Precios por Parte de los Hogares: El caso de la Electricidad en el Perú Percepción de los Precios por Parte de los Hogares: El caso de la Electricidad en el Perú Luis Bendezú Medina Universidad de Chile Diciembre 2007 Contenido Introducción Modelo Teórico Implementación Empírica

Más detalles

Robusticidad de los Diseños D-óptimos a la Elección. de los Valores Locales para el Modelo Logístico

Robusticidad de los Diseños D-óptimos a la Elección. de los Valores Locales para el Modelo Logístico Robusticidad de los Diseños D-óptimos a la Elección de los Valores Locales para el Modelo Logístico David Felipe Sosa Palacio 1,a,Víctor Ignacio López Ríos 2,a a. Escuela de Estadística, Facultad de Ciencias,

Más detalles

TRA NSFORMACIO N ES LIN EA LES

TRA NSFORMACIO N ES LIN EA LES TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Regresión en Cadena. StatFolio de Ejemplo: ridge reg.sgp

Regresión en Cadena. StatFolio de Ejemplo: ridge reg.sgp Regresión en Cadena Resumen El procedimiento Regresión en Cadena está diseñado para ajustar un modelo de regresión múltiple cuando las variables independientes exhiben multicolinealidad. Multicolinealidad

Más detalles

Estadística Avanzada y Análisis de Datos

Estadística Avanzada y Análisis de Datos 1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Distribuciones de probabilidad multivariadas

Distribuciones de probabilidad multivariadas Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

Cálculo de coeficientes de variación para diferentes estimadores directos e indirectos utilizados en las encuestas económicas de Eustat

Cálculo de coeficientes de variación para diferentes estimadores directos e indirectos utilizados en las encuestas económicas de Eustat Cálculo de coeficientes de variación para diferentes estimadores directos e indirectos utilizados en las encuestas económicas de Eustat 1 Índice 1. Introducción 3 2. Estimadores directos 3 2.1. Estimador

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Resumen 3: Matrices, determinantes y sistemas de ecuaciones

Resumen 3: Matrices, determinantes y sistemas de ecuaciones Resumen 3: Matrices, determinantes y sistemas de ecuaciones lineales 1 Matrices Una matriz con coeficientes sobre un cuerpo K (normalmente K R) consiste en una colección de números (o escalares) del cuerpo

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles