Volumen de Sólidos de Revolución

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Volumen de Sólidos de Revolución"

Transcripción

1 60 CAPÍTULO 4 Volumen de Sólidos de Revolución

2 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido de revolución. La recta l se denomina eje de giro. En este capítulo se estudiará como determinar el volumen de estos sólidos si los ejes de giro son paralelos a los ejes coordenados Cálculo del Volumen de Sólidos de Revolución mediante el Método del Disco Este método permite determinar el volumen de sólidos de revolución como la suma del volumen de cilindros circulares rectos de corta altura (discos). Recuerde que el volumen de un cilindro se calcula por la fórmula: V r h, donde r es el radio del cilindro h su altura. Sea la región R acotada por la gráfica de una función f continua no negativa, el eje, las rectas verticales a b como se muestra en la figura 4.a, si dicha región gira alrededor del eje, se genera un sólido compacto como el que se muestra en la figura 4.b. =f() f(w)= f(w)= a w b a w i b Figura 4.a Representación grafica de la región R Figura 4.b Representación gráfica del Sólido que se forma cuando R gira alrededor del eje Sea un plano perpendicular al eje, que corta al sólido de la figura 4.b, la intersección es una sección transversal circular. Si este plano pasa por el punto en el eje con abscisa w, entonces el radio del círculo formado se denomina radio de i giro f w i, el área del círculo es f w i. Se puede deducir la integral definida que permite calcular el volumen de sólidos de revolución, usando sumas de Riemann, de manera análoga al procedimiento utilizado para calcular áreas en el capítulo. su longitud es

3 6 Sea f continua no negativa en ab,. Sea f w n i i una suma de Riemann, i, i i de una donde w i es un número arbitrario en el i-ésimo subintervalo partición P de ab,. Ésta es una suma de áreas de rectángulos como los que se muestran en la figura 4.a. Al girar el i-ésimo rectángulo alrededor del eje se genera un cilindro rectangular recto de poca altura (disco), cuo radio de la base es i f w su altura es. El volumen de este disco es f w i i i. la suma de todos los volúmenes de los discos formados, es igual al volumen del sólido que se muestra en la figura 4.b. está dado por: n i f wi i =f() f(w i ) a w i b a w i b Figura 4.a Representación grafica de una suma de Riemann para la región R Figura 4.b Representación grafica de una suma de Riemann para la región R cuando ésta gira alrededor del eje f. A medida que P 0, n, entonces la suma de los volúmenes de los cilindros se acerca al volumen del sólido formado cuando la función gira alrededor del eje de revolución representado en la figura.b. Por tanto, el volumen de un sólido de revolución se define como sigue: Esta es una suma de Riemann para Sea f continua en el intervalo cerrado a, b, sea R la región acotada por la gráfica de f, el eje, las rectas a b. El volumen V del sólido de revolución generado al girar R alrededor del eje está dado por: n n i b V lim f wi i f d a

4 6 A continuación se resuelve un ejercicio donde el sólido formado gira alrededor del eje formando un sólido compacto. Ejemplo 4.. Determinar el volumen del solido de revolución que se forma cuando la región R, ln ; ; e; 0 gira alrededor del eje. Solución La región los puntos de intersección fueron determinados en el capítulo se representan en la figura 4.a. f()=ln() Sombreado e ln P e, (t)=, (t)=t (t)=e, (t)=t f()=0 e P P e,0,0 Figura 4.a Representación gráfica de la región R Figura 4.b Representación gráfica del sólido que se genera cuando la región R gira alrededor del eje El sólido formado se representa en la figura 4.b su volumen se determina sumando los volúmenes de los cilindros con radio de giro ln base d, desde hasta e, mediante la solución de la integral: e V ln d Aplicando la técnica de integración por partes: Evaluando: ln ln e V V e,57

5 64 Para determinar el volumen del sólido de revolución que se genera cuando una región gira alrededor de una recta paralela al eje pero distinta de él, la deducción teórica de la integral es la misma con la diferencia de que para obtener el radio de giro () se debe tomar en cuenta la distancia de esta recta al eje, es decir, f w k, donde k es el eje de giro, como se observa en las figuras 4.4a 4.4b). i =f() = k a w i b a w i b Figura 4.4a Representación grafica de una región R Figura 4.4b Representación gráfica del Sólido que se forma cuando R gira alrededor del eje =k La definición del volumen vendrá dada por: Sea f continua en el intervalo cerrado a, b, sea R la región acotada por la gráfica de f, las rectas a, b k. El volumen V del sólido de revolución generado al girar R alrededor del eje k es: Donde es la distancia entre radio de giro. b V a d f el eje de revolución a,b, denominada En el siguiente ejemplo se calcula el volumen de un sólido que gira alrededor de una recta paralela al eje pero distinta de él, sin embargo, el sólido formado sigue siendo un sólido compacto.

6 65 Ejemplo 4.. Determinar el volumen del solido de revolución que se forma cuando la región R,, ; ; ; gira alrededor a la recta Solución La región los puntos de intersección se representan en la figura 4.5a.. 5 P, 4 P 4, P P,, Figura 4.5a Representación grafica de la región R Figura 4.5b Representación gráfica del Sólido que se forma cuando R gira alrededor de la recta = El volumen del disco representado en la figura 4.5b se obtiene mediante la epresión: Donde el radio de giro es: Entonces: dv d f k dv d El volumen del sólido de la figura 4.5b se determina mediante la solución de la integral: V d Integrando evaluando: V,769

7 66 En esta sección se considera una región acotada por las rectas verticales a b f g por las graficas de las dos funciones continuas f g con a, b, como se muestra en la figura 4.6a. Si esta región gira alrededor de la recta k, genera el sólido que se muestra en la figura 4.6b. (Observe que el sólido tiene un hueco o agujero central). El volumen V de este sólido hueco, puede calcularse restando el volumen del sólido formado por la región limitada por g (volumen interno) al volumen del solido formado por la región limitada por f (volumen eterno). Desarrollando la definición de volumen de sólidos utilizada anteriormente para el sólido de la figura 4.6b se obtiene: Esto es: b a b V f k d g k d b a a V f k g k d Esta última integral tiene su interpretación como límite de una suma de Riemann. Como se ilustra en la figura 4.6a. el elemento de área comprendido entre la gráfica f w g w, genera al girar un de g la gráfica de f tiene una altura igual a sólido con forma de arandela, como se observa en la figura 4.6b. Recuerde que el volumen de una arandela se calcula por la formula: V R r H Donde, R es el radio eterno de la arandela, r es el radio interno H es el espesor de la arandela. i i =f() =g() f(w i ) - k = k a w i b a w i b Figura 4.6a Representación grafica de la región R Figura 4.6b Representación gráfica del sólido hueco que se forma cuando R gira alrededor del eje =k

8 67 En el sólido de la figura 4.6b., R f w k, volumen de la arandela es Vi i se determina por la fórmula: r g w k H i. Entonces el Vi f wi k g wi k i Sumando los volúmenes de todas las arandelas se obtiene: n n i V f w k g w k i i i i i i Tomando límite cuando n, se llega a la siguiente epresión: n n i V lim f wi k g wi k i En conclusión, podemos definir el volumen de este sólido hueco como sigue: Sean f g funciones continuas en el intervalo cerrado b a,, tal que f g a,b sea R la región acotada por la gráfica de f, g las rectas a, b. El volumen V del sólido de revolución generado al girar R alrededor de la recta k está dado por: b a f g V d Donde: f es el radio de giro de la función f (eterno) g es el radio de giro de la función g (interno) Seguidamente, se resuelven dos ejemplos de cálculo de volumen de sólidos de revolución huecos. En el primero, las funciones que delimitan la región están por encima del eje de giro en todo el intervalo a, b, por lo cual, el radio de giro es: f f k El segundo, además de ser más complejo, presenta el caso contrario, en el que el eje de giro está por encima de las funciones que delimitan la región en todo el intervalo a, b, por lo tanto, el radio de giro viene dado por: f k f

9 68 Ejemplo 4.. Determine el volumen del sólido formado cuando la región comprendida entre la curva la recta gira alrededor de la recta =- Solución La región los puntos de intersección fueron determinados en el capítulo se representan en la figura 4.7a. interno eterno - - P -,- - P, Figura4.7a Representación grafica de la región comprendida entre la curva =+- la recta =- Figura 4.7b Representación gráfica del Sólido que se forma cuando la región gira alrededor de la recta =- La arandela formada se representa en la figura 4.7b su volumen se determina mediante la epresión: dv eterno interno d Esto es: dv d Luego, el volumen del sólido de revolución viene dado por la resolución de la siguiente integral: V d

10 69 V d V 08 67,858 5 Ejemplo 4.4. Determinar el volumen del solido de revolución que se forma cuando la región R,, 5; ; ; gira alrededor a la recta =5. Solución La región los puntos de intersección fueron determinados en el capítulo se representan en la figura 4.8a. P 4 P P P P Figura 4.8a Representación grafica de una región R Figura 4.8b Representación gráfica del Sólido que se forma cuando R gira alrededor de la recta =5 Los puntos de intersección determinados son: ; ; 0,0;, 697.6;5 7;5 P P P P P 4 5

11 70 El sólido formado se representa en la figura 4.8b su volumen se determina mediante la solución de cuatro integrales: V es el volumen del sólido generado entre P5 7 5 V d P, donde: 5 V 6,95 V es el volumen del sólido generado entre P4 0,0 5 P, donde: 5 V d.6 V 75,95 V es el volumen del sólido generado entre P P, donde: 5 5 V d V 57,978 V4 es el volumen del sólido generado entre P P, donde: V4 d 0.0 V4 9,85 V V V V V4 V 79,69

12 7 Para calcular el volumen de sólidos que se generan al hacer girar regiones del plano alrededor de rectas paralelas al eje, se debe integrar respecto a. Considere una región acotada por la gráfica g, donde g es una función continua no negativa para cd,, las rectas horizontales c d, por el eje. Si esta región gira alrededor de, genera un sólido cuo volumen V se puede calcular intercambiando en la definición anterior. Así, sea P una partición del intervalo cd, determinada por los elementos c 0,,,... n. Sea w i cualquier número en el i-ésimo subintervalo, se forman rectángulos de longitud (radio de giro) gw i altura i i i que se ilustran en la figura 4.9a. El sólido generado al girar estos rectángulos alrededor del eje se representa en la figura 4.9b. d w i.. g(w i ) =g() c Figura 4.9a Representación grafica de una suma de Riemann para la región R Figura 4.9b Representación grafica de una suma de Riemann para la región R cuando ésta gira alrededor del eje El volumen del disco formado por el i-ésimo rectángulo es Mediante el límite de sumas se obtiene la siguiente definición: Sea g una función continua en el intervalo cerrado c,d, sea R la región acotada por la gráfica de g, el eje, las rectas c d. El volumen V del sólido de revolución generado al girar R alrededor del eje está dado por: n n i b V lim g wi i g d a g wi i. La suma de todos los volúmenes de los discos formados, es igual al volumen del sólido que se muestra en la figura 4.9b. está dado por: n i g wi i

13 7 En el ejemplo siguiente se determina el volumen de un sólido compacto formado cuando una región gira alrededor del eje. Ejemplo 4.5. Determinar el volumen del solido de revolución que se forma cuando la región R,, ; 9; 0 gira alrededor a la recta 0 Solución La región se representa en la figura 4.0a.. 9 P 4 0,9 P, P 0, P, Figura 4.0a Representación grafica de la región R Figura 4.0b Representación gráfica del Sólido que se forma cuando R gira alrededor de eje El sólido formado se representa en la figura 4.0, su radio de giro es: Su volumen se determina mediante la solución de la integral: 9 9 V d d V 9 8 V 40

14 7 Para determinar el volumen del sólido de revolución que se genera cuando una recta gira alrededor de una recta l paralela al eje, la deducción teórica de la integral es la misma con la diferencia de que para obtener el radio de giro se debe tomar en cuenta la distancia de esta recta l al eje. De manera análoga a lo realizado en la sección anterior e intercambiando la variable por, la definición del volumen vendrá dada por: Sea g continua en el intervalo cerrado c,d, sea R la región acotada por la gráfica de g, las rectas c, d k. El volumen V del sólido de revolución generado al girar R alrededor del eje k es: Donde giro. es la distancia entre d g el eje de giro c,d V c d, denominada radio de En el próimo ejemplo, se determina el volumen de un sólido compacto formado cuando una región gira alrededor de un eje paralelo al eje. Ejemplo 4.6. Determinar el volumen del solido de revolución que se forma cuando la región R,, ln ; ; e; 0 gira alrededor de la recta e. Solución La región se representa en la figura 4.a. e e e Figura 4.a Representación gráfica de la región R Figura 4.b Representación gráfica del sólido que se genera cuando la región R gira alrededor de la recta =e

15 74 El sólido formado se representa en la figura 4.d su radio de giro viene dado por la siguiente epresión: e e Entonces, su volumen se determina mediante la solución de la integral: V e e d e e e d 0 0 V e e,90 Se considerará ahora una región acotada por las rectas verticales por las graficas de las dos funciones continuas f g con f g c d, si esta región gira alrededor de la recta k se genera un sólido hueco, cuo volumen V, puede calcularse restando el volumen del sólido formado por la región limitada por g (volumen interno) al volumen del solido formado por la región limitada por f c, d (volumen eterno). Mediante la definición de volumen de sólidos de revolución utilizada anteriormente se obtiene: Esto es: c d d V f k d g k d c d c V f k g k d La interpretación de esta integral como una suma de Riemann, se obtiene de manera análoga a lo realizado en la sección anterior para sólidos huecos, entonces, podemos definir el volumen de este sólido hueco como sigue: Sean f g funciones continuas en el intervalo cerrado c,d, tal que f g c,d sea R la región acotada por la gráfica de f, g las rectas c, d. El volumen V del sólido de revolución generado al girar R alrededor de la recta k está dado por: b a V f g d Donde: f es el radio de giro de la función f (eterno) g es el radio de giro de la función g (interno)

16 75 En los próimos dos ejemplos, se determina el volumen de sólidos huecos. En el primero, el eje de giro se encuentra a la derecha de la función, en el segundo, el eje de giro se encuentra a la izquierda de la región. Ejemplo 4.7. Determine el volumen del sólido formado cuando la región comprendida entre la curva la recta gira alrededor de la recta = Solución Despejando de la parábola ; Los puntos de intersección la región se representan en la figura 4.a P -, P, Figura 4.a Representación gráfica de la región R Figura 4.b Representación gráfica del Sólido que se forma cuando la región gira alrededor de la recta = El sólido formado se representa en la figura 4.b su volumen se determina mediante la solución de tres integrales: V es el volumen del sólido generado entre P el vértice de la parábola (se invita al lector a calcularlo), donde: Entonces: V d V 6

17 76 V es el volumen del sólido generado entre P el vértice de la parábola, donde: Luego: V d V 68 V es el volumen del sólido generado entre P El volumen V se calcula mediante la solución de la integral: V d P, donde: V 9 Observe que la segunda integral representa el volumen del sólido eterno, las siguientes la de los sólidos internos. Por lo tanto, El volumen del sólido se calcula de la siguiente manera: V V V V Evaluando; V Aplicación Práctica A continuación, se resuelve otro tipo de ejercicio, donde es necesario determinar la altura del nivel del líquido contenido en un depósito, si este no ocupa todo el volumen del recipiente. Ejemplo 4.8. Sea la región R,, ; 0; 6. Determinar: a) El volumen del depósito que se obtiene cuando la región gira alrededor del eje. (considere las medidas del depósito en metros). b) La altura del nivel del líquido si este ocupa el 0% del volumen del depósito.

18 77 Solución El gráfico de la región del sólido formado cuando esta gira alrededor del eje se representan en las figuras 4.0a. 4.0b: P 0,6 P,4 X P 0,0 Figura 4.0a Representación gráfica de la región R Figura 4.0b Representación grafica del sólido formado cuando la región R gira alrededor del eje Los puntos de intersección se determinan mediante la solución de las siguientes ecuaciones: P es la intersección entre 6, igualando las ecuaciones: Sustituendo; Luego; 4 P,4

19 78 P es la intersección entre 0 6, sustituendo: Luego; P es la intersección entre 0 6 P 0,6, sustituendo: 0 Luego; P 0,0 Entonces, el volumen del sólido de revolución formado, vendrá dado por la suma de los volúmenes V V, donde: V es el volumen del sólido generado entre P Por lo que; 0 4 V d P, donde: 0 V 8 V es el volumen del sólido generado entre P Por lo que; m 6 V 6 d 4 P, donde: 6 0 V 8 m Si el líquido ocupa el 0% del volumen del depósito, entonces este volumen se calcula de la siguiente manera: 6 V0% m m 5 0, 6 Como 8, la altura del líquido residual estará ubicada en la sección 5 parabólica del depósito, entonces; h 0% V0% d 0

20 h0% 0 d 6 5 h0% 0 h0% m,46m 5

21 80 Ejercicios Propuestos En los siguientes ejercicios, plantear la integral que permita calcular el volumen del sólido de revolución formado, cuando la región dada gira alrededor de la recta indicada. R, gira alrededor de:,, ; 5 6; 6 ) a) 0 b) c) 7 d) R,, ; 4; 5; 0 ) a) 0 b) c) 5 d) 5 R,, ; 0; ; ) a) b) 4 c) 5 d) 0 4) R 4,, 4; 4 0; 5 0 a) 4 b) c) d) R 5,, ; 5) a) b) c) 4 d) R 6,, 4 ; 4 4; ) a) 5 b) c) 4 d) 7) R 7,, ; 9 a) b) 6 c) 4 d) 0 R 8,, ; 4 ; 7 8) a) b) c) 7 d) 0 9) Determinar la altura del nivel del líquido cuando el depósito formado si R, ; 4 ; 0 gira alrededor de 0, está lleno hasta un 60% de su capacidad.

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A Cálculo II Volúmenes de Sólidos M. en C. Ricardo Romero Departamento de Ciencias Básicas, UAM-A Grupo CTG87 Trimestre 11-P Grupo CTG87 Trimestre 11-P 1 / Programa 1 Cálculo de volúmenes a partir de secciones

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

VOLUMENES DE SÓLIDOS DE REVOLUCION

VOLUMENES DE SÓLIDOS DE REVOLUCION OLUMENES DE SÓLIDOS DE REOLUCION Los sólidos de revolución son sólidos que se generan al girar una región plana alrededor de un eje. Por ejemplo: el cono es un sólido que resulta al girar un triángulo

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN

EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN.- Calcular el área encerrada por la función: y = 9, el eje OX, y las rectas = f 9 Se trata de un triángulo de base y altura 9 9 El área sombreada

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

RECTAS, PLANOS EN EL ESPACIO.

RECTAS, PLANOS EN EL ESPACIO. COMUNICACIÓN MATEMÁTICA: Grafica rectas, planos y sólidos geométricos en el espacio RESOLUCIÓN DE PROBLEMAS Resuelve problemas geométricos que involucran rectas y planos en el espacio. Resuelve problemas

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

Aplicaciones de las integrales dobles

Aplicaciones de las integrales dobles Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:.

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:. Representa la función que relaciona el área de un triángulo rectángulo isósceles la longitud del cateto. a) Cuál es la variable dependiente? b) la variable independiente? = a) La variable independiente

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

Práctica 5 Cálculo integral y sus aplicaciones

Práctica 5 Cálculo integral y sus aplicaciones Práctica 5 Cálculo integral y sus aplicaciones 5.1.- Integración con Mathematica o Integrales indefinidas e integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión

Más detalles

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta

Más detalles

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES Hasta el momento hemos tratado integrales dobles en las cuales la región de integración es una región rectangular de la forma *(

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

Uso no comercial 12.4 CUERPOS REDONDOS

Uso no comercial 12.4 CUERPOS REDONDOS 1.4 CUERPOS REDONDOS Designamos en general como cuerpos redondos el conjunto de puntos del espacio obtenido cuando una figura gira alrededor de una recta, de tal forma que cada punto de la figura conserva,

Más detalles

Definición de la integral de Riemann (Esto forma parte del Tema 1)

Definición de la integral de Riemann (Esto forma parte del Tema 1) de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,

Más detalles

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene Capítulo 5 Fuerzas distribuidas. Centroides y centros de gravedad Introducción La acción de la Tierra sobre un cuerpo rígido debe representarse por un gran número de pequeñas fuerzas distribuidas sobre

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

Trabajo Práctico 2 - ECUACIÓN DE LA RECTA

Trabajo Práctico 2 - ECUACIÓN DE LA RECTA Trabajo Práctico - ECUACIÓN DE LA RECTA ) Un barril tiene una capacidad de 00 litros. El barril se encuentra sobre una balanza y al echarle distintas cantidades de un aceite, se puede tomar el peso que

Más detalles

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima.

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima. Facultad de Ingeniería - IMERL Cálculo - Curso. Práctico 8. Integrales paramétricas e integrales iteradas dobles y triples. Integrales múltiples. Cambio de variables, áreas, volúmenes, sumas de Riemann

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U

Más detalles

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Objetivos a cubrir Volumen de un sólido : Secciones transversales. Volumen de un sólido de revolución : Método del disco.

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro.

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro. Geometría y Trigonometría Circunferencia 6. CIRCUNFERENCIA 6.1 Definición y notación de una circunferencia La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior

Más detalles

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc. CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo

Más detalles

Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger

Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger Superficies Curvas Guía de clase elaborada por Ing. Guillermo Verger www.ingverger.com.ar Superficie cilíndrica Es aquella generada por una recta llamada generatriz que se mueve en el espacio manteniendose

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Geometría. Cuerpos Geométricos. Trabajo

Geometría. Cuerpos Geométricos. Trabajo Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA La pendiente es un número que indica lo inclinado (o plano) de una recta, al igual que su dirección (hacia arriba o hacia abajo) de

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA CAPÍTULO XI. APLICACIONES DE LA INTEGRAL DEFINIDA SECCIONES A. Áreas de figuras planas. B. Cálculo de volúmenes. C. Longitud de curvas planas. D. Ejercicios propuestos. 37 A. ÁREAS DE FIGURAS PLANAS. En

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions

MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions MATHEMATICA Geometría - Triángulos Material realizado con Mathematica y Geometry Expressions Contenido TRIÁNGULOS... 3 Cálculo de los ángulos interiores de un triángulo... 3 Baricentro... 6 Ortocentro...

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos

Más detalles

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios: TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Dibujar los siguientes cuerpos, de los que se dan algunos de sus elementos.

Dibujar los siguientes cuerpos, de los que se dan algunos de sus elementos. Cilindro recto de altura mm. Cilindro oblicuo de altura mm. Tronco de cilindro recto. Cono recto de altura mm. Cono oblicuo de vértice V. Tronco de cono recto de Cilindro recto de altura mm. Cilindro oblicuo

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido.

Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido. UNIDAD 2 EQUILIBRIO DE CUERPOS RÍGIDOS. CENTROS DE GRAVEDAD GENERALIDADES.- El centro de gravedad es aquel que localiza el peso resultante de un sistema de partículas y el centro de masas de un sistema

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

DERIVADA DE FUNCIONES REALES

DERIVADA DE FUNCIONES REALES . Recta tangente a una curva DERIVADA DE FUNCIONES REALES Consideremos la curva y = f() correspondiente a una función continua y en ella dos puntos distintos P( ; y ) y Q( ; y ). PQ es una recta secante

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia. ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto

Más detalles

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2.

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2. LA INTEGRAL DEFINIDA En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

Matemáticas 2 Agosto 2015

Matemáticas 2 Agosto 2015 Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente

Más detalles

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al

Más detalles

Tema 13 La integral definida. Aplicaciones

Tema 13 La integral definida. Aplicaciones Tema La integral definida. Aplicaciones. Integral definida. Calcula la integral. ( ) d 4 Calculamos una primitiva de la función f ( ) : G( ) ( ) d Según la regla de Barrow: 4 4 ( ) d G(4) G() 4 8 4 Ahora

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

Unidad III: Curvas en R2 y ecuaciones paramétricas

Unidad III: Curvas en R2 y ecuaciones paramétricas Unidad III: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una

Más detalles

PROBLEMAS DE INTEGRALES INDEFINIDAS

PROBLEMAS DE INTEGRALES INDEFINIDAS PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su

Más detalles

5.5 LÍNEAS TRIGONOMÉTRICAS

5.5 LÍNEAS TRIGONOMÉTRICAS 5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

Capítulo 6. Aplicaciones de la Integral

Capítulo 6. Aplicaciones de la Integral Capítulo 6 Aplicaciones de la Integral 6. Introducción. En las aplicaciones que desarrollaremos en este capítulo, utilizaremos una variante de la definición de integral la cual es equivalente a la que

Más detalles

PUNTOS Y VECTORES EN EL PLANO

PUNTOS Y VECTORES EN EL PLANO PUNTOS Y VECTORES EN EL PLANO PUNTOS EN EL PLANO Tomando como referencia los ejes cartesianos del plano, un punto se representa mediante un par ordenado (a, b) de números reales, es decir, mediante un

Más detalles