16/11/2015. Tema 1: Números reales REALES. Racionales (Q) Irracionales (I) Naturales (N) REALES (I) (Q) (Z) (N)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "16/11/2015. Tema 1: Números reales REALES. Racionales (Q) Irracionales (I) Naturales (N) REALES (I) (Q) (Z) (N)"

Transcripción

1 rrcioles () //0 Te : úeros reles úeros reles (rcioles e irrcioles) Aproxició de úeros reles L rect rel Vlor soluto tervlo y seirrects Potecis de expoete etero otció cietífic dicles Potecis de expoete frcciorio 8 Opercioes co rdicles 9 ciolizció 0 Logrito de u úero rel Propieddes de los logritos terés copuesto úeros reles (rcioles e irrcioles) cioles (Q) Eteros EALES turles () (Z) U úero rciol es el que puede escriirse coo cociete de dos úeros eteros ;, co 0 Expresió frcciori Ejeplos ÚMEOS ACOALES Expresió decil,,, Eter Decil exct o fiit Decil periódic pur Decil periódic ixt Clsific los siguietes úeros detro del cojuto e el que perteezc, Decil periódico ixto, EALES Decil fiito (Q) (Z) () (),000 Decil periódico puro, Decil o fiit o periódic Eteros Decil exct o fiit Purs Decil periódic Mixts úeros rcioles úeros irrcioles O Existe ás expresioes deciles? Pies ejeplos? Ejeplos,, ,9 Deciles O fiits O periódics Ess expresioes deciles so rcioles? Se pude expresr coo frcció de dos úeros eteros? Aproxicioes de úeros reles APOXMA Aproxir u úero es sustituirlo por otro cerco él PO DEFECTO: el úero proxido es eor (eliir los deciles posteriores segú el orde de proxició PO EXCESO: el úero proxido es yor ( uetr u uidd l últi cifr decil segú el orde de proxició PO EDODEO: Pr redoder u úero u orde ddo: Se oserv l prier cifr eliid S < S EO ABSOLUTO de u proxició Mejor proxició por defecto Mejor proxició por exceso Difereci e vlor soluto etre el vlor de l proxició y el vlor excto EO ELATVO de u proxició Cociete etre el error soluto y el vlor excto (%)

2 //0 ODE de u proxició Máxio error soluto que se coete l efecturl y tié cuál es su últi cifr decil ejeplo Orde Uidd Déci Cetési Milési, Defecto-Exceso,,,,,, ejeplo,988 Orde Uidd Déci Cetési Milési Diezilési Orde Uidd Déci Cetési Milési Diezilési Defecto Defecto,,,, Exceso Exceso 8,,,, edodeo edodeo,,,, L rect rel epresetció de úeros rcioles ejeplo epresetr? 0 epresetr? 0

3 //0 Te : úeros reles úeros reles (rcioles e irrcioles) Aproxició de úeros reles L rect rel Vlor soluto tervlo y seirrects Potecis de expoete etero otció cietífic dicles Potecis de expoete frcciorio 8 Opercioes co rdicles 9 ciolizció 0 Logrito de u úero rel Propieddes de los logritos terés copuesto Vlor soluto tervlos y seirrects VALO ABSOLUTO Vlor soluto de u úero rel,, es l distci que hy desde hst cero e l rect rel Es siepre u úero o egtivo Defiició equivlete: si si 0 0 De esto se deduce que l distci etre dos úeros reles y es igul l vlor soluto de su difereci Los itervlos y seirrects se us pr descriir cojutos de úeros e l rect re ejeplo d(,) d(,) TPOS DE SEMECTAS d(,) d(,) () (,] (,] (,) (,) [,) [,) (,) (,) Te : úeros reles Tipos de itervlos úeros reles (rcioles e irrcioles) Aproxició de úeros reles L rect rel Vlor soluto tervlo y seirrects Potecis de expoete etero otció cietífic dicles Potecis de expoete frcciorio 8 Opercioes co rdicles 9 ciolizció 0 Logrito de u úero rel Propieddes de los logritos terés copuesto

4 //0 Potecis de expoete etero otció cietífic Si es culquier úero distito de cero Hy úeros que por ser uy grdes o uy pequeños se expresrí co uchos ceros L otció cietífic perite expresrlos de for ás copct 0 Propieddes de ls potecis: ( ) : ( : ) : ( ) x 0 p 0 p es orde de gitud de x dicles U rdicl es l ríz idicd de u úero si 0 epreset el úico úero positivo cuy poteci -ési es Propiedd fudetl de los rdicles si 0 ( 0) Dos rdicles so equivletes si represet el iso úero rel ejeplo 8

5 //0 Ejeplo 8 (8)? 8 8? o se cuple el teore? Ejeplo Expresádolos coo potecis Qué es yor, ó? Pr coprrlos los podreos jo el iso ídice Ídice Ídice c de os expoetes 9 Se cuple, porque el ejeplo o cuplí u de sus preiss si 0 ( 0) 9 Potecis de expoete frcciorio 8 Opercioes co rdicles U rdicl puede expresrse coo u poteci de expoete frcciorio Operció Expresió Ejeplo Producto y cociete de rdicles del iso ídice Producto y cociete de rdicles de distito ídice Poteci de u rdicl íz de u rdicl : : Se reduce ídice coú y se plic lo terior Pr que teg setido ls relcioes teriores, dee teer setido e ls expresioes y 0 dicles seejtes: Dos rdicles so seejtes si u vez siplificdos se escrie co l is prte rdicl Es decir: igules ídice y rdicdo Coprue si los siguietes rdicles so seejtes, trtdo de escriirlos co l is prte rdicl: = + + = = =

6 //0 9 ciolizció Ejeplo ciolizr u expresió frcciori co rdicles e el deoidor es ecotrr otr e l que o prezc rdicles e el deoidor Ejeplo Ejeplo Ej Pági cioliz y siplific ls expresioes siguietes: A) ( ) ( ) su por difereci, difereci de cudrdos 0 0 B) C) ciolizció Pági Ej8 - cioliz y siplific A) ( ) ( ) 9 8 ( ) Extrer fctor del rdicl 9 ( ) Scr fctor coú Te : úeros reles úeros reles (rcioles e irrcioles) Aproxició de úeros reles L rect rel Vlor soluto tervlo y seirrects Potecis de expoete etero otció cietífic dicles Potecis de expoete frcciorio 8 Opercioes co rdicles 9 ciolizció 0 Logrito de u úero rel Propieddes de los logritos terés copuesto

7 //0 Trjo de clse ( puedes utilizr l liret, clculdor) Tiepo 0 iutos 0 Logrito de u úero rel Se es u úero positivo y distito de El logrito e se de u úero >0 es el expoete l que hy que elevr l se pr oteer Ejeplo log x x Dicho de otr for: E lo reles o existe los logritos de úeros egtivos i el logrito de 0 log 8 8 log x x Si l se es 0, el logrito se ll decil y se escrie oitiedo l se; log 0 log Si l se es el úero e, el logrito se ll eperio y se escrie; log l Propieddes de los logrito de u úero rel Propieddes de los logrito de u úero rel pies pies log? log? log???? log log log log? log? log???? log 0 log 0 log 0 log log 0

8 //0 Logrito de u producto log (M ) log M log Deostrció: Usdo l defiició de logrito log M x log y Clculr M Clculr x M y x y x y log (M ) x y log M log x y log (M ) log M log Logrito de u cociete Logrito de u poteci Cio de se M log log M log r log ( M ) r log M log (A) log A log Propieddes de los logrito de u úero rel log log 0 log (M ) log M log M log log M log log (M r ) r log M log (A) log A log Cio de se Propieddes de los logritos deciles log 0 log0 log00 log000 log log0 0 log log0 00 log log0 000 Pág Ejercicio Clcul los logritos e se de: A) log () Si 0 B) log () C) log log log 8 () 8 D) log 0 log 0 0 () 0 0 terés copuesto El cpitl fil e el que se covierte u cpitl iicil C colocdo u iterés copuesto del % ul durte t ños viee ddo por l expresió: C F C ( r) t r 00 8

9 //0 Los logritos perite resolver ecucioes e ls que ls icógits prece coo prte del expoete Si existe el logrito de u úero es úico Por tto se puede segurr que se cuple, l siguiete equivleci Ejeplo x x log log (M) log () M Cpitl fil l co de ños u iterés del %, siedo r=/00, Co u cpitl iicil C ño C F C C 00 ños C F C C F 00 C C 00 C F 00 C C 00 C C C C 00 C 00 C 00 C C 00 C 00 C ños (cotiuc ió) C C

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo. III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:

Más detalles

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero www.clseslcrt.co Clsificció de Núeros Reles Te.- Núeros Reles Reles R Rcioles Q Irrcioles Ι Eteros Z Nturles N Negtivos Deciles Exctos Frcciorios Deciles Periódicos Puros Deciles Periódicos Mixtos Rcioles

Más detalles

1.- POTENCIAS DE EXPONENTE ENTERO

1.- POTENCIAS DE EXPONENTE ENTERO º ESO - UNIDAD.- POTENCIAS Y RAÍCES OBJETIVOS MÍNIMOS DE LA UNIDAD.- Clculr potecis de se rciol y epoete etero.- Relizr opercioes co potecis de epoete etero usdo sus propieddes.- Epresr úeros e otció cietífic.-

Más detalles

Tema 2. Operaciones con Números Reales

Tema 2. Operaciones con Números Reales Te. Opercioes co úeros reles Te. Opercioes co Núeros Reles. Opercioes co frccioes.. Itroducció.. Su y difereci.. Producto y divisió.. Opercioes cobids. Potecis.. Expoete turl.. Expoete etero (egtivo).

Más detalles

Tema 1: NÚMEROS REALES.

Tema 1: NÚMEROS REALES. I.E.S. Slvdor Serro - Deprteto de Mteátics MATEMÁTICAS ACADÉMICAS º ESO - 0 / Te : NÚMEROS REALES. Actividdes pr preprr el exe: Teorí: Cotest si so cierts ls siguietes fircioes: Todo úero etero es turl.

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado,

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado, Fcultd de Cotdurí Adiistrció. UNAM Rdicles Autor: Dr. José Muel Becerr Espios MATEMÁTICAS BÁSICAS RADICALES OPERACIONES CON RADICALES U rdicl es culquier rí idicd de u expresió. L rdicció es l operció

Más detalles

Ejercicios: 1. Coloca donde corresponda los siguientes números: N Z Q FRACCIONARIOS I

Ejercicios: 1. Coloca donde corresponda los siguientes números: N Z Q FRACCIONARIOS I TEMA : LOS NÚMEROS REALES LOS NÚMEROS REALES. CLASIFICACIÓN. Detro del cojuto de los úeros reles distiguios: NATURALES. Se desig co l letr N y so los úeros si deciles y positivos 0,,,,. ENTEROS. Se desig

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a. Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete

Más detalles

3 Potencias y raíces de números

3 Potencias y raíces de números Potecis y ríces de úeros reles. Potecis de expoete turl. Defiició. El producto tiee sus siete fctores igules. Este producto se puede idicr de for brevid coo. se ll poteci, y l fctor, bse. El úero de veces

Más detalles

UNIDAD 1 NÚMEROS REALES. es el sucesor de n. 4) Todo número natural tiene antecesor excepto el 1:, donde n 1

UNIDAD 1 NÚMEROS REALES. es el sucesor de n. 4) Todo número natural tiene antecesor excepto el 1:, donde n 1 Uiversidd Nciol de Slt Fcultd de Igeierí Aputes de Curso Me prepro pr estudir Igeierí UNIDAD 1 NÚMEROS REALES CONJUNTOS NUMÉRICOS El cojuto de los Núeros Nturles ( N ) Los úeros que se eple pr cotr 1,2,3,4,...

Más detalles

POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:

POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales: POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,

Más detalles

C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona

C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Ptrici Crdo COMPLEJO EDUCATIVO Dr. OSCAR ABDALA CONTENIDOS DE REVISIÓN CONJUTOS NUMÉRICOS Nturles: N = 1

Más detalles

Algunas funciones elementales

Algunas funciones elementales Apédice B Algus fucioes eleetles B Fució poteci -ési U fució poteci -ési es u fució de l for f ( ) dode l se es u vrile y el epoete u úero turl Es l for ás secill de ls fucioes polióics f ( ) Ls fucioes

Más detalles

Unidad 1: El conjunto de los números reales

Unidad 1: El conjunto de los números reales Uidd : El cojuto de los úeros reles Núeros rcioles. Opercioes... Cocepto de úero rciol... Opercioes co úeros rcioles... Expresió decil de los úeros rcioles... Núeros irrcioles. Núeros reles.... 7 Núeros

Más detalles

Podemos decir también que número real es todo número que podemos representar en la recta numérica - 1, ¼ 0,

Podemos decir también que número real es todo número que podemos representar en la recta numérica - 1, ¼ 0, Uidd EL NÚMERO REAL E etps sucesivs del estudio de l Mteátic se trbj co cpos uéricos que v pliádose co l icorporció de uevos y distitos tipos de úeros. Así, se coiez lizdo el cpo de los úeros turles (

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

NATURALES: surgen de la necesidad de contar o de ordenar. Se denotan con la letra N. N={1,2,3,4, }

NATURALES: surgen de la necesidad de contar o de ordenar. Se denotan con la letra N. N={1,2,3,4, } 1. CONJUNTOS NUMÉRICOS NATURALES: surge de l ecesidd de cotr o de order. Se deot co l letr N. N{1,,3,4, } L su de dos úeros turles es siepre otro úero turl. Pero co l rest o ps lo iso. Eje.: 6-8 ENTEROS:

Más detalles

TEMA Nº 1: NÚMEROS REALES

TEMA Nº 1: NÚMEROS REALES Deprtmeto de Mtemátics. I.E.S. Ciudd de Arjo º BAC MCS TEMA Nº : NÚMEROS REALES. NÚMEROS RACIONALES. EXPRESIONES DECIMALES.. NÚMEROS RACIONALES. EXPRESIONES DECIMALES. NÚMEROS IRRACIONALES.. NÚMEROS REALES.

Más detalles

FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE POTENCIACIÓN Y RADICACIÓN DOCENTE: IDALY MONTOYA A.

FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE POTENCIACIÓN Y RADICACIÓN DOCENTE: IDALY MONTOYA A. . POTENCIACIÓN FACULTAD DE INGENIERIA Y CIENCIAS BASICAS Llos poteci de u úero reltivo, l producto de torlo coo fctor tts veces coo se quier. Si es u úero reltivo culquier es u úero turl, tedreos l otció,

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES E l epresió c, puede clculrse u de ests tres ctiddes si se cooce dos de ells resultdo de este odo, tres opercioes diferetes: º Poteci º Rdicció º Logrito c pr clculr,

Más detalles

LOS NÚMEROS REALES. La estructura del conjunto de los números reales es: Naturales Enteros { } { }

LOS NÚMEROS REALES. La estructura del conjunto de los números reales es: Naturales Enteros { } { } LOS NÚMEROS RELES L estructur del cojuto de los úeros reles es: Nturles N Eteros ( ) ( ) ( Z) : Rcioles Q : Núeros Reles R : Negtivos Frccioes Irrcioles() I N Eteros positivos ás el cero 0,1, 2, 3,...

Más detalles

DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES

DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES . TERMINOLOGÍA Y NOTACIÓN A prtir de los coociietos de ritétic, se desrrollrá u leguje edite síolos térios, pr elorr u serie de técics de cálculo; el leguje ls técics, costitue u r iportte de l teátic,

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

Recuerda: a 0 = 1 1 m = 1 ( 1) m = 1 m par ( 1) n = 1 n impar 0 n = 0

Recuerda: a 0 = 1 1 m = 1 ( 1) m = 1 m par ( 1) n = 1 n impar 0 n = 0 CAPÍTULO : POTENCIAS Y RAÍCES: º de ESO. OPERACIONES CON POTENCIAS Recuerd que l poteci de se u úero turl epoete turl es u producto de fctores igules l se: =... fctores... > 0) El fctor que se repite es

Más detalles

Unidad 1 Números Reales

Unidad 1 Números Reales Uidd Núeros Reles Igul que h os h ido preciedo ls distits filis de úeros coo plició de otrs. Los eteros coo copleeto de los turles. Los rcioles de los eteros. Los úeros rcioles o os resuelve proles coo

Más detalles

1.3.6 Fracciones y porcentaje

1.3.6 Fracciones y porcentaje Ejemplo : Se hor u situció e l que ecesitmos clculr l frcció de otr frcció. Por ejemplo de. Pr u mejor iterpretció de l regl terior, recurrimos l represetció gráfic. Represetemos l frcció de Es decir:

Más detalles

Tema 1 Los números reales Matemáticas CCSS1 1º Bachillerato 1

Tema 1 Los números reales Matemáticas CCSS1 1º Bachillerato 1 Tem 1 Los úmeros reles Mtemátics CCSS1 1º Bchillerto 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros rcioles: Se crcteriz porque puede expresrse: E form de frcció,

Más detalles

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1 3º ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS. Simplificar la fracción, si es posible N = 50

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1 3º ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS. Simplificar la fracción, si es posible N = 50 Mtemátics B º E.S.O. Tem 1 Los úmeros Reles 1 TEMA 1 LOS NÚMEROS REALES 1.0 INTRODUCCIÓN º 1.0.1 ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS º RACIONALES(Q)???????? NO RACIONALES NATURALES(N) 0 ; ; ; 81...

Más detalles

Liceo Marta Donoso Espejo Raíces para Terceros

Liceo Marta Donoso Espejo Raíces para Terceros . Ríces cudrds y cúics Liceo Mrt Dooso Espejo Ríces pr Terceros Coeceos el estudio de ls ríces hciédoos l siguiete pregut: Si el áre de u cudrdo es 64 c 2, cuál es l edid de su ldo? Pr respoder esto deeos

Más detalles

FASE COGNITIVA. LOS NUMEROS REALES Los números reales se conforman por los decimales finitos, decimales infinitos periódicos e infinitos no periódicos

FASE COGNITIVA. LOS NUMEROS REALES Los números reales se conforman por los decimales finitos, decimales infinitos periódicos e infinitos no periódicos Vlorr l iportci de coocer el siste de los úeros reles eplicr ls crcterístics de ls diferetes clses de úeros reles 1. Pr qué sirve los úeros reles? Qué clse de úeros reles cooces? Cuáles so ls crcterístics

Más detalles

Z={...,-4,-3,-2,-1,0,1,2,3,4,...}

Z={...,-4,-3,-2,-1,0,1,2,3,4,...} TEMA Prelimires: Números y cojutos P- Números eteros: Se deomi úmeros turles (tmbié llmdos eteros positivos) los úmeros que os sirve pr cotr objetos:,,,4,5,... El cojuto de los úmeros turles se desig por

Más detalles

Base positiva: resultado siempre positivo. Base negativa y exponente par: resultado positivo. Base negativa y exponente impar: resultado negativo

Base positiva: resultado siempre positivo. Base negativa y exponente par: resultado positivo. Base negativa y exponente impar: resultado negativo CAPÍTULO : POTENCIAS Y RAÍCES. Mteátics ºB ESO. POTENCIAS DE EXPONENTE ENTERO. PROPIEDADES.. Potecis de eoete turl. Recuerd que: Ddo, u úero culquier, y, u úero turl, l oteci es el roducto del úero or

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES EXPONENTES Y RADICALES L potecició o otció epoecil es u otció pr revir u ultiplicció: Notció: L, pr u etero positivo 0. veces Se lee coo elevdo l o ás revido: l. es lld l se el epoete o poteci e idic el

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS REALES

POTENCIAS Y RAÍCES DE NÚMEROS REALES www.tesrod.et José A. Jiéez Nieto POTENCIAS Y RAÍCES DE NÚMEROS REALES. POTENCIAS DE EXPONENTE NATURAL. U poteci de bse u úero rel y epoete u úero turl ( > ) es el producto de fctores igules l bse: ( veces)

Más detalles

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució

Más detalles

REALES EALES. DEFINICIÓN Y LÍMITES

REALES EALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES EALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrile rel. Doiio de u fució.. Doiios de ls fucioes ás hitules. Coposició de fucioes. Propieddes. Fució

Más detalles

TEMA 2 Números reales*

TEMA 2 Números reales* TEMA Núeros reles* Itroducció y propieddes. Vios e el te terior que todo úero rciol tiee u epresió decil fiit o periódic y vicevers. Por tto: Llreos úero irrciol todo úero que teg u epresió decil ifiit

Más detalles

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces.

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces. POTENCIAS.- determi l oteci de se y exoete, sigific ue hemos de multilicr or si mismo veces. Defiició: L otció Bse Exoet El exoete,, idic ls veces ue se reite l se e el roducto de ést or si mism. L se,,

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Teorí ejercicios de teátics II. Álger Sistes de ecucioes lieles - -. SISTES DE ECUCIONES INEES. DEFINICION U ecució liel es u ecució de l for e l que, so los coeficietes de ls icógits, es el tério idepediete

Más detalles

CAPÍTULO 3 Función Exponencial y Función Logarítmica. Por su uso e importancia, es necesario revisar las propiedades de las potencias, que se resumen

CAPÍTULO 3 Función Exponencial y Función Logarítmica. Por su uso e importancia, es necesario revisar las propiedades de las potencias, que se resumen CAPÍTULO 3 Fució Epoecil Fució Logrític 3.1) Repso de propieddes de ls potecis Por su uso e iportci, es ecesrio revisr ls propieddes de ls potecis, que se resue cotiució. ( ) 1 1 0 3.) Fució Epoecil Defiició

Más detalles

1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS

1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS C/ Eilio Ferrri, 87 - Mdrid 8017 www.slesissjose.es Deprteto de Ciecis Nturles MT01. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS 1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS Ates de epezr Seguro que ás de u vez

Más detalles

UNIDAD 1: NÚMEROS RACIONALES E

UNIDAD 1: NÚMEROS RACIONALES E Colegio Vizcy º Bchiller UNIDAD : NÚMEROS RACIONALES E IRRACIONALES Colegio Vizcy º Bchiller NÚMEROS RACIONALES E IRRACIONALES. INTRODUCCIÓN Los cojutos de úmeros v mpliádose históricmete medid que surge

Más detalles

Potencias y Radicales

Potencias y Radicales Potecis y Rdicles Potecis de expoete turl ( Se R~{ 0 } N Defiimos...... 8, ( ) ( )( )( )( )( ) Propieddes: ) m + m ) m m ( ) ) ) () ) m m Por coveio: ) 0 Potecis de expoete egtivo Se R~0 N. Defiimos 8

Más detalles

CAPÍTULO 2: POTENCIAS Y RAÍCES 1. POTENCIAS DE EXPONENTE ENTERO. PROPIEDADES

CAPÍTULO 2: POTENCIAS Y RAÍCES 1. POTENCIAS DE EXPONENTE ENTERO. PROPIEDADES CAPÍTULO : POTENCIAS Y RAÍCES. POTENCIAS DE EXPONENTE ENTERO. PROPIEDADES.. Potecis de epoete turl. Recuerd que: Ddo, u úmero culquier, y, u úmero turl, l poteci es el producto del úmero por sí mismo veces

Más detalles

Tema 1. Números Reales. Intervalos y Radicales

Tema 1. Números Reales. Intervalos y Radicales Tem. Números Reles. Itervlos y Rdicles. El cojuto de úmeros reles.... Cojutos de l rect rel. Itervlos y etoros..... Opercioes co cojutos, uió e itersecció..... Notció cietífic.... Potecis y Rdicles...

Más detalles

Resumen: Límites de funciones. Asíntotas

Resumen: Límites de funciones. Asíntotas Resue: Líites de ucioes. Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. Ejeplos: *?

Más detalles

Neper ( ) Lección 2. Potencias, radicales y logarítmos

Neper ( ) Lección 2. Potencias, radicales y logarítmos Neer (0-7) Lecció Potecis, rdicles y logrítmos º ESO MATEMÁTICAS ACADÉMICAS Potecis, rdicles y logritmos LECCIÓN. POTENCIAS, RADICALES, LOGARITMOS. Potecis de exoete etero Recuerd l defiició de oteci co

Más detalles

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie

Más detalles

EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS:

EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS: Mtemátic II do Mgisterio IFD Celoes XPRSIÓN DCIMAL D LOS NÚMROS RACIONALS ABSOLUTOS: Vmos clsificr los úmeros rcioles solutos e dos cojutos disjutos D y D P ( D D φ ). P D Q D P Se / el represette cóico

Más detalles

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V COMBINATORIA Por Aálisis Cobitorio o Cobitori, se etiede quell prte del álgebr que se ocup del estudio y propieddes de los grupos que puede forrse co eleetos ddos, distiguiédose etre sí: por el úero de

Más detalles

Operaciones en el conjunto de los números racionales Q

Operaciones en el conjunto de los números racionales Q lsteátics.eu Pedo Csto Oteg teiles de teátics Fccioes. Núeos eles. Potecis. Ríces. º ESO Opecioes e el cojuto de los úeos cioles Q Opeció Su c d bc b d bd Rest (difeeci) c d bc b d bd b) ) Ejeplo 5 5 5

Más detalles

1. Discutir según los valores del parámetro k el sistema

1. Discutir según los valores del parámetro k el sistema . Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de

Más detalles

ÁLGEBRA APUNTES. EXPONENTES y RADICALES. Ing. Francisco Raúl Ortíz González UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

ÁLGEBRA APUNTES. EXPONENTES y RADICALES. Ing. Francisco Raúl Ortíz González UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ARAGÓN DIVISIÓN DE LAS CIENCIAS FÍSICO-MATEMÁTICAS Y DE LAS INGENIERÍAS INGENIERÍA MECÁNICA-ELÉCTRICA APUNTES EXPONENTES RADICALES

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Números turles. Sistem de umerció deciml Como y sbes, el sistem de umerció deciml utiliz diez cifrs o dígitos distitos:,,,, 4, 5, 6, 7, 8 y 9. Además, es u sistem posiciol porque cd cifr o dígito tiee

Más detalles

Resumen: Límites, Continuidad y Asíntotas

Resumen: Límites, Continuidad y Asíntotas Resue: Líites, Cotiuidd y Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. : *? ** *

Más detalles

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO Mteátis º ESO 1. Núeros reles Clsifiió de los úeros reles Aroxiió de deiles Itervlos. Ríes y oteis Notió ietífi. Oerioes Rdiió. Proieddes de ls oteis de exoete riol Rdiles equivletes Silifir rdiles Extrió

Más detalles

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES. PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,

Más detalles

Capítulo 1: LOS NUMEROS REALES

Capítulo 1: LOS NUMEROS REALES Cpítulo : LOS NUMEROS REALES VIDEO Sucojutos especiles de los úeros reles Represetció decil de los úeros reles SUBCONJUNTOS DE NUMEROS REALES Los úeros,, so usdos pr cotr Norlete se los cooce coo el cojuto

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8

EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8 Repúlic Bolivri de Veezuel Miisterio de l Defes Uiversidd Nciol Eperietl Politécic de l Fuerz Ard Núcleo Crcs Curso de Iducció Uiversitri CIU Cátedr: Rzoieto Mteático EXPRESIONES ALGEBRAICAS RACIONALES

Más detalles

El conjunto de los Números Reales

El conjunto de los Números Reales El cojuto de los Números Reles Al cojuto de los úmeros reles se lleg por sucesivs mplicioes del cmpo umérico prtir de los úmeros turles. E cd u de ls mplicioes se vz y se logr mejorr respecto de l terior.

Más detalles

Números reales. unidad 1. contenidos

Números reales. unidad 1. contenidos coteidos uidd. Núeros turles y eteros. Núeros rcioles. Potecis. Relcioes etre los úeros rcioles y deciles 4. Núeros irrcioles. Núeros reles. Represetció 6. Cojutos e l rect rel 7. Aproxicioes deciles 8.

Más detalles

TEMA 1. ÁLGEBRA LINEAL

TEMA 1. ÁLGEBRA LINEAL Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1. Números rcioles. Los úmeros reles. 1.1.1. Sucesivs mlicioes el cmo umérico. LOS NÚMEROS NATURALES. N= {1,2,,4,...} LOS NÚMEROS ENTEROS. Z ={...,-4,-,-2,-1,0,1,2,,4,...} LOS

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

1º Bachillerato Capítulo 1: Números reales

1º Bachillerato Capítulo 1: Números reales Mtemátics Aplicds ls Ciecis Sociles I º Bchillerto Cpítulo : Ídice. NÚMEROS REALES.. NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES.. LA RECTA REAL.. VALOR ABSOLUTO. DISTANCIA EN LA RECTA REAL.. INTERVALOS

Más detalles

TEMA 2: NÚMEROS RACIONALES: FRACCIONES.

TEMA 2: NÚMEROS RACIONALES: FRACCIONES. TEMA NÚMEROS RACIONALES FRACCIONES.. Cojuto e los Núeros Rioles, Q. El ojuto e los úeros rioles es u pliió e los úeros eteros, los que se le ñe uevos úeros que se ostruye o úeros eteros y se ll FRACCIONES.

Más detalles

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número real.

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número real. RADICALES Etre los úeros reles se euetr los rdiles, ue se uede exresr oo ríz de u ídie de u úero rel. Ríz eési de u úero rel. Si R y Ν, o, direos ue l ríz eési de es u úero rel r y lo otreos sí: r, si

Más detalles

Radicación en R - Potencia de exponente racional Matemática

Radicación en R - Potencia de exponente racional Matemática Rdiccio e R Poteci de eoete rciol Mtemátic º Año Cód. 0- P r o f. V e r ó i c F i l o t t i P r o f. M r í d e l L u j á M r t í e z C o r r e c c i ó : P r o f. S i l v i A m i c o z z i Dto. de M t emátic

Más detalles

z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente

z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente UNIDAD.- LOGARIMOS. APLICACIONES (tem del libro). LOGARIMO DE UN NÚMERO Cosideremos l ecució: 8. Como vemos l icógit está e el epoete, lo que l hce diferete todos los tipos vistos hst hor. es el epoete

Más detalles

Matemáticas aplicadas a las Ciencias Sociales

Matemáticas aplicadas a las Ciencias Sociales Mtemátics plicds ls Ciecis Sociles SERIE RESUELVE El liro Mtemátics plicds ls Ciecis Sociles I pr. er curso de Bchillerto, es u or colectiv coceid, diseñd y cred e el Deprtmeto de Edicioes Eductivs de

Más detalles

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x) FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito

Más detalles

LÍMITES DE SUCESIONES. EL NÚMERO e

LÍMITES DE SUCESIONES. EL NÚMERO e www.mtesxrod.et José A. Jiméez Nieto LÍMITES DE SUCESIONES. EL NÚMERO e. LÍMITE DE UNA SUCESIÓN... Aproximció l cocepto de límite. Vmos cercros l cocepto de límite hlldo lguos térmios de distits sucesioes

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

Sucesiones de números reales

Sucesiones de números reales Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5

Más detalles

Potencias, Raíces y logaritmos

Potencias, Raíces y logaritmos Potecis, Ríces y logritmos El ivetor del jedrez, le preseto su ovedos creció l rey de Dirhm, e l idi, este quedo t fscido por el juego que le ofreció culquier cos que el deser como recompes. Ate este

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

TEMA1: MATRICES Y DETERMINANTES:

TEMA1: MATRICES Y DETERMINANTES: TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes

Más detalles

POTENCIA DE UN NÚMERO.

POTENCIA DE UN NÚMERO. INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluió Nº de oviere./0 Seretri De Eduió Distritl REGISTRO DANE Nº00-00099 Teléfoo Brrio Bstids St Mrt DEPARTAMENTO DE MATEMATICAS DOCENTE: LIC-ING.

Más detalles

LOS NÚMEROS REALES. n, se llaman números irracionales. Una diferencia entre los

LOS NÚMEROS REALES. n, se llaman números irracionales. Una diferencia entre los LOS NÚMEROS REALES Los úmeros,, so usdos pr cotr Normlmete se los cooce como el cojuto de los úmeros turles, dicho cojuto se lo deot ormlmete co l letr N, sí N {,,K } Si se sum dos úmeros turles el resultdo

Más detalles

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 4º ESO

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 4º ESO Mteátis º ESO 1. Núeros reles Clsifiió de los úeros reles Frió geertriz de u úero deil Reresetió de úeros rioles e l ret rel Aroxiioes Itervlos. Ríes y oteis Proieddes de ls oteis de exoete riol Rdiles

Más detalles

Guía Práctica N 12 RAÍCES FUNCIÓN RAÍZ CUADRADA

Guía Práctica N 12 RAÍCES FUNCIÓN RAÍZ CUADRADA Fuete: PreUiversitrio Pedro de Vldivi Guí Práctic N RAÍCES FUNCIÓN RAÍZ CUADRADA DEFINICIÓN : Si es u etero pr positivo es u rel o egtivo, etoces es el úico rel, o egtivo, tl que = = =, 0 DEFINICIÓN :

Más detalles

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración. Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de

Más detalles

ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la

ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la ECUACIONES DE SEGUNDO GRADO Ojetivos: Defiir ecució de segudo grdo. Resolver l ecució de segudo grdo plicdo propieddes de l iguldd. Resolver l ecució de segudo grdo plicdo fctorizcioes. Resolver l ecució

Más detalles

2. CONJUNTOS NUMÉRICOS

2. CONJUNTOS NUMÉRICOS 1. TEORÍA DE CONJUNTOS CONCEPTO DE PERTENENCIA: " " Se el cojuto A {, b} A b A c A CONCEPTO DE SUBCONJUNTO: " " A B [ x A x B, x ] A, A A A, A CONJUNTOS ESPECIALES Cojuto Vcío: { } { } {0} Cojuto Uiverso:

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias: EJERCICIOS de POTENCIAS º ESO FICHA : Potecis de expoete IN RECORDAR:... Defiició de poteci ( veces). Aplicr l defiició pr hllr, si clculdor, el vlor de ls siguietes potecis: ) b) ( ) c) d) ( ) e) f) (

Más detalles

TEMA 2 ECUACIONES, INECUACIONES Y SISTEMAS

TEMA 2 ECUACIONES, INECUACIONES Y SISTEMAS TEMA ECUACIONES INECUACIONES Y SISTEMAS CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.. ECUACIONES DE PRIMER GRADO... Método geerl de resolució de ecucioes EJEMPLO: Resolver 4 5 6 (+7) =

Más detalles

4ºB ESO Capítulo 2: Potencias y raíces

4ºB ESO Capítulo 2: Potencias y raíces ºB ESO Cpítulo : Potecis y ríces LirosMreVerde.tk www.putesmreverde.org.es Autor: JOSE ANTONIO ENCABO DE LUCAS Revisor: Nieves Zusti Ilustrcioes: Bco de Imágees de INTEF Potecis y ríces. ºB de ESO Ídice.

Más detalles

Anillos de Newton Fundamento

Anillos de Newton Fundamento Aillos de Newto Fudmeto Los illos de Newto so producidos por itererecis cudo dos hces de luz, procedetes de l mism uete, recorre cmios ópticos dieretes. Eiste distitos modos de logrr este eómeo, el que

Más detalles

Capítulo 7. Series Numéricas y Series de Potencias.

Capítulo 7. Series Numéricas y Series de Potencias. Cpítulo Series Numérics y Series de Potecis.. Itroducció. E este cpítulo le dremos setido l cocepto de sum ifiit de úmeros ó serie uméric, es decir, diremos que sigific sumr u ifiidd de úmeros... 4 El

Más detalles