MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división."

Transcripción

1 Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d ln C ln ( ) C d ln ( ) C b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Comprueba que 6 6 Haciendo lo cálculos habiuales obenemos la descomposición en fracciones simples: Con los resulados aneriores podemos afirmar que: ( 3) 8ln( ) C 3 ln c) La inegral se resuelve por descomposición en fracciones simples, previa división del numerador por el denominador. Para comprobar us resulados puedes uilizar la orden Epandir de la pesaña Simplificar en DERIVE, según se indica a coninuación. d d d d ( ) ln C d) 3 d I d d I I I d d ln 9 C 9 9 d 3 arcan ( 3) 3 C La primera es una logarímica: La segunda un arco angene: ( ) - -

2 Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas arcan ( 3) I I 3I 3 ln 9 d C 9 e) d se resuelve con un cambio de variable e e ln d d, que llevado a nuesra inegral: d, que es de ipo racional. ( ) A B ( A B) B A ( A B) B ( ) ( ) B d d I ln ln Deshaciendo el cambio: I ln e ln e ln d e e Ejercicio d. b) Uilizar el cambio de variable e e para calcular Indicación: Para deshacer el cambio uilícese ln a) Calcula: 3 ln d Madrid: sepiembre 8 a) Se resuelve por pares: d u ln du dv v d 3 3 b) e e d e e d 3 ln I ln d d ( e e ) d I d e e e e e e e e e e e e e e e e ln C 6 ( e e ) Llevando ese resulado a la inegral pedida: ( e e ) d ( e e ) d I d d c e e ( e e ) Como en la indicación nos dicen cómo se deshace el cambio, el problema esá erminado: d ln C - -

3 Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas O ambién: d ln ( ) C porque ( ) podemos considerar ln ce. incluido en C. ln ln ln y NOTA: Nos han dado la epresión que deshace el cambio de variable, pero si no hubiera sido así, la habríamos obenido de la siguiene forma: e z e e z z z z z z Se raa de resolver una ecuación de segundo grado en z, de coeficienes: a, b, c z e z e ln Ejercicio 3 a) Hallar los máimos y mínimos y los punos de infleión de f b) Deerminar la función F ( ) al que su derivada sea 3 3 f f críicos. Signo de f Crecimieno, decrecimieno de f ( ) ( ) ( ) 3 3 F f y además Madrid: sepiembre 7. D f R y en y la función iene sus punos La función f ( ) alcanza un máimo relaivo en (, f ) (,7 ) y un mínimo relaivo en, f ( ), ( ) ( ) 3 f f ; 3 f ± El Como en esos punos se anula la segunda derivada es nula, y la primero no se anulaba, los res son punos de infleión: ( f ) ( f ) f 3, 3 3,3 3 ;,,3 y 3, 3 3,3 3 3 b) d d 3 d ( ) ln F C 3. ( ) ln F C F 3-3 -

4 Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio a) Deerminar las funciones reales de variable real que saisfacen la condición de que la, y de su gráfica viene dada por la pendiene de la reca angene en un puno genérico epresión e. b) Hallar máimo y mínimo locales y los inervalos de crecimieno y decrecimieno de,. aquella de las funciones del aparado anerior que pasa por el puno Madrid: junio 998 Que la pendiene de la angene en cualquier puno venga dada por e, equivale a decir que f e, por lo que la funciones pedidas son las primiivas de ésa. f e f e d, que se hace por pares y se obiene: f e e C. es En el segundo aparado se pide el esudio de, enre las aneriores, la función que pasa por (,), es decir, aquella para la cual f () C C, luego: f e e. El esudio que se pide se hace a parir de - Signo de f f ) ( e. Como e, : > sig ( f ) sig( ) Monoonía de f La función iene un mínimo relaivo en (, f ()) (,). Ejercicio De la función derivable () A y que su derivada es: si f ( ) si > a) Hallar la epresión de f (). b) Obener la ecuación de la reca angene a f () en f se sabe que pasa por el puno (, ) si ( ) f f a si si >. ln b si > Las consanes a y b se deerminan imponiendo dos condiciones: Madrid: Prueba ipo 999- Su gráfica pasa por el puno A(, ) f ( ) 3 a f () es derivable f () coninua lím f lím f 3 a b - -

5 Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Resolviendo el sisema: 3 a b 3 f ln si si > Como f () ln > f (), la ecuación de la angene en es: : y ln ( ) Ejercicio 6 Si la derivada de f ( ) es f ( ) 3 ( ), si pide: a) Los inervalos de crecimieno y decrecimieno de f. b) Los valores de en los que f iene eremos relaivos o punos de infleión. f c) La función f sabiendo que Madrid: Junio de 9 a) Para el esudio del crecimieno y decrecimieno esudiamos el signo de f ( ) 3 ( ) f b) Por los resulados del aparado anerior, podemos concluir que en la función alcanza un máimo relaivo y en un mínimo relaivo. Para las infleiones necesiamos la segunda derivada. 3 3 ( ) ( ) 3( ) ( ) ( ) ( ) ( 3( ) ( ) ) f ( ) ( ) f f Podríamos hacer el esudio del signo de f para averiguar si en o la gráfica de f iene alguna infleión, pero no es necesario, pues ya sabemos que en hay un eremo relaivo, por lo que sólo hay un puno de infleión, en. La función f, primiiva de f, se obiene si desarrollamos ésa: 3 3 ( ) ( ) f f ( ) C. 3 f 6 8 C 3 f

6 Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio 7 Dada la función f ( ) ln, se pide: a) Deerminar el dominio de f y sus asínoas. y f en. b) Calcular la reca angene a la curva c) Calcular f d. Madrid junio de > >, a) f (, ) { } D f (, ) { } Hay dos posible asínoas vericales: y. Comprobamos si definiivamene lo son. ( ) ( ) ln ln lím f lím lím lím ( ) ln Como lím lím f La reca es una asínoa verical ln ( ) ln ( ) lím f lím lím lím ± No es necesario hacer los límies laerales para saber que la reca ± 3 ln 3 3 es una asínoa verical Viso el dominio de f, el esudio de las asínoas horizonales, y oblicuas si procede, se reduce a cuando. ( ) ln lím f lím lím ln ( ) ( L'H) lím lím b) lím f ln ( ) ln ( ) f f (, ( ) ) (, ) f ( ) 3 A f m y es una asínoa horizonal ( ) ( ) 3 : y ( ) ( ) ln - 6 -

7 Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas c) ( ) d d ln C u ln d ln ( ) d ln ( ) C u u f d ln ln C NOTA: Si no e das cuena de que la segunda es inmediaa, puedes hacer un cambio de variable ln ( ) e ln ( ) e d e d. d d d C. e Deshaciendo el cambio: ( ) ln ln d C - 7 -

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRCIÓN POR CMBIO DE VRIBLE Dada la inegral f( ) d, si consideramos como una función de ora variable, = g(), enonces d = g'() d, y susiuyendo en la inegral inicial se obiene f( g( )) g'( ) d. En el

Más detalles

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006 EXAMEN DE MATEMÁTICAS I 8 de febrero de 006 MATEMÁTICAS I Eamen del º PARCIAL 8 de febrero de 006 Sólo una respuesa a cada cuesión es correca. Respuesa correca: 0. punos. Respuesa incorreca: -0. punos

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009 EXAMEN DE MATEMÁTICAS I (Primer Parcial) de febrero de 9 Sólo una respuesa a cada cuesión es correca. Respuesa correca:. punos. Respuesa incorreca: -. punos Respuesa en blanco: punos.- Sea ABC un riángulo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos I.E.S. CASTELAR BADAJOZ A. Menguiano PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 8 (RESUELTOS por Anonio Menguiano) MATEMÁTICAS II Tiempo máimo: horas minuos Se valorará la corrección

Más detalles

SEGUNDO EXAMEN EJERCICIOS RESUELTOS

SEGUNDO EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G I T I SEGUNDO EXAMEN 13 1 EJERCICIOS RESUELTOS EJERCICIO 1 Considera el cuerpo de revolución que se genera al girar alrededor del eje OX la gráfica de la función x α f(x = x (, + (x +

Más detalles

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( )

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( ) 5 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Inegral definida:. Enunciar la regla de Barrow. Calcular:. Calcular:. (S) Calcular: d (Soluc: ) a + b a ( ) a + b d Soluc : b d (Soluc: 5/). Calcular: 5. Calcular:

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. NOTA: En odos los ejercicios se deberá jusificar la respuesa eplicando el procedimieno seguido en la resolución del ejercicio. CURSO 10-11 JUNIO CURSO 10 11 1 Aplicando ransformadas de Laplace, hallar

Más detalles

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C.

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C. EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. Para resolverla planeamos la susiución, de la que se sigue que d. Por ano,. 5 5.986 d d d C C. 5 5.986 Ln 5.986 C.. arcg C.. 5 5. 5 6 5 5 6 5 5 arcg5 C.

Más detalles

a) en [0, 2] ; b) en [-1, 1]

a) en [0, 2] ; b) en [-1, 1] UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO FACULTAD DE CIENCIAS NATURALES CATEDRA: Maemáica I CURSO: 04 TRABAJO PRACTICO Nº -Tercera Pare Pare III. Aplicaciones de la derivada TEOREMA DE ROLLE

Más detalles

CÁLCULO DE INTEGRALES. Solución: Todas ellas se resuelven por partes y la fórmula del método es

CÁLCULO DE INTEGRALES. Solución: Todas ellas se resuelven por partes y la fórmula del método es CÁLCULO DE NTEGRALES.-Calcula las siguienes inegrales: a) d ; b) sen d ; c) Ld ; e Todas ellas se resuelven por pares y la fórmula del méodo es u. dv u. v v. du a) e d. u du d dv e. d v e d e e e d e e

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Soluciones modelo (Sepiembre de 009) Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f( ) -+. Deermina la asínoa de la gráfica Evidenemene, la función no iene asínoas vericales,

Más detalles

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N. Cálculo Diferencial e Inegral - Funciones rascenenales. Prof. Farih J. Briceño N. Objeivos a cubrir Función logarimo y eponencial. Propieaes. Derivaa e inegración. Cóigo : MAT-CDI.5 Ejercicios resuelos

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana.

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana. 1.- Sea una función coninua y = f() al que el dominio de f() =[a,b], enonces: a) El máimo absoluo de f() se alcanza en uno de los valores ales que f ()=0. b) No iene porque ener máimo absoluo. c) El máimo

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x)

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x) Auoevaluación Cálculo Inegral Ejercicio 6. Calcular las siguienes inegrales indefinidas: ln d d ln( + d (a (b (c g cos + e d e + (d (e e + e d (f d cos( sen (g sen ( d (h ( + sen( d (i cos( cos ( + d (j

Más detalles

Examen de Matemáticas II 2º de Bachillerato

Examen de Matemáticas II 2º de Bachillerato º Bachillerao - Maemáicas II 1. Calcular el siguiene límie: Eamen e Maemáicas II º e Bachillerao 1 cos lim 0 e 1. Encuenra el puno e la reca y, que cumpla que la suma e los cuaraos e sus coorenaas sea

Más detalles

Unidad 6 Derivadas PÁGINA 135 SOLUCIONES. 1. La solución en cada caso es: = lím. lím. = h. 2. Queda: La recta debe tener una forma: y = x + b 5

Unidad 6 Derivadas PÁGINA 135 SOLUCIONES. 1. La solución en cada caso es: = lím. lím. = h. 2. Queda: La recta debe tener una forma: y = x + b 5 Unidad 6 Derivadas PÁGINA 15 SOLUCIONES 1. La solución en cada caso es: f ( ) f () ( ) 5 17 1 a) lím lím lím lím (1 ) 1 0 0 0 0 b) g ( ) g ( ) ( ) 1 1 lím lím lím 0 ( 1 1) 1. Queda: 1 La reca debe ener

Más detalles

prepara TU SElECTIVIDAD

prepara TU SElECTIVIDAD prepara TU SElECTIVIDAD Se considera la función f ( ) = ( + a) e a siendo a un parámero real. a) Razone a qué es igual el dominio de f ( ). b) Deermine el valor de a para que la gráfica de f() pase por

Más detalles

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas Unidad 9 Funciones eponenciales, logarímicas y rigonoméricas PÁGINA 177 SOLUCIONES 1. En cada uno de los res casos: a) Domf = Imf = Esricamene creciene en odo su dominio. No acoada. Simérica respeco al

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian

130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian 30 Maemáicas I Pare IV Cálculo inegral en IR 3 Maemáicas I : Cálculo inegral en IR Tema Cálculo de primiivas. Primiiva de una función Definición 55.- Diremos ue la función F coninua en [a, b], es una primiiva

Más detalles

( ) ( 15 50) 0

( ) ( 15 50) 0 PRUE DE CCESO L UNIVERSIDD JUNIO 7 OPCION ) Deermina dos números reales posiivos sabiendo que su suma es y que el produco de sus cuadrados es máximo. Sean x e y los números reales que suman y P x y odos

Más detalles

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3 EXTRAORDINARIO DE 8. PROBLEMA A. Esudia el siguiene sisema de ecuaciones lineales dependiene del parámero real a y resuélvelo en los casos en que es compaible: Aplicamos el méodo de Gauss: a-3 (a-3) 3-a

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

Examen Final de Ecuaciones Diferenciales Septiembre 2007

Examen Final de Ecuaciones Diferenciales Septiembre 2007 Eamen Final de Ecuaciones Diferenciales Sepiembre 007 Problema La siguiene ecuación diferencial de primer orden se puede resolver por diferenes méodos según cómo se planee. d d = + () Conesar las siguienes

Más detalles

x t, x t, x dx dt sustituyendo e integrando, obtenemos: 3

x t, x t, x dx dt sustituyendo e integrando, obtenemos: 3 E.T.S.I. Indusriales y Telecomunicación Curso - Grados E.T.S.I. Indusriales y Telecomunicación Tema 5: Inegración de funciones de una variable. Ejercicios resuelos Inegración indefinida Resolver. d 6 Hacemos

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Colegio Lux Mundi (Cajar-Granada) Examen Sepiembre de 009 Javier Cosillo Iciarra Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f ( x ) x -x+x. Deermina la asínoa de la

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1 Pruebas de Apiud para el Acceso a la Universidad. JUNIO 1998. Maemáicas II. OPCIÓN A 1. Discuir el sisema a z solución del mismo cuando a = [1 puno] (a 1) y a z 1 (a 1) y (a 1) z según sea el valor del

Más detalles

Ecuaciones de primer orden

Ecuaciones de primer orden Capíulo 1 Ecuaciones de primer orden Problema 1.1 Hallar la solución general de la ecuación + 1 + 2 = 0. Hallar la solución que verifica (0) = 0 y la que verifica (1) = 0. k=-5 k=5 k=-1 Figura 1.1: Soluciones

Más detalles

TRABAJO PRÁCTICO N 3: Derivadas - Diferencial

TRABAJO PRÁCTICO N 3: Derivadas - Diferencial TRABAJO PRÁCTICO N : Derivadas - Diferencial ) Definición de derivada en un puno: La derivada de la función f es aquella función, denoada por f ', al que su valor en un número del dominio de f esá dado

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1:

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1: EXAMEN COMPLETO Baremo: Se elegirá el o el EJERCICIO B, del que SOLO se harán TRES de los cuaro problemas. LOS TRES PROBLEMAS PUNTÚAN POR IGUAL. Cada esudiane podrá disponer de una calculadora cienífica

Más detalles

IES Fco Ayala de Granada Suplente Junio de 2017 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Suplente Junio de 2017 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Suplene Junio de 07 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio opción A, Suplene Junio 07 (modelo 4) x+ si x < 0 Se sabe que la función f : R R dada por f(x) = x + acos(x)

Más detalles

LA INTEGRAL INDEFINIDA

LA INTEGRAL INDEFINIDA Inegrales LA INTEGRAL INDEFINIDA Inegral indefinida: Primiiva (aniderivada) Primiivas (Aniderivadas) Dada la función F( es fácil hallar su derivada F (. El proceso inverso: enconrar F ( a parir de F (

Más detalles

Propuesta A. 1. Dadas las matrices: C = B = A =

Propuesta A. 1. Dadas las matrices: C = B = A = Pruebas de Acceso a Enseñanzas Univerarias Oiciales de Grado 6 Maeria: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá conesar a una de las dos opciones propuesas A ób. Se podrá uilizar

Más detalles

PRIMER EXAMEN EJERCICIOS RESUELTOS

PRIMER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G. I. T. I.) PRIMER EXAMEN 03 04 EJERCICIOS RESUELTOS EJERCICIO. Dada la curva cuya ecuación en coordenadas polares es r θ para 0 θ, se pide: () Deermina la ecuación de la reca angene a

Más detalles

Unidad 5 Geometría afín en el espacio

Unidad 5 Geometría afín en el espacio Unidad 5 Geomería afín en el espacio 5 SOLUCIONES. a) Los componenes de los vecores pedidos son: b) Eisen infinias parejas de punos C D que cumplan la condición pedida. Por ejemplo, C(,,) D (,,). c) Sea

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Junio, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 A) Hallar la pendiene de la reca secane a la parábola y + 8,cuyas abscisas de los punos de inersección son 1 y 4 f ( ) f ( a) B) Dada la siguiene epresión

Más detalles

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales?

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales? Razón de cambio de una función cuadráica Ejemplo.5 Un puno se desplaza en el plano describiendo el lugar geomérico correspondiene a la función f ( x x 6x 3. Obén la razón promedio de cambio. Considera

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

Propuesta A. y B = 1 0

Propuesta A. y B = 1 0 Pruebas de cceso a Enseñanzas Univerarias Oiciales de Grado Maeria: MEMÁIS PLIDS LS IENIS SOILES II El alumno deberá conesar a una de las dos opciones propuesas o. Se podrá uilizar cualquier ipo de calculadora..

Más detalles

U.P.R. Departamento de Ciencias Matemáticas RUM MATE 3031 Examen Final 3 de diciembre de 2007

U.P.R. Departamento de Ciencias Matemáticas RUM MATE 3031 Examen Final 3 de diciembre de 2007 U.P.R. Dearameno de Ciencias Maemáicas RUM MATE 33 Eamen Final 3 de diciembre de 7 Nombre: Profesor: Sección: Insrucciones: Lea cada reguna minuciosamene y muesre odo su rabajo. Esá rohibido coiar, consular

Más detalles

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una.

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una. UNIVERSIDAD DE LONDRES PREPARATORIA GUIA DE MATEMÁTICAS VI Áreas I-II Plan : 9 Clave maeria : 00 Clave UNAM : Unidad I. Funciones Objeivos Que el alumno idenifique disinos ipos de funciones, esablezca

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO. Miércoles 3 de setiembre de 2014

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO. Miércoles 3 de setiembre de 2014 Universidad de Cosa Rica Insiuo Tecnológico de Cosa Rica TERCER EXAMEN PARCIAL CÁLCULO Miércoles 3 de seiembre de 4 INSTRUCCIONES Lea cuidadosamene, cada insrucción y preguna, anes de conesar. Uilice únicamene

Más detalles

Matemáticas II TEMA 10 La integral indefinida

Matemáticas II TEMA 10 La integral indefinida nálisis. Inegral Indefinida Maemáicas II TEM 0 La inegral indefinida. oncepo de inegral indefinida La derivada de una función permie conocer la asa de variación (el cambio insanáneo) de un deerminado fenómeno

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN EJERCICIOS RESUELTOS Calcula una función real f : que cumple las condiciones siguientes: f (0) = 5, f (0) =, f (0) = 0 y f () = + Como f () = +, integremos esta

Más detalles

Geometría del espacio

Geometría del espacio Geomería del espacio º) Dados los vecores u = (,, ) v = (,, ), calcula: a) sus módulos. b) su produco escalar. c) el coseno del ángulo que forman. d) el valor de w para que el vecor w (w,, ) sea perpendicular

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y ĺıneas de fase. Campos de pendientes

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y ĺıneas de fase. Campos de pendientes Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y ĺıneas de fase Campos de pendienes () solución de = f (, ) pendiene de la reca angene a la gráfica

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Septiembre de 00 APELLIDOS: NOMBRE: DNI CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada respuesta incorrecta

Más detalles

Modelo 2 OPCIÓN A. A y B AB se puede realizar porqueel n decolumnas de Aesigual al n de filas de B AB. t t t

Modelo 2 OPCIÓN A. A y B AB se puede realizar porqueel n decolumnas de Aesigual al n de filas de B AB. t t t Insrucciones: a) Duración: 1 hora y 3 minuos. b) Elija una de las dos opciones propuesas y conese los ejercicios de la opción elegida. c) En cada ejercicio, pare o aparado se indica la punuación máxima

Más detalles

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

1 DEFINICION. INTEGRALES INMEDIATAS

1 DEFINICION. INTEGRALES INMEDIATAS DEFNCON. NTEGRALES NMEDATAS CAMBO DE VARABLE NTEGRACON POR PARTES SUSTTUCONES TRGONOMETRCAS 5 NTEGRACÓN POR RECURRENCA 6 NTEGRACÓN DE FUNCONES RACONALES. METODO DE HERMTE 7 NTEGRACÓN DE FUNCONES RRACONALES

Más detalles

LA INTEGRAL INDEFINIDA

LA INTEGRAL INDEFINIDA Inegrales LA INTEGRAL INDEFINIDA Inegral indeinida: Primiiva (aniderivada) Primiivas (Aniderivadas) Dada la unción F (, es ácil hallar su derivada F (. El proceso inverso, enconrar F ( a parir de F ( se

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A 0 1 0 0 1 1 Sean las marices C = 1 0 1 y D = 1 0 1. 0 1 0 1 1 0 a) (1.5 punos) Resuelva la ecuación maricial 2 X C D = ( I 3 + D) C. b) (1 puno) Si las marices C y D son las marices de adyacencia

Más detalles

Relación de ejercicios. Ecuaciones diferenciales

Relación de ejercicios. Ecuaciones diferenciales Relación de ejercicios. Ecuaciones diferenciales Abraham Rueda Zoca Ejercicio 1. [ punos] Resolver la ecuación diferencial: x = 2 + x + x 2 2. Solución. Veamos que se raa de una ecuación homogénea. Si

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

BLOQUE 2 CÁLCULO INTEGRAL

BLOQUE 2 CÁLCULO INTEGRAL BLOQUE CÁLCULO INTEGRAL INTEGRALES INDEFINIDAS. Primeras deiniciones.propiedades De: Se dice que F es FUNCIÓN PRIMITIVA de si F = EJEMPLO: Es evidene que es una primiiva de ya que ( ) = Pero ambién + es

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

Ondas y Rotaciones. Principios fundamentales II

Ondas y Rotaciones. Principios fundamentales II Ondas y Roaciones rincipios fundamenales II Jaime Feliciano Hernández Universidad Auónoma Meropoliana - Izapalapa México, D. F. 5 de agoso de 0 INTRODUCCIÓN. Generalmene el esudio del movimieno se realiza

Más detalles

5. Planos y rectas en el espacio

5. Planos y rectas en el espacio 5. Planos recas en el espacio ACTIVIDADES INICIALES 5.I Calcula el valor de los siguienes deerminanes a) 5 b) 5 4 c) d) 5.II Esudia la compaibilidad de los siguienes sisemas resuélvelos en los casos en

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE Apellidos Nombre. DNI / NIE Centro de examen

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE Apellidos Nombre. DNI / NIE Centro de examen CALIFICACIÓN: Consejería de Educación, Ciencia y Culura PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 011 Resolución de 9 de marzo de 011 (DOCM de 5 de abril)

Más detalles

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante MATEMÁTICAS II Examen del 8/05/0 Solución Imporane Las calificaciones se harán públicas en el aula virual el 08/06/0. La revisión será el /06/0 y el /06/0 de -3 horas en la sala D-4-. MATEMÁTICAS II 8/05/0

Más detalles

Departamento de Matemáticas Página 1 PROBLEMAS DE SELECTIVIDAD. INTEGRAL INDEFINIDA. (Sugerencia: cambio de variable

Departamento de Matemáticas Página 1 PROBLEMAS DE SELECTIVIDAD. INTEGRAL INDEFINIDA. (Sugerencia: cambio de variable Departamento de Matemáticas Página PROBLEMAS DE SELECTIVIDAD. INTEGRAL INDEFINIDA. d 4.0.- Calcula ( ) (Sugerencia: cambio de variable t ) 4-0.- Sea f : R R la función definida por Sea f ( ) e cos ( )

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

x 1; Soluciones dobles

x 1; Soluciones dobles EJERCICIOS TIPO EXAMEN ECUACIONES INECUACIONES Y SISTEMAS.- Resuelve las ecuaciones siguienes, facorizando previamene en los casos que eso sea posible: a) Solución: Por raarse de una ecuación de grado

Más detalles

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Método de Euler

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Método de Euler Méodos de Inegración Méodo de Euler Para resolver inegrales de la forma ax + bx + c El maemáico suízo Leonard Euler, ideó unas susiuciones que permien ransformar esas inegrales a inegrales de funciones

Más detalles

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D.

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D. MTEMÁTICS II NDLUCÍ Pruebas de acceso a la Universidad ÁLGEBR SOLUCIONES. (--) Tienen inversa las marices y D. = y D =. (-B-) a) Rango de. Si a y Si a = o Sisema = B a, ( ) R = a =, ( ) R = Si a y a, S.C.D.

Más detalles

ANDALUCÍA JUNIO 2004

ANDALUCÍA JUNIO 2004 ANDALUCÍA JUNIO 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Insrucciones: a) Duración: 1 hora y 0 minuos. b) Elija una de las dos opciones propuesas y conese los ejercicios de la opción elegida.

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A

EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A Ejercicio 1. (2,5 puntos) EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A Dada la función f (x)= 3 x 2 +3 x a) (1,25 puntos) Indicar el dominio de definición de la función f y hallar

Más detalles

Actividades de recuperación

Actividades de recuperación Acividades de recuperación.- Dados los vecores a y b de la figura. Calcula: a) a + b ; b) a b + c ; c) a ; d) a b..- Dados los punos A(3, -), B(4, 3) y C(5, -3), se pide: a) Hallar las coordenadas de los

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

Por lo tanto el polinomio de Newton basado en diferencias divididas será:

Por lo tanto el polinomio de Newton basado en diferencias divididas será: Universidad Nacional de Ingeniería 7--6 Faculad de Ingeniería Mecánica P.A. 5- Área de Ciencias Básicas y Humanidades SE PERMITE UNA HOJA DE FORMULARIO. Problema ARIO - EXAMEN FINAL DE CALCULO NUMERICO

Más detalles

y = x ln x ; con los datos obtenidos representa su gráfica. f x es continua y derivable en 0, por ser producto de funciones continuas y derivables.

y = x ln x ; con los datos obtenidos representa su gráfica. f x es continua y derivable en 0, por ser producto de funciones continuas y derivables. Matemáticas II Curso 0/4 Opción A (ª evaluación) Ejercicio. (Puntuación máima: puntos) Estudia las características de la función = ln = ( 0, + ) ( + ) f Dom f y = ln ; con los datos obtenidos representa

Más detalles

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los

Más detalles

03) Rapidez de Cambio. 0302) Rapidez de Cambio

03) Rapidez de Cambio. 0302) Rapidez de Cambio Página 3) Rapidez de Cambio 3) Rapidez de Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Ocubre 7 Ocubre 7 Página A) Rapidez media de cambio Considere una canidad física (), como la mosrada

Más detalles

, se denomina primitiva de esta función a otra F(x)

, se denomina primitiva de esta función a otra F(x) 1. CONCEPTO DE INTEGRAL INDEFINIDA Definición: Dada una función f (x), se denomina primitiva de esta función a otra F(x) tal que F '( x) = f ( x) Esta definición indica que el cálculo de primitivas constituye

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) UNIVERSIDDES PÚLICS DE L COUNIDD DE DRID PRUET DE CCESO ESTUDIOS UNIVERSITRIOS (LOGSE) Curso 8-9 (Sepiebre) TERI: TEÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El aluno conesará a los cuaro ejercicios de

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) UNIVERSIDADES PÚBLICAS DE LA COUNIDAD DE ADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 8-9 (Sepiebre) ATERIA: ATEÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El aluno conesará a los

Más detalles

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exactas y Cambios de Variables

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exactas y Cambios de Variables Lección 3 Técnicas analíicas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exacas y Cambios de Variables 3.1. Ecuaciones Exacas Las ecuaciones exacas esán relacionadas con las llamadas

Más detalles

Montesion. Examen final 2ª evaluación Tel.:

Montesion. Examen final 2ª evaluación Tel.: Montesion. Eamen final ª evaluación Tel.: 665.516.510 1º Los gastos de mantenimiento de la maquinaria de una determinada empresa, G () (en miles de euros), vienen dados en función del tiempo, en meses,

Más detalles