Modelos de Regresión y Correlación

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Modelos de Regresión y Correlación"

Transcripción

1 Artículo de Educación Modelos de Regresión y Correlación REGRESSION AND CORRELATION MODELS Claudio Silva Z 1, Mauricio Salinas 2 1. PhD en Estadística Escuela de Salud Pública Universidad de Chile. 2. MD MPH (c) Director Unidad Epidemiología y Estadística Fundación Científica y Tecnológica ACHS. RESUMEN En este número de C&T iniciamos una serie de artículos dedicados al tema de regresión y correlación. En este artículo se definen y explican los conceptos básicos de regresión lineal y correlación. Se explica cómo opera y cómo aplicar un modelo de regresión lineal simple, así como la interpretación de la información obtenida. Se detallan los supuestos que deben chequearse y cumplirse para que el modelo sea válido y la importancia de evaluar los datos en forma gráfica, antes de cualquier análisis multivariado. Este artículo no pretende reemplazar libros especializados en el tema, pero sí dar una visión general que permita entender cómo operan estos modelos y cuáles son sus virtudes y debilidades. (Silva C, Salinas M Modelos de Regresión y Correlación. Cienc Trab, Oct-Dic; 8 (22): ABSTRACT With this issue of C&T we initiate a series of articles dedicated to the subject of regression and correlation. This article defines and explains basic concepts of linear regression and correlation. It explains how it functions and how to apply a simple linear regression model, as well as the interpretation of information obtained. Assumptions that must be checked and complied with for the model to be valid and the importance of evaluating data graphically prior to any multivaried analysis are detailed. This article is not intended to replace specialized literature on the subject, but it does try to give an overview that allows to understand how these models work and which are their strengths and weaknesses. Descriptors: LINEAR MODELS; REPRODUCIBILITY OF RESULTS, REGRESSION ANALYSIS. Descriptores: MODELOS LINEALES, REPRODUCIBILIDAD DE RESULTADOS, ANÁLISIS DE REGRESIÓN. ASPECTOS GENERALES Hablamos de Modelo de Regresión, para referirnos a una función matemática que intenta modelar probabilísticamente una Variable Respuesta en estudio, en relación a uno o más predictores de interés. El modelo más simple está constituido por una relación lineal entre dos variables que responde a la pregunta: Dado un valor x de la variable predictora, cuál sería el valor promedio (o esperanza) de todos los posibles valores de Y observables en presencia de X=x? (Figura 1). Figura 1. Relación lineal entre dos variables X e Y. E[Y X=x] = β 1 *x + β 0 E[Y X=x]: Esperanza de la variable Respuesta cuando la variable predictora X vale x. X : variable predictora β 1 : pendiente de la recta β 0 : intercepto Correspondencia / Correspondence: Claudio Silva Z Escuela de Salud Pública Universidad de Chile Tel. (56-2) Recibido: 28 de noviembre de 2006 / Aceptado: 7 de diciembre de Esta forma, que es la más simple, puede ser algebraicamente más compleja en la medida que hay más variables predictoras, que algunas de estas variables son categóricas (como el sexo por ejemplo) y/o la relación entre las variables no es lineal. Una tipología simple de los modelos de regresión se presenta en la Tabla 1. Ciencia & Trabajo AÑO 8 NÚMERO 22 OCTUBRE /DICIEMBRE /

2 Artículo Original Silva Claudio Tabla 1. Modelos de Regresión. Situación Variable Respuesta Variable Respuesta Cuantitativa Cualitativa Un predictor continuo Regresión Lineal Simple Regresión Logística Múltiples Predictores Regresión Lineal Múltiple Regresión Logística Múltiple Cuando queremos conocer el grado de asociación lineal entre las variables utilizamos el Coeficiente de Correlación (R). El coeficiente de Correlación lineal puede tomar valores entre -1 y 1. El valor cero implica que no existe ninguna asociación lineal y el 1 significa asociación perfecta: si es positivo, asociación directa y, si es negativo, asociación inversa. Se deben cumplir supuestos como distribución normal bivariante e independencia entre las observaciones por analizar, lo cual explicaremos más adelante. (Polit et al 2000). Regresión y Correlación son dos conceptos vinculados, pero no equivalentes. Regresión se refiere a modelar la respuesta en relación a los predictores para evidenciar una relación estructural que nosotros postulamos y para estimar el valor más probable de la respuesta Y para los sujetos con un perfil particular de valores de las variables predictoras, es decir, la(s) variable(s) predictora(s) y la respuesta Y desempeñan roles claramente distintos. La correlación pretende medir el grado de asociación lineal entre la respuesta y la(s) variable(s) predictora(s) sin diferenciación de roles. REGRESIÓN LINEAL SIMPLE Cuando hablamos de regresión lineal simple, nos referimos a la relación entre una variable predictora y una variable respuesta, ambas de carácter cuantitativo continuo. El modelo de regresión lineal es el más utilizado y por ser el matemáticamente más simple facilita entender otros modelos de regresión más generales (Taucher 1997). El modelo se define por la siguiente expresión: Y = β 0 + β 1 *X + ε (1) Donde: Y = Variable Respuesta, β 0 = Intercepto, β 1 = Pendiente, X = Variable predictora y ε = componente aleatoria que representa la parte atribuible a elementos distintos al valor observado de X. Si en n unidades de observación, independientes entre sí, hemos podido registrar los valores (x, y) podremos estimar los coeficientes de la expresión (1) recurriendo a las funciones; Donde: Yi: Valor de Y para cada observación Xi: Valor de X para cada una de las observaciones Y: Valor promedio de la respuesta Y X : Valor promedio de la variable X La expresión ^β 1 calcula la pendiente muestral de la recta de regresión lineal. La expresión ^β 0 es el intercepto muestral, es decir, el valor de Y cuando X es igual a cero. Luego, podremos estimar para cada X un valor predicho para Y: ^y = ^β 0 + ^β 1 *x (4) Ejemplo: Supongamos que en dieciséis varones sanos se ha registrado la edad y la presión arterial sistólica que se consignan en la Tabla 2 y se muestran en el Gráfico 2. Tabla 2. Edad y Presión Arterial Sistólica para una Muestra Aleatoria de 16 Sujetos. Paciente Edad Presión Arterial Sistólica (PAS) Gráfico 1. Presión Arterial Sistólica Versus Edad (n=16). ^β 1 = n Σ(Y i Y)(X i X) i=1 n Σ(X i X) 2 i=1 (2) ^β 0 = Y ^β 1 X (3) /189 AÑO 8 NÚMERO 22 OCTUBRE /DICIEMBRE 2006 Ciencia & Trabajo

3 Artículo Original Modelos de Regresión y Correlación Como conocemos los valores de X e Y, aplicando las expresiones (2) y (3) podemos estimar los valores: ^β 1 = 0,55 ^β 0 = 111,2 Una vez que hemos estimado los parámetros del modelo podemos crear la recta lineal, estimar los coeficientes de determinación y correlación y evaluar el ajuste del modelo. Para esto debemos considerar las siguientes cantidades asociadas a cada observación (x i, y i ): y i : Valor de la respuesta Y en esa observación, ^y i Valor de la respuesta Y estimado de acuerdo al modelo en esa observación, y : Valor promedio de la respuesta Y a través de las n observaciones de la muestra aleatoria, e i : Valor residuo asociado a esa observación, corresponde a la diferencia entre el valor observado y i y el valor estimado ^y i, o sea, e i = y i : ^y i, i = 1,,n. Notemos que para cada observación de nuestra muestra se cumple la siguiente identidad: y y = (y ^y ) + ( ^y y) Esta fórmula está ilustrada en el Gráfico 2. En este gráfico observamos junto a la dispersión de los puntos (edad, PAS), la recta horizontal que corresponde al promedio de la variable respuesta (presión arterial sistólica promedio de la muestra) y la recta de regresión, que corresponde al modelo escogido. La variabilidad explicada por el modelo es la diferencia entre el valor estimado de la presión arterial sistólica y su promedio muestral y la variabilidad no explicada (el error) es la diferencia entre el valor observado de la presión arterial sistólica y su estimado. Si sumamos estas dos variabilidades, obtenemos la variabilidad total. Si consideramos la suma de los cuadrados de cada una de estas tres diferencias a través de los puntos de la muestra obtenemos las siguientes expresiones asociadas a varianza muestral: Σ ( y y ) 2 : Se asocia a la varianza TOTAL de la respuesta PAS hallada en la muestra, sin prestar atención a la relación que ella Gráfico 2. Gráfico de Dispersión de Presión Arterial Sistólica (PAS) y Edad. Respuesta estimada por el modelo ( ŷ i ) Promedio ( y ) } } Residuo (ei) Variabilidad explicada por el modelo pueda tener con EDAD. Σ ( ^y y ) 2 : Se asocia a la ganancia en varianza EXPLICADA al pasar nosotros de un modelo elemental que prediga para todas las edades (x i ) el mismo valor ÿ de PAS. Ésta es la variabilidad que está siendo explicada por el modelo de regresión. Σ (y ^y ) 2 : Se asocia a las diferencias entre cada PAS observada y la predicha por el modelo de regresión lineal simple a partir de la información EDAD. Es la variabilidad de Y=PAS no atribuible a las diferencias en EDAD; se le llama Error Residual del modelo o residuo. Una identidad fundamental (Canavos 2000) vincula estas tres cantidades: La expresión de la izquierda del signo = es constante para una muestra dada y no varía si estudiamos distintos modelos para la relación PAS vs. EDAD; en cambio, los dos términos de la derecha dependen del modelo en estudio: Mientras mejor sea el modelo, mayor será la primera suma (mayor será la variabilidad de la PAS explicable por la EDAD) y menor será la segunda suma (menor será la variabilidad residual, o sea la variabilidad de PAS no atribuible a diferencias de EDAD). Es cómodo describir el balance entre estas dos últimas cantidades a través del llamado coeficiente de determinación definido como: R 2 = Variabilidad de la respuesta EXPLICADA por el Modelo Variabilidad TOTAL. En nuestro ejemplo R 2 vale 0,31. Esto quiere decir que la predicción lineal de PAS usando la variable EDAD, logra explicar (según nuestros datos) el 31% de la varianza total de la respuesta PAS. Una forma de describir la asociación lineal entre las variables X e Y es utilizar el coeficiente de correlación (R), que corresponde a la raíz cuadrada del R 2. En el caso de nuestro ejemplo es 0,56. SUPUESTOS DEL MODELO En estadística todos los modelos utilizados tienen supuestos de distinta naturaleza y la regresión no es la excepción. Siempre que uno haya estimado un modelo de regresión, deberá asegurarse que los supuestos requeridos se cumplen; en caso contrario, los errores de interpretación a que podemos ser conducidos serán muy graves. Procedimientos adecuados para evaluar objetivamente el cumplimiento de estas condiciones y posibles acciones de corrección para el caso de que no se cumplan abundan en la literatura estadística. El modelo de regresión lineal tiene como supuestos: 1. La variable respuesta Y tiene distribución condicional (es decir para cada valor X=x) que es normal. Esto equivale a decir que los residuos deben tener distribución de probabilidad normal. 2. La varianza condicional (es decir para cada valor X=x) de la variable respuesta debe ser constante. Esto equivale a decir los residuos tienen varianza constante para todos los valores de X. 3. Los valores de la respuesta deben ser probabilísticamente independientes. Es decir, los residuos correspondientes a distintas observaciones deben ser no correlacionados (ausencia de autocorrelación) (Gujarati 1997). Ciencia & Trabajo AÑO 8 NÚMERO 22 OCTUBRE /DICIEMBRE /

4 Artículo Original Silva Claudio Un elemento importante a considerar al aplicar un modelo de regresión lineal es que la variable respuesta debe ser una variable cuantitativa continua. En ocasiones, es posible aplicar el modelo a variables cuantitativas discretas, en el caso de escalas de puntaje de gran amplitud. Por último, sugerimos a todos aquellos que deseen utilizar regresión lineal siempre graficar previamente los datos, ya que se puede encontrar una asociación no lineal mucho más poderosa que, a través de un método multivariado no lineal, permitirá una predicción mucho mejor de la variable respuesta. Veamos el ejemplo de la Tabla 3, que se refiere al número de colonias bacterianas obtenidas a distintas temperaturas de incubación. Gráfico 3. Número de colonias bacterianas obtenidas a distintas temperaturas de incubación. Modelo de regresión lineal. Tabla 3. Número de Colonias Bacterianas Obtenidas a Distintas Temperaturas de Incubación. Temperatura Número Temperatura Número Incubación de Colonias Incubación de Colonias (G Celsius) (G Celsius) ^β 1 : 0,36 ^β 0 : 40,91 R 2 : 0,98 Este modelo logra una predicción mejor que el modelo lineal. Si lo vemos gráficamente (Gráfico 4): Gráfico 4. Número de colonias bacterianas obtenidas a distintas temperaturas de incubación. Modelo de regresión introduciendo un término cuadrático. Si decidimos hacer regresión lineal simple, podemos calcular los valores de ^β 0 y ^β 1 mediante las fórmulas (2) y (3) y obtendremos: ^β 1 : 25,2 ^β 0 : -234,9 Con esos valores creamos nuestro modelo lineal. Si calculamos el coeficiente de determinación (R 2 ) obtenemos 0,93. Aparentemente la regresión lineal es una excelente herramienta para describir la relación entre estas dos variables. Veamos ahora un gráfico de dispersión de los datos (Gráfico 3). La línea roja representa la recta de regresión lineal obtenida con nuestro modelo. A pesar que la asociación lineal obtenida es muy fuerte, la distribución espacial de los puntos recuerda a una parábola. Ahora que hemos visto esta distribución, intentaremos ajustar un modelo de regresión introduciendo un término cuadrático. Con esos datos obtenemos: Este ejemplo reitera la importancia de evaluar gráficamente la información antes de aplicar el modelo lineal /189 AÑO 8 NÚMERO 22 OCTUBRE /DICIEMBRE 2006 Ciencia & Trabajo

5 Artículo Original Modelos de Regresión y Correlación CONCLUSIONES La regresión y correlación son dos conceptos cercanos, pero no equivalentes. La regresión intenta predecir una respuesta dada Y, a través de uno o más predictores X. La regresión lineal es, desde el punto de vista matemático, el modelo más simple y relaciona un predictor con la variable respuesta Y, mediante una línea recta. Siempre se debe chequear que se cumplan los supuestos de los modelos de regresión, para no cometer errores de interpretación de la información y siempre es recomendable graficar las variables en estudio para ver su comportamiento espacial y buscar relaciones no lineales. Si se desea más información, se sugiere revisar los libros que se encuentran en el listado de referencias. REFERENCIAS Canavos G Análisis de regresión: el modelo lineal simple. Probabilidad y estadística: aplicaciones y métodos. 1a ed. México: Mc Graw-Hill. p Gujarati D Econometría. 3a ed.colombia: Mc Graw Hill. Capítulos 1, 2 y 3. Polit D, Hungler B, eds Procedimientos estadísticos multivariados. En: Investigación Científica en Ciencias de la Salud. 6a ed. México: Mc Graw Hill. p Taucher E Bioestadística. 1a ed. Santiago, Chile: Editorial Universitaria. Capítulos 21 y 22. Ciencia & Trabajo AÑO 8 NÚMERO 22 OCTUBRE /DICIEMBRE /

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

Análisis de datos en los estudios epidemiológicos III Correlación y regresión

Análisis de datos en los estudios epidemiológicos III Correlación y regresión Análisis de datos en los estudios epidemiológicos III Correlación y regresión Salinero. Departamento de Investigación Fuden Introducción En el capitulo anterior estudiamos lo que se denomina estadística

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Variables estadísticas bidimensionales: problemas resueltos

Variables estadísticas bidimensionales: problemas resueltos Variables estadísticas bidimensionales: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO

Más detalles

Estadística aplicada a la comunicación

Estadística aplicada a la comunicación Estadística aplicada a la comunicación Tema 5: Análisis de datos cuantitativos I: estadística descriptiva b. Análisis bivariante OpenCourseWare UPV/EHU Unai Martín Roncero Departamento de Sociología 2

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

Doc. Juan Morales Romero

Doc. Juan Morales Romero Análisis de Correlación y Regresión Lineal ANALISIS DE CORRELACION Conjunto de técnicas estadísticas empleadas para medir la intensidad de la asociación entre dos variables DIAGRAMA DE DISPERSION Gráfica

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

1. Cómo introducir datos en SPSS/PC? - Recordatorio

1. Cómo introducir datos en SPSS/PC? - Recordatorio 1 Taller de Estadística Curso 2oo5/2oo6 Descripción de datos bivariantes El objetivo de esta práctica es familiarizarse con las técnicas de descripción de datos bidimensionales y con algunas de las opciones

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

Tema 3. Relación entre dos variables cuantitativas

Tema 3. Relación entre dos variables cuantitativas Tema 3. Relación entre dos variables cuantitativas Resumen del tema 3.1. Diagrama de dispersión Cuando sobre cada individuo de una población se observan simultáneamente dos características cuantitativas

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

Regresión y Correlación

Regresión y Correlación Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios

Más detalles

UNIVERSIDAD DEL NORTE

UNIVERSIDAD DEL NORTE UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

CAPÍTULO 4 (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA

CAPÍTULO 4 (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA Página de CAPÍTULO (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA Relaciones entre dos variables cuantitativas A menudo nos va a interesar describir la relación o asociación entre dos variables. Como

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

Medidas de tendencia central y dispersión

Medidas de tendencia central y dispersión Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 3, Marzo 2011. Open Access, Creative Commons. Medidas de tendencia central y dispersión Autor: Fernando Quevedo Ricardi (1) Filiación:

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

Variables estadísticas bidimensionales

Variables estadísticas bidimensionales Variables estadísticas bidimensionales BEITO J GOZÁLEZ RODRÍGUEZ (bjglez@ulles) DOMIGO HERÁDEZ ABREU (dhabreu@ulles) MATEO M JIMÉEZ PAIZ (mjimenez@ulles) M ISABEL MARRERO RODRÍGUEZ (imarrero@ulles) ALEJADRO

Más detalles

Repaso Estadística Descriptiva

Repaso Estadística Descriptiva Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable

Más detalles

Tema 8. Análisis de dos variables Ejercicios resueltos 1

Tema 8. Análisis de dos variables Ejercicios resueltos 1 Tema 8. Análisis de dos variables Ejercicios resueltos 1 Ejercicio resuelto 8.1 La siguiente tabla muestra la distribución del gasto mensual en libros y el gasto mensual en audiovisual en euros en los

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

La asignatura proporciona al alumno los conceptos básicos de estadística. Se organiza el temario en cinco unidades.

La asignatura proporciona al alumno los conceptos básicos de estadística. Se organiza el temario en cinco unidades. 1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Carrera: Clave de la asignatura: Muestreo y Regresión. Ingeniería Forestal. FOC-1027 SATCA: 2 2 4 2.- PRESENTACIÓN. Caracterización de la asignatura.

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Colegio Universitario Boston

Colegio Universitario Boston Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. 3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

MEDIDAS DE VARIABILIDAD

MEDIDAS DE VARIABILIDAD MEDIDAS DE VARIABILIDAD 1 Medidas de variabilidad Qué son las medidas de variabilidad? Las medidas de variabilidad de una serie de datos, muestra o población, permiten identificar que tan dispersos o concentrados

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña CORRELACIÓN Y REGRESIÓN Juan José Hernández Ocaña CORRELACIÓN Muchas veces en Estadística necesitamos saber si existe una relación entre datos apareados y tratamos de buscar una posible relación entre

Más detalles

Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México

Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México Presentan: Dr. Miguel

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante SOLUCIÓ A LOS EJERCICIOS DEL SPSS Bivariante. a). La media y la varianza de las variables estatura y peso en la escala de medida norteamericana. Peso Peso: Transformar -> Calcular: Libras.4536 Peso libras

Más detalles

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión Bioestadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

Capítulo 8. Análisis Discriminante

Capítulo 8. Análisis Discriminante Capítulo 8 Análisis Discriminante Técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Distribuciones bidimensionales. Regresión.

Distribuciones bidimensionales. Regresión. Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual Prueba Escrita de matemática / Nivel: Sétimo año 1. Estadística - Unidad estadística - Características - Datos u observaciones - Población - Muestra - Variabilidad de los datos - Variables cuantitativas

Más detalles

ECUACIONES.

ECUACIONES. . ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA

GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA DATOS BÁSICOS DE LA ASIGNATURA Nombre: Titulación: Centro: Tipo: Créditos: Curso: Prerrequisitos: Profesor: Dpto.: Estadística Aplicada. Licenciatura

Más detalles

Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos

Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Probabilidad y Estadística Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 3-2-8 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Curva de Lorenz e Indice de Gini Curva de Lorenz

Curva de Lorenz e Indice de Gini Curva de Lorenz Curva de Lorenz e Indice de Gini Curva de Lorenz La curva de Lorenz es útil para demostrar la diferencia entre dos distribuciones: por ejemplo quantiles de población contra quantiles de ingresos. También

Más detalles

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA Descripción de la asignatura Estadística I El objetivo de la asignatura es proporcionar al estudiante conocimiento Departamento de Estadística y comprensión

Más detalles

Y accedemos al cuadro de diálogo Descriptivos

Y accedemos al cuadro de diálogo Descriptivos SPSS: DESCRIPTIVOS PROCEDIMIENTO DE ANÁLISIS INICIAL DE DATOS: DESCRIPTIVOS A diferencia con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Estadística Básica COMISIÓN 1. 1 Cuatrimestre 2016

Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Estadística Básica COMISIÓN 1. 1 Cuatrimestre 2016 Universidad Nacional de Mar del Plata Facultad de Ingeniería Estadística Básica COMISIÓN 1 1 Cuatrimestre 2016 s. La palabra Estadística procede del vocablo Estado, pues era función principal de los Gobiernos

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS ESCUELA: UPIICSA CARRERA: INGENIERÍA EN TRANSPORTE ESPECIALIDAD: COORDINACIÓN: ACADEMIAS DE MATEMÁTICAS DEPARTAMENTO: CIENCIAS BÁSICAS PROGRAMA DE ESTUDIO ASIGNATURA: ESTADÍSTICA APLICADA CLAVE: TMPE SEMESTRE:

Más detalles

1. Distribución Normal estándar

1. Distribución Normal estándar Distribución Normal estándar y cuadrados mínimos Universidad de Puerto Rico ESTA 3041 Prof. Héctor D. Torres Aponte 1. Distribución Normal estándar En efecto, todas las distribuciones Normales son lo mismo

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán

CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán para realizar un análisis, la obtención del rendimiento esperado

Más detalles

UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL.

UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL. UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL. Benjamín R. Sarmiento Lugo. Universidad Pedagógica Nacional bsarmiento@pedagogica.edu.co Esta conferencia está basada en uno de los temas desarrollados

Más detalles

Análisis de regresión lineal simple

Análisis de regresión lineal simple Análisis de regresión lineal simple El propósito de un análisis de regresión es la predicción Su objetivo es desarrollar un modelo estadístico que se pueda usar para predecir los valores de una variable

Más detalles

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES Colegio SSCC Concepción Depto. de Matemáticas Unidad de Aprendizaje: FUNCIONES Capacidades/Destreza/Habilidad: Racionamiento Matemático/Calcular/ Resolver Valores/ Actitudes: Curso: E.M. 10 Respeto, Solidaridad,

Más detalles

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación.

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación. Matemáticas Distribución de ítems para la prueba nacional Modalidad Académica (Diurnos Nocturnos) Convocatorias 016 ESTIMADO DOCENTE: En la modalidad de colegios académico, la Prueba de Bachillerato 016

Más detalles

Función cuadrática. Ecuación de segundo grado completa

Función cuadrática. Ecuación de segundo grado completa Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS PROBABILIDAD Área a la que pertenece: Área Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0056 Asignaturas antecedentes y subsecuentes PRESENTACIÓN

Más detalles

ECONOMETRÍA I. Tema 5: Análisis de regresión múltiple con información cualitativa

ECONOMETRÍA I. Tema 5: Análisis de regresión múltiple con información cualitativa ECONOMETRÍA I Tema 5: Análisis de regresión múltiple con información cualitativa Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fecha Emisión: 2012/01/27 Revisión No. 1 AC-DO-F-8 Página 1 de 3 ESTADÍSTICA DESCRIPTIVA CÓDIGO 14241 PROGRAMA TECNOLOGÍA EN CONTABILIDAD Y TRIBUTARIA ÁREA DE FORMACIÓN CIENCIAS

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

GRUPO A GRUPO B Total = 225 Total = 250. Medidas de tendencia central.

GRUPO A GRUPO B Total = 225 Total = 250. Medidas de tendencia central. Medidas de dispersión o variabilidad Tema 5 Profesor Tevni Grajales G. A dos grupos diferentes de estudiantes se les preguntó cuánto deseaban pagar como cuotas de graduación. En ambos casos el promedio

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

Regresión en Cadena. StatFolio de Ejemplo: ridge reg.sgp

Regresión en Cadena. StatFolio de Ejemplo: ridge reg.sgp Regresión en Cadena Resumen El procedimiento Regresión en Cadena está diseñado para ajustar un modelo de regresión múltiple cuando las variables independientes exhiben multicolinealidad. Multicolinealidad

Más detalles

Se usa para encontrar un numero relativamente pequeño de variables nuevas que contengan la mayor cantidad de info posible del conjunto de datos

Se usa para encontrar un numero relativamente pequeño de variables nuevas que contengan la mayor cantidad de info posible del conjunto de datos Analisis Estadístico de Datos Climáticos Análisis de componentes principales Analisis de componentes principales Se usa para encontrar un numero relativamente pequeño de variables nuevas que contengan

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles