REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)"

Transcripción

1 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN DEL COMPORTAMIENTO DEL CONSUMO REGIONAL Y LA RECAUDACIÓN IMPOSITIVA CON LA FINALIDAD DE LLEVAR A CABO UN ESTUDIO QUE CONTRIBUYA A ESTABLECER UNA SERIE DE POLÍTICAS DE ESTÍMULO AL CONSUMO A TRAVÉS DE LOS IMPUESTOS. SEGUIDAMENTE, SE PRESENTA LA INFORMACIÓN PARA LOS ÚLTIMOS OCHO AÑOS: AÑO CONSUMO REGIONAL RECAUDACIÓN IMPOSITIVA (En millones de corpses) (En millones de corpses) ,00 22, ,80 23, ,65 23, ,10 21, ,07 21, ,70 23, ,75 23, ,90 MODELO DE REGRESIÓN LINEAL SIMPLE En este caso, comenzaremos por definir la regresión lineal simple como un método matemático que modela la relación entre una variable dependiente (Y) y una variable dependiente (X). Fórmulas: * Parámetro beta su uno (β 1 ): representa la pendiente de la recta de regresión. Nos indica en cuanto variará la variable dependiente (Y) cuando varía en una unidad la variable independiente (X). Si su valor es negativo, indica que la relación entre ambas variables es inversa y, por tanto, la recta de regresión tendría pendiente negativa; mientras que, si es positivo, indicaría una relación directa y, como es de esperarse, la recta de regresión tendría pendiente positiva. β 1 n( X. Y) ( X)( Y) n( X 2 ) ( X) 2 * Parámetro beta su cero (β 0 ): representa la intersección de la recta de regresión. Nos indica el valor mínimo que asumiría la variable dependiente (Y) cuando la variable independiente (X) es cero. Además de esto, indica el origen que tendría la recta de regresión en el eje Y. β 0 Y β 1 (X )

2 2 Cabe destacar que: Y media de los valores de Y X media de los valores de X Para plantear el modelo de regresión lineal simple correspondiente, procederemos a emplear una tabla que permitirá la obtención de cada uno de los elementos de las fórmulas. En este caso: CONSUMO REGIONAL RECAUDACIÓN IMPOSITIVA (X.Y) X 2 Y 2 AÑO (Y) (X) ,00 22,00 286,00 484,00 169, ,80 23,20 296,96 538,24 163, ,65 23,74 300,31 563,59 160, ,10 21,07 276,02 443,94 171, ,07 21,01 274,60 441,42 170, ,70 23,28 295,66 541,96 161, ,75 23,30 297,08 542,89 162, ,15 20,90 274,84 436,81 172,92 Totales Y 103,22 X 178,50 (X. Y) 2301,45 X ,85 Y ,07 * Adicionalmente, se evidencia que el número de observaciones es ocho (08), de modo que: n 08 * De igual manera, para las medias de cada una de las variables son las siguientes: Para Y: Para X: Y Y n 103,22 12, X X n 170,50 22, Con toda la información, procederemos a la obtención de los parámetros del modelo de regresión lineal simple: * Parámetro beta su uno (β 1 ): Sea β 1 n( X. Y) ( X)( Y) n( X 2 ) ( X) 2

3 3 Tenemos que: β 1 8(2301,45) (178,50)(103,22) 8(3992,85) (178,50) 2 Así: β 1 De esta manera, el valor de β 1 es: , , , ,30 β 1 13,10 80,50 β 1 0, Partiendo de este cálculo, se puede obtener el parámetro β 0 * Parámetro beta su cero (β 0 ): Sea: Tendríamos: Así, tendríamos que el parámetro β 0 sería: β 0 Y β 1 (X ) β 0 12,9025 ( 0,162733)(22,3125) β 0 12,9025 ( 3,63098) β 0 16, 5335 Realizados estos cálculos, podemos plantear el modelo de regresión de la siguiente manera: Y 16, , (X) Este modelo, permitiría estimar un posible valor del consumo regional (Y) si, por ejemplo, para el año 2014 cambia la recaudación impositiva (X). De este modo, supongamos que para el 2014 el valor de la recaudación impositiva es de 25 millones de pesos: El valor esperado del consumo, sería: Y ,5335 0,162733(25) Y ,5335 4, Y ,

4 4 Cabe destacar que, la escogencia de la variable dependiente (Y) e independiente (X) depende, en gran medida, del conocimiento del experto. En este ejemplo, resulta sencillo determinar que el consumo regional (Y) depende de la recaudación impositiva (X), por cuanto, los impuestos determinan la tendencia del consumo: * A mayores impuestos, menor consumo; y * A menores impuestos, mayor consumo Ahora bien, luego de los cálculos anteriores, resulta imperativo obtener el coeficiente de determinación, ya que, el mismo nos permitirá determinar el ajuste del modelo. Esto es, mediante el coeficiente de determinación se verifica la calidad del modelo para replicar los resultados, y la proporción de variación de los resultados que puede explicarse por el mismo. COEFICIENTE DE DETERMINACIÓN (r 2 ) El coeficiente de determinación se encuentra entre cero y uno: 0 r 2 1 En cuyo caso, un coeficiente de determinación igual a 1, implica un modelo perfecto, en el cual, las variaciones pueden explicarse totalmente por el modelo. Sin embargo, un coeficiente de determinación igual a 0, significa un modelo que no explica el comportamiento de la variable. De manera que, cuanto mayor sea el r 2 mayor será la calidad del modelo para explicar el comportamiento de la variable. La fórmula del coeficiente de determinación es: n( r 2 X. Y) ( X)( Y) [n( X 2 ) ( X) 2 ][n( Y 2 ) ( Y) 2 ] Ahora bien, siguiendo con el ejercicio considerado, procedamos a sustituir los valores en la fórmula: Continuamos: 8(2301,45) r 2 (178,50)(103,22) [8(3992,85) (178,50) 2 ][8( 1332,07) ( 103,22) 2 ] r , ,80 (31.942, ,30)(10.656, ,37) r 2 13,10 (80,50)(2,19)

5 5 r 2 13,10 176,295 r 2 13,10 13,2776 En cuyo caso, el coeficiente de determinación sería: r 2 0, Considerando que el signo negativo está asociado a la relación inversa (negativa) entre las variables dependiente e independiente, lo tomamos en términos de su valor absoluto: r 2 0, Dado el valor, se puede deducir que el modelo explica el 98,66% del comportamiento del valor de la variable. Por ello, comúnmente se dice que el modelo es de calidad y se encuentra ajustado. COEFICIENTE DE CORRELACIÓN (r) Por medio del coeficiente de correlación, medimos el grado de asociación que existe entre dos variables, siempre y cuando sean cuantitativas. Se obtiene aplicando la raíz cuadrada al coeficiente de determinación. En este caso, el coeficiente de correlación puede ser positivo y negativo. A saber: Si r 1, existe una correlación positiva perfecta. El índice indica una dependencia total entre las dos variables denominada relación directa: cuando una de ellas aumenta, la otra también lo hace en proporción constante. Si 0 < r < 1, existe una correlación positiva. Si r 0, no existe relación lineal. Pero esto no necesariamente implica que las variables son independientes: pueden existir todavía relaciones no lineales entre las dos variables. Si -1 < r < 0, existe una correlación negativa. Si r -1, existe una correlación negativa perfecta. El índice indica una dependencia total entre las dos variables llamada relación inversa: cuando una de ellas aumenta, la otra disminuye en proporción constante. La fórmula del coeficiente de correlación (r), es: En resumen: n( X. Y) ( X)( Y) r [n( X 2 ) ( X) 2 ][n( Y 2 ) ( Y) 2 ] r ± r 2

6 6 Continuando con el ejercicio, procedamos a obtener el coeficiente de correlación para determinar el grado de asociación entre el consumo regional (Y) y la recaudación impositiva (X). Así: El resultado sería: r ± r 2 r ± 0, r 0, 9933 El resultado es negativo porque la relación entre las variables es inversa. Este coeficiente de correlación muestra un grado de asociación casi perfecto entre ambas variables, lo que, ratifica que la asociación lineal (negativa) entre ambas es de gran magnitud. 2. RECIENTEMENTE, EN LA EMPRESA ANTÁRTICA SE INICIÓ UN PROCESO DE REVISIÓN DE LA INCIDENCIA DE LA ROTACIÓN DE INVENTARIOS EN LOS BENEFICIOS NETOS. EN ESTE CASO, SE DISPONE DE LA INFORMACIÓN CORRESPONDIENTE A LAS VARIABLES CONSIDERADAS PARA LOS ÚLTIMOS DIEZ AÑOS: AÑO ROTACIÓN DE INVENTARIOS* BENEFICIOS NETOS** Expresado en veces al año Expresado en millones de corpses , , , , , , , , , ,00 * La rotación de inventarios es el indicador que permite saber el número de veces en que el inventario es realizado en un periodo determinado. Permite identificar cuantas veces el inventario se convierte en dinero o en cuentas por cobrar (se ha vendido). En este ejercicio, debemos proceder a señalar cuál es la variable dependiente y la independiente. En tal sentido, debemos considerar que, si el beneficio neto se obtiene descontando de los ingresos por ventas los costos y gastos, y que, además, la rotación de inventarios es determinante del volumen de ventas, entonces, es preciso indicar que los beneficios netos dependerán de la rotación de inventarios. Así: Rotación de inventarios: Variable independiente (X) Beneficios netos: Variable dependiente (Y)

7 7 De esta manera, procederemos a realizar la tabla de cálculos de los valores inherentes a las fórmulas: AÑO ROTACIÓN DE INVENTARIOS BENEFICIOS NETOS (X.Y) X 2 Y 2 (Y) (X) , , , , , , , , , ,00 961, , , , , , , , , , , , , , , , , , , , , , , ,00 900, , ,00 870,00 841,00 900,00 Totales X 341,50 Y 409,15 (X. Y) 14164,28 X ,25 Y ,67 * Adicionalmente, se evidencia que el número de observaciones es diez (10), de modo que: n 10 * De igual manera, para las medias de cada una de las variables son las siguientes: Para Y: Para X: Y Y n 409,15 40, X X n 341,50 34, Con toda la información, procederemos a la obtención de los parámetros del modelo de regresión lineal simple: * Parámetro beta su uno (β 1 ): Sea Tenemos que: β 1 β 1 n( X. Y) ( X)( Y) n( X 2 ) ( X) 2 10(14.164,28) (341,50)(409,15) 10(11.816,25) (341,50) 2

8 8 Así: β 1 De esta manera, el valor de β 1 es: , , , ,25 β , ,25 β 1 1, El valor de β 1 es positivo, lo que implica que la pendiente de la recta de regresión es positiva. Esto es así porque, como se determinará más adelante, la relación entre las variables es positiva, esto es: * A mayor rotación de inventarios (X), mayores beneficios netos (Y); y, * A menor rotación de inventarios (X), menores beneficios netos (Y). Partiendo del cálculo anterior, se puede obtener el parámetro β 0 * Parámetro beta su cero (β 0 ): Sea: Tendríamos: Así, tendríamos que el parámetro β 0 sería: β 0 Y β 1 (X ) β 0 40,915 (1,245301)(34,15) β 0 40,915 42,52703 β 0 1, Realizados estos cálculos, podemos plantear el modelo de regresión de la siguiente manera: Y 1, , (X) Este modelo, permitiría estimar un posible valor de los beneficios netos (Y) si, por ejemplo, para el año 2014 cambia la rotación de los inventarios (X). De este modo, supongamos que para el 2014 el valor de la rotación de inventarios es de 44: Y , ,245301(44) El valor esperado del consumo, sería: Y , ,79324

9 9 Y , 1812 Ahora bien, luego de los cálculos anteriores, resulta imperativo obtener el coeficiente de determinación, el cual, nos permitirá determinar el ajuste del modelo. COEFICIENTE DE DETERMINACIÓN (r 2 ) Partiendo de la fórmula: n( r 2 X. Y) ( X)( Y) [n( X 2 ) ( X) 2 ][n( Y 2 ) ( Y) 2 ] Procedamos a sustituir los valores en la fórmula: Continuamos: 10(14.164,28) r 2 (341,50)(409,15) [10(11.816,25) (341,50) 2 ][10( ,67) ( 409,15) 2 ] r , ,725 ( , ,25)( , ,72) r ,075 (1.540,25)(2.982,98) r , ,95 r , ,49 En cuyo caso, el coeficiente de determinación sería: r 2 0, Dado el valor, se puede deducir que el modelo explica el 89,48% del comportamiento del valor de la variable. COEFICIENTE DE CORRELACIÓN (r) Partiendo de que la fórmula del coeficiente de correlación (r), es:

10 10 n( X. Y) ( X)( Y) r [n( X 2 ) ( X) 2 ][n( Y 2 ) ( Y) 2 ] Y que, en resumen: r ± r 2 Procedemos a obtener el coeficiente de correlación para determinar el grado de asociación entre los beneficios netos (Y) y la rotación de inventarios (X). Así: El resultado sería: r ± r 2 r ± 0, r 0, El resultado es positivo porque la relación entre las variables es directa. Este coeficiente de correlación muestra un muy alto grado de asociación entre ambas variables, lo que, ratifica que la asociación lineal (positiva) entre ambas es de gran magnitud.

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada Estadística Descriptiva Bivariada En el aspecto conceptual, este estudio puede ser generalizado fácilmente para el caso de la información conjunta de L variables aunque las notaciones pueden resultar complicadas

Más detalles

Matemáticas. Bioestadística. Correlación y Regresión Lineales

Matemáticas. Bioestadística. Correlación y Regresión Lineales Matemáticas Bioestadística Correlación y Regresión Lineales En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si. Por ejemplo, si se analiza la

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

Coeficiente de Correlación

Coeficiente de Correlación Coeficiente de Correlación Al efectuar un análisis de regresión simple (de dos variables) necesitamos hacer las siguientes suposiciones. Que las dos variables son mensurables Que la relación entre las

Más detalles

UNIDAD Nº4. Ejemplo.- Dados los Gastos de publicidad en los meses enero a julio, los cuales generan los sgts. Ingresos:

UNIDAD Nº4. Ejemplo.- Dados los Gastos de publicidad en los meses enero a julio, los cuales generan los sgts. Ingresos: UNIDAD Nº4 TEORÍA DE REGRESIÓN Y CORRELACIÓN 1.- Teoría de Regresión.- En términos de estadística los conceptos de regresión y ajuste con líneas paralelas son sinónimos lo cual resulta estimar los valores

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles

MÓDULO 1: GESTIÓN DE CARTERAS

MÓDULO 1: GESTIÓN DE CARTERAS MÓDULO 1: GESTIÓN DE CARTERAS TEST DE EVALUACIÓN 1 Una vez realizado el test de evaluación, cumplimenta la plantilla y envíala, por favor, antes del plazo fijado. En todas las preguntas sólo hay una respuesta

Más detalles

Lectura No. 7. Contextualización. Nombre: Métodos de Análisis ANÁLISIS FINANCIERO 1

Lectura No. 7. Contextualización. Nombre: Métodos de Análisis ANÁLISIS FINANCIERO 1 Análisis financiero ANÁLISIS FINANCIERO 1 Lectura No. 7 Nombre: Métodos de Análisis Contextualización Los diferentes métodos de análisis que se pueden utilizar para evaluar y, en su defecto, emitir un

Más detalles

Tema 2. Regresión Lineal

Tema 2. Regresión Lineal Tema 2. Regresión Lineal 3.2.1. Definición Mientras que en el apartado anterior se desarrolló una forma de medir la relación existente entre dos variables; en éste, se trata de esta técnica que permite

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

3 Regresión y correlación lineales

3 Regresión y correlación lineales 3 Regresión y correlación lineales 3.1 Introducción En esta unidad se analizará la relación entre dos o más variables y desarrollamos una ecuación que nos permite estimar una variable con base en otra.

Más detalles

Elaboró: Luis Casas Vilchis

Elaboró: Luis Casas Vilchis Correlación de Pearson (r P, r) Una correlación se define como la coincidencia en el patrón de valores altos de una variable con los valores altos en la otra variable, y bajos con bajos y moderados con

Más detalles

Tema 3. Relación entre dos variables cuantitativas

Tema 3. Relación entre dos variables cuantitativas Tema 3. Relación entre dos variables cuantitativas Resumen del tema 3.1. Diagrama de dispersión Cuando sobre cada individuo de una población se observan simultáneamente dos características cuantitativas

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable.

Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable. 1 DEFINICIONES PREVIAS Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable. Correlación: es la cuantificación del grado de relación existente

Más detalles

Estadística aplicada a la comunicación

Estadística aplicada a la comunicación Estadística aplicada a la comunicación Tema 5: Análisis de datos cuantitativos I: estadística descriptiva b. Análisis bivariante OpenCourseWare UPV/EHU Unai Martín Roncero Departamento de Sociología 2

Más detalles

CORRELACION Y REGRESIÓN LINEAL

CORRELACION Y REGRESIÓN LINEAL LECCION Nº 5 CORRELACION Y REGRESIÓN LINEAL OBJETIVOS ESPECIFICOS Diferenciar los conceptos de correlación lineal, y regresión lineal. Determinar el índice o coeficiente de correlación en una distribución

Más detalles

Técnicas de Investigación Social

Técnicas de Investigación Social Licenciatura en Sociología Curso 2006/07 Técnicas de Investigación Social Medir la realidad social (4) La regresión (relación entre variables) El término REGRESIÓN fue introducido por GALTON en su libro

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Bioestadística. En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si.

Bioestadística. En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si. 1 de 5 15/10/2006 06:04 a.m. Bioestadística. Correlación y regresión lineales. En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si. Por ejemplo,

Más detalles

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña CORRELACIÓN Y REGRESIÓN Juan José Hernández Ocaña CORRELACIÓN Muchas veces en Estadística necesitamos saber si existe una relación entre datos apareados y tratamos de buscar una posible relación entre

Más detalles

POLÍTICA FISCAL EN UNA ECONOMÍA ABIERTA: AHORRO, INVERSIÓN Y SECTOR EXTERNO

POLÍTICA FISCAL EN UNA ECONOMÍA ABIERTA: AHORRO, INVERSIÓN Y SECTOR EXTERNO POLÍTICA FISCAL EN UNA ECONOMÍA ABIERTA: AHORRO, INVERSIÓN Y SECTOR EXTERNO BREVE DESCRIPCIÓN DEL MODELO AHORRO-INVERSIÓN Inicialmente, el impacto de la política fiscal en las economías abiertas lo estudiaremos

Más detalles

Doc. Juan Morales Romero

Doc. Juan Morales Romero Análisis de Correlación y Regresión Lineal ANALISIS DE CORRELACION Conjunto de técnicas estadísticas empleadas para medir la intensidad de la asociación entre dos variables DIAGRAMA DE DISPERSION Gráfica

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Universidad de Salamanca - Escuela de Educación y Turismo

Universidad de Salamanca - Escuela de Educación y Turismo Universidad de Salamanca - Escuela de Educación y Turismo ! " # $ % $ & ' ( ) * ( +(, + ' -. '. ' - % $ / %.! '. " # $ % & & $ % # # $( #. 0 # (/ $. # % 0 1 # % ( # 0 # 0 1 # 0. (, (! " # # #. $ ($ ' 0

Más detalles

Análisis de datos en los estudios epidemiológicos III Correlación y regresión

Análisis de datos en los estudios epidemiológicos III Correlación y regresión Análisis de datos en los estudios epidemiológicos III Correlación y regresión Salinero. Departamento de Investigación Fuden Introducción En el capitulo anterior estudiamos lo que se denomina estadística

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos Espacio euclídeo 5.1. Determinación de ángulos.... - 2-5.1.1. Ángulo determinado por dos rectas secantes.... - 2-5.1.2. Ángulo determinado por planos secantes.... - 2-5.1.3. Ángulo determinado por una

Más detalles

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento. UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre

Más detalles

FUNCIÓN POLINOMIAL. Ing. Caribay Godoy

FUNCIÓN POLINOMIAL. Ing. Caribay Godoy FUNCIÓN POLINOMIAL OBJETIVOS Definir una función polinomial. Reconocer la función constante, lineal y cuadrática como casos particulares de una función polinomial Identificar el coeficiente principal de

Más detalles

Variables aleatorias bidimensionales discretas

Variables aleatorias bidimensionales discretas Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,

Más detalles

MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN. Tema 9

MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN. Tema 9 Métodos de Investigación en Educación 1º Psicopedagogía Grupo Mañana Curso 2009-2010 2010 MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN Tema 9 La regresión lineal Tema 9: La regresión lineal Objetivos Conocer

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

CAPÍTULO 4 RENTA NACIONAL DE EQUILIBRIO SECTOR PÚBLICO

CAPÍTULO 4 RENTA NACIONAL DE EQUILIBRIO SECTOR PÚBLICO CAPÍTULO 4 APARTADO 4.2: RENTA NACIONAL DE EQUILIBRIO CON SECTOR PÚBLICO Introducción Los impuestos en el modelo keynesiano El gasto público en el modelo keynesiano Determinación gráfica y matemática del

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

Regresión y Correlación

Regresión y Correlación Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán

CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán para realizar un análisis, la obtención del rendimiento esperado

Más detalles

Estadís6ca y Métodos Numéricos Tema 6. Modelos de Regresión

Estadís6ca y Métodos Numéricos Tema 6. Modelos de Regresión Estadís6ca y Métodos Numéricos Tema 6. Modelos de Regresión Ángel Barón Caldera Ángel Cobo Ortega María Dolores Frías Domínguez Jesús Fernández Fernández Francisco Javier González Or@z Carmen María Sordo

Más detalles

Guía de Matemática Segundo Medio

Guía de Matemática Segundo Medio Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan

Más detalles

D I S T R I B U C I O N E S B I D I M E N S I O N A L E S

D I S T R I B U C I O N E S B I D I M E N S I O N A L E S D I S T R I B U C I O N E S B I D I M E N S I O N A L E S 1 INTRODUCCIÓN: Variables estadísticas bidimensionales En numerosas ocasiones interesa estudiar simultáneamente dos (o más) caracteres de una población

Más detalles

Anexo 8.3. Programa Condensado

Anexo 8.3. Programa Condensado Unidad De Aprendizaje: Aplicadas A Las Ciencias Sociales Fecha de Actualización: Enero 2016 Licenciatura: Ciencia Política y Administración Pública Plan: 401 Semestre: 1 Créditos: 2 Semana Tema Actividades,

Más detalles

, x es la variable independiente e y es la variable dependiente.

, x es la variable independiente e y es la variable dependiente. INSTITUCIÓN EDUCATIVA COLEGIO ARTÍSTICO RAFAEL CONTRERAS NAVARRO OCAÑA N.S. ASIGANTURA: MATEMÁTICAS OCTAVO GRADO DOCENTE: Esp. HENRY CARRASCAL C. III PERÍODO FUNCIÓN Y ECUACIÓN CUADRÁTICA 1. DEFINICIÓN

Más detalles

Prácticas Tema 2: El modelo lineal simple

Prácticas Tema 2: El modelo lineal simple Prácticas Tema 2: El modelo lineal simple Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 2.1- Se han analizado sobre una muestra de 10 familias las variables

Más detalles

GRAFICAS LINEALES REGLAS GENERALES PARA LA CONSTRUCCIÓN DE GRÁFICAS

GRAFICAS LINEALES REGLAS GENERALES PARA LA CONSTRUCCIÓN DE GRÁFICAS GRAFICAS LINEALES OBJETIVOS 1. Realizar linealización de gráficos por el método de cambios de variables. 2. Obtener experimentalmente la relación matemática, más adecuada, entre dos cantidades o magnitudes

Más detalles

Función de Transferencia en dispositivos eléctricos. Taller de Construcción de Efectos, U2 Sesión 1

Función de Transferencia en dispositivos eléctricos. Taller de Construcción de Efectos, U2 Sesión 1 Función de Transferencia en dispositivos eléctricos Taller de Construcción de Efectos, U2 Sesión 1 Definición La Función de Transferencia de un sistema es una expresión matemática que relaciona la salida

Más detalles

Ejercicio Heterocedasticidad_2

Ejercicio Heterocedasticidad_2 Ejercicio heterocedasticidad 2. 1 Ejercicio Heterocedasticidad_2 Tengamos los siguientes datos de los beneficios (B i ) y ventas (V i ) de 20 empresas: obs B V 1 13,2 61 2 15 78 3 22,2 158 4 15,2 110 5

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

1. Caso no lineal: ajuste de una función potencial

1. Caso no lineal: ajuste de una función potencial 1. Caso no lineal: ajuste de una función potencial La presión (P) y el volumen (V ) en un tipo de gas están ligados por una ecuación del tipo PV b = a, siendo a y b dos parámetros desconocidos. A partir

Más detalles

APUNTES DE GEOMETRÍA ANALÍTICA

APUNTES DE GEOMETRÍA ANALÍTICA CAPÍTULO 1: LA RECTA EN EL PLANO Conceptos Primitivos: Punto, recta, plano. APUNTES DE GEOMETRÍA ANALÍTICA Definición 1 (Segmento) Llamaremos segmento a la porción de una línea recta comprendida entre

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

TEMA 3 REGRESIÓN Y CORRELACIÓN

TEMA 3 REGRESIÓN Y CORRELACIÓN TEMA 3 REGRESIÓN Y CORRELACIÓN Regresión mínimo-cuadrática bidimensional Planteamiento del problema Dadas dos variables aleatorias X e Y definidas sobre un mismo espacio de probabilidad (asociadas a un

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

Funciones algebraicas.

Funciones algebraicas. UNIDAD 9: UTILICEMOS LAS FUNCIONES ALGEBRAICAS. Funciones algebraicas..1 Funciones polinomiales. Estudiaremos las funciones siguientes: constante, lineal, cuadrática y cúbica. Función constante. Las funciones

Más detalles

UNIDAD DE APRENDIZAJE V

UNIDAD DE APRENDIZAJE V UNIDAD DE APRENDIZAJE V Saberes procedimentales Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. Relaciona la ecuación de segundo grado en dos

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

Actividades para el logro de las tareas de desempeño Día:1 Día:2 Día:3 Día:4 Día:5

Actividades para el logro de las tareas de desempeño Día:1 Día:2 Día:3 Día:4 Día:5 Semana 1 Semana 2,, ES.A.18.1 Las ecuaciones lineales. Actividades para el logro de las tareas de desempeño Día:1 Día:2 Día:3 Día:4 Día:5 Cómo determinar e interpretar el concepto pendiente de una recta.

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Matemáticas Financieras. Sesión 1 Fundamentos Matemáticos

Matemáticas Financieras. Sesión 1 Fundamentos Matemáticos Matemáticas Financieras Sesión 1 Fundamentos Matemáticos Contextualización de la Sesión 1 Los fundamentos matemáticos son de vital importancia, en este tema se abordan y revisan algunos conceptos básicos

Más detalles

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL Msc. Lácides Baleta Octubre 16 Página 1 de 11 REGRESIÓN Y CORRELACIÓN LINEAL Son dos herramientas para investigar la dependencia de una variable dependiente Y

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva 2, Ejercicio 3, Opción A Reserva

Más detalles

5. Regresión Lineal Múltiple

5. Regresión Lineal Múltiple 1 5. Regresión Lineal Múltiple Introducción La regresión lineal simple es en base a una variable independiente y una dependiente; en el caso de la regresión línea múltiple, solamente es una variable dependiente

Más detalles

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en.

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Función Lineal Se llama función lineal a toda función que tiene la forma:. con Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Muchas son

Más detalles

PRINCIPIOS FUNDAMENTALES

PRINCIPIOS FUNDAMENTALES Capítulo 6. PRINCIPIOS FUNDAMENTALES 6.1. Ley de la inversa del cuadrado de la distancia.................. 59 6.2. Ley del coseno.......................................... 59 6.3. Iluminación normal, horizontal,

Más detalles

Funciones y gráficas. 3º de ESO

Funciones y gráficas. 3º de ESO Funciones y gráficas 3º de ESO Funciones Una función es una correspondencia entre dos conjuntos numéricos que asocia a cada valor,, del primer conjunto un único valor, y, del segundo. La variable variable

Más detalles

Julio Deride Silva. 4 de junio de 2010

Julio Deride Silva. 4 de junio de 2010 Curvas ROC y Regresión Lineal Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 4 de junio de 2010 Tabla de Contenidos Curvas ROC y Regresión Lineal

Más detalles

y ) de números reales tiene a x como primer componente

y ) de números reales tiene a x como primer componente Guía de estudio El sistema de coordenadas rectangulares. El plano cartesiano. Fórmulas de punto medio y distancia. La ecuación de una circunferencia Unidad A: Clase 6 Camilo Ernesto Restrepo Estrada, Lina

Más detalles

Ajustes lineales por aproximación manual. Reglas para una correcta representación gráfica

Ajustes lineales por aproximación manual. Reglas para una correcta representación gráfica Ajustes lineales por aproximación manual. Reglas para una correcta representación gráfica Para las representaciones gráficas manuales sobre papel deben tenerse en cuenta los siguientes criterios (se presenta

Más detalles

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática MINISTERIO DE EDUCACIÓN Dirección de Educación Técnica y Profesional Familia de especialidades:servicios Programa: Estadística Matemática Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 9no.

Más detalles

Administración de inventarios

Administración de inventarios Administración de inventarios Un inventario es la existencia de bienes mantenidos para su uso o venta en el futuro. La administración de inventario consiste en mantener disponibles estos bienes al momento

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística

MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística MINISTERIO DE EDUCACIÓN Educación Técnica y Profesional Familia de especialidades: Economía Programa: Estadística Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 12mo. Grado AUTORA MSc. Caridad

Más detalles

Análisis de regresión lineal simple

Análisis de regresión lineal simple Análisis de regresión lineal simple El propósito de un análisis de regresión es la predicción Su objetivo es desarrollar un modelo estadístico que se pueda usar para predecir los valores de una variable

Más detalles

Funciones de Crecimiento

Funciones de Crecimiento PreUnAB Clase # 13 Septiembre 2014 Concepto de Función de Crecimiento Concepto de Crecimiento Una función es creciente cuando, al aumentar los valores de la variable independiente (x) también aumentan

Más detalles

I Unidad: La medición de los atributos psicológicos.

I Unidad: La medición de los atributos psicológicos. EL ESCALAMIENTO PSICOFÍSICO. Las primeras escalas elaboradas que se pueden considerar mediciones o medidas previas a la medición de los psicológico son las denominadas escalas psicofísicas. Representan

Más detalles

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o DETERMINANTES A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o Una tabla ordenada n ð n de escalares situada entre dos líneas

Más detalles

EX09020 Seminario de Análisis Financiero para la Toma de Decisiones. Tema 2. Riesgo y rendimiento. Definición de riesgo

EX09020 Seminario de Análisis Financiero para la Toma de Decisiones. Tema 2. Riesgo y rendimiento. Definición de riesgo EX09020 Seminario de Análisis Financiero para la Toma de Decisiones Tema 2. Riesgo y rendimiento 1 Definición de riesgo De acuerdo a la Real Academia Española de la Lengua, Riesgo es contingencia o proximidad

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

SESIÓN 10 FUNCIONES Y GRÁFICAS

SESIÓN 10 FUNCIONES Y GRÁFICAS SESIÓN 10 FUNCIONES Y GRÁFICAS I. CONTENIDOS: 1. Funciones. 2. Variables dependientes e independientes. 3. Gráfica de funciones y su aplicación. II. OBJETIVOS: Al término de la Sesión, el alumno: Comprenderá

Más detalles

TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)

TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) NOTA IMPORTANTE - Estas notas son complementarias a las notas de clase del primer semestre correspondientes a los temas de Regresión

Más detalles

ESPACIOS VECTORIALES SUBESPACIOS:

ESPACIOS VECTORIALES SUBESPACIOS: SUBESPACIOS: Continuación EJEMPLOS: S 2 = {(x 1, x 2 ) / x 2 =x 12 } R 2 es subespacio del espacio vectorial? Interpretación geométrica: Representa una parábola de eje focal el eje de ordenadas, vértice

Más detalles

4º E.S.O Opción A: DEPARTAMENTO DE MATEMÁTICAS

4º E.S.O Opción A: DEPARTAMENTO DE MATEMÁTICAS 4º E.S.O Opción A: DEPARTAMENTO DE MATEMÁTICAS OBJETIVOS 1. Conocer, diferenciar y operar con cualquier número en cualquiera de sus formatos usando las aproximaciones adecuadas. 2. Conocer la importancia

Más detalles

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión Estadís5ca Tema 2. Modelos de regresión María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema se publica bajo

Más detalles

Variables estadísticas bidimensionales

Variables estadísticas bidimensionales Variables estadísticas bidimensionales BEITO J GOZÁLEZ RODRÍGUEZ (bjglez@ulles) DOMIGO HERÁDEZ ABREU (dhabreu@ulles) MATEO M JIMÉEZ PAIZ (mjimenez@ulles) M ISABEL MARRERO RODRÍGUEZ (imarrero@ulles) ALEJADRO

Más detalles

Variables estadísticas bidimensionales: problemas resueltos

Variables estadísticas bidimensionales: problemas resueltos Variables estadísticas bidimensionales: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

10.1.2C. x2 = x 2 = x ; x R. Ejemplos.- 32 = 3 2 = 32 = 9 ; (-5)2 = -5 2 = 52 = D. x = -x ; x R. Ejemplo E. x y = x y ; x, y R

10.1.2C. x2 = x 2 = x ; x R. Ejemplos.- 32 = 3 2 = 32 = 9 ; (-5)2 = -5 2 = 52 = D. x = -x ; x R. Ejemplo E. x y = x y ; x, y R 0 x = x = x ; x R 0 cuaciones con Valor bsoluto jemplos- = = = 9 ; (-5) = -5 = 5 = 5 0 x = -x ; x R jemplo- uando queremos representar la distancia en la recta numérica, entre un número conocido y otro

Más detalles