Cálculo de límites Criterio de Stolz. Tema 8

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculo de límites Criterio de Stolz. Tema 8"

Transcripción

1 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que se deduce, como caso particular más importate, el criterio de la media aritmética. Tambié estudiaremos el llamado criterio de la raíz, que permite estudiar la covergecia de sucesioes de u tipo muy cocreto, y es equivalete al criterio de la media geométrica. 8.. Criterio de Stolz Para idetermiacioes del tipo [ / ] es útil el método ideado por el matemático austriaco O. Stolz ( ), basádose e trabajos previos del italiao E. Cesàro ( ): Criterio de Stolz. Sea {ρ ua sucesió de úmeros positivos, estrictamete creciete y o mayorada, es decir: 0 < ρ < ρ + para todo N y {ρ +. Etoces, para toda sucesió {x y todo L R, se tiee: { { x+ x x L = L ρ + ρ ρ y la misma implicació es cierta, sustituyedo e ambos miembros L por + o por. Demostració. Partimos de ua igualdad de fácil comprobació. Para m, N co m <, teemos claramete que x = x m + (x x m ) = x m + x = x m + ρ ρ ρ (x k+ x k ) = x m + ρ ρ (x k+ x k ), de dode: [ (ρ k+ ρ k ) x ] k+ x k ρ k+ ρ k () Fijado L R, razoamos de forma similar para obteer: L = ρ m L ρ + ρ (ρ k+ ρ k )L. 63

2 8. Cálculo de límites 64 Restado ambas igualdades y tomado valores absolutos, teemos x ρ x m ρ m L + ρ ρ (ρ k+ ρ k ) x k+ x k ρ k+ ρ (2) k dode hemos usado que {ρ es ua sucesió estrictamete creciete de úmeros positivos. Teemos pues que la desigualdad (2) es válida para cualesquiera m, N co m <, y para demostrar ya la implicació buscada, fijamos ε > 0. Por hipótesis, existe m N tal que, para k m se tiee x k+ x k ρ k+ ρ < ε. Etoces, para k 2 > m, aplicado (2) teemos x ρ x m ρ m L + ε ρ 2ρ k+ ρ k ) < (ρ x m ρ m L + ε ρ 2 Mateiedo m fijo, como por hipótesis {/ρ 0, podemos ecotrar q N tal que (3) N, q = ρ x m ρ m L < ε 2 Esta desigualdad, juto co (3), { os permite cocluir que, para máx{m +,q, se tiee x ρ < ε. Esto prueba que x L, como se quería. ρ Veamos ahora lo que ocurre al sustituir { L por +, e cuyo caso el razoamieto aterior ya o es válido. Dado C R + x+ x, usado que + ecotramos m N tal que: ρ + ρ k N, k m = x k+ x k ρ k+ ρ k > 2C Para > m podemos etoces usar la igualdad () para obteer x ρ > x m ρ + 2C ρ (ρ k+ ρ k ) = x m 2C ρ m + 2C (4) ρ Mateiedo m fijo y usado que {/ρ 0, ecotramos q N tal que N, q = x m 2C ρ m ρ > C Esta desigualdad, juto co (4), os permite cocluir que para máx{m +,q se tiee x /ρ > C. Esto prueba {x /ρ +, como se quería. Fialmete, para ver lo que ocurre al sustituir L por basta aplicar lo recié demostrado sustituyedo la sucesió {x por { x : { { { { x+ x x x + x x + + ρ + ρ ρ + ρ ρ ρ

3 8. Cálculo de límites 65 Como fácil aplicació del criterio de Stolz, cosideremos la sucesió {/2. Tomado x = y ρ = 2 para todo N, ciertamete {ρ es ua sucesió estrictamete creciete y o mayorada de úmeros reales positivos. Puesto que {(x + x )/(ρ + ρ ) = {/2 0, el criterio de Stolz os dice que {/2 0, como ya deberíamos saber. Como ejemplo más ovedoso, fijado p N tomamos x = k p y ρ = p+ para todo N. De uevo {ρ es ua sucesió estrictamete creciete y o mayorada de úmeros reales positivos. Usado la fórmula del biomio de Newto podemos escribir x + x ( + ) p = ρ + ρ ( + ) p+ p+ = p + R() (p + ) p + S() dode R y S so poliomios de grado meor que p. Teemos por tato y el criterio de Stolz os dice que lím p+ k p = p +. N { x+ x ρ + ρ p + Ates de seguir co las aplicacioes del criterio de Stolz, coviee aclarar alguos aspectos del mismo. Es importate observar que la implicació que aparece e el criterio o es reversible, e iguo de los casos. Para comprobarlo, dado L R, tomamos {x = {( ) + L y {ρ = {. Ciertamete {ρ es ua sucesió estrictamete creciete y o mayorada de úmeros reales positivos, y se tiee obviamete que {x /ρ L. Si embargo, la sucesió {(x + x )/(ρ + ρ ) = {2( ) + + L o es covergete. Alterativamete podemos tomar x 2 = x 2 = 2 y ρ = para todo N. Etoces {x /ρ +, de hecho se comprueba si dificultad que x /ρ /4 para todo N, pero la sucesió {(x + x )/(ρ + ρ ) = {x + x o es divergete, pues para impar se tiee x + x = 0. E resume, si al itetar aplicar el Criterio de Stolz, os ecotramos co que la sucesió {(x + x )/(ρ + ρ ) o es covergete i divergete, el criterio o os da iformació sobre la sucesió de partida {x /ρ. Aclaremos fialmete que, si la sucesió {(x + x )/(ρ + ρ ) es divergete, pero o diverge positiva i egativamete, o podemos asegurar que {x /ρ sea divergete. E efecto, tomado {x = {( ) y {ρ = {, obviamete {x /ρ o es divergete, a pesar de que {(x + x )/(ρ + ρ ) = {( ) + (2 + ) sí diverge Criterio de la media aritmética Como ya se ha visto e u ejemplo, el criterio de Stolz es especialmete útil cuado algua de las sucesioes que e él aparece se obtiee sumado cosecutivamete los térmios de otra. El caso particular más secillo se preseta cuado {x se costruye de esa forma y tomamos ρ = para todo N. Obteemos etoces el siguiete resultado:

4 8. Cálculo de límites 66 Criterio de la media aritmética. Sea {y ua sucesió de úmeros reales y cosideremos la sucesió {σ de sus medias aritméticas, defiida por σ = y k = y + y y N Para L R se tiee que {y L = {σ L, y la misma implicació es cierta, sustituyedo e ambos miembros, L por + o. Demostració. Basta aplicar el criterio de Stolz, co x = co lo cual se tiee {(x + x )/(ρ + ρ ) = {y + y {x /ρ = {σ. Por ejemplo, tomado {y = {/ 0, teemos: lím k = 0. y k y ρ = para todo N, Coviee observar que el criterio de la media aritmética equivale al criterio de Stolz e el caso particular {ρ = {. Ello se debe a que, para cualquier sucesió {x, siempre podemos ecotrar {y de forma que x = x 0 = 0, pues etoces: y k = y k para todo N. Basta tomar {y = {x x, co (x k x k ) = x x 0 = x, para todo N. Cabe pues ua discusió aáloga a la hecha para el criterio de Stolz. Por ua parte, la implicació que aparece e el de la media aritmética o es reversible e iguo de los casos, puede ocurrir que {σ sea covergete o divergete si que {y lo sea. Por otra, si {y es divergete, pero o diverge positiva i egativamete, o podemos asegurar que {σ sea divergete. Los ejemplos para comprobar estas afirmacioes so esecialmete los mismos que se usaro para el criterio de Stolz, ya que e todos ellos se teía {ρ = {. Para obteer la sucesió {y que ahora ecesitamos, basta cosiderar la sucesió {x que sirvió para el criterio de Stolz y tomar, como hemos visto, {y = {x x co x 0 = Criterio de la raíz para sucesioes Dada ua sucesió {x de úmeros reales positivos, vamos a estudiar el comportamieto de la sucesió { x. Empezamos cosiderado el caso e que {x es costate: Para todo a R + se tiee: lím a =. Supogamos e primer lugar que a, co lo que tambié teemos que a para todo N, y vamos a comprobar que etoces la sucesió { a es decreciete. E efecto, para todo N teemos claramete ( a ) + = a a a de dode deducimos que a + a. Teemos pues ua sucesió decreciete y miorada, luego covergete.

5 8. Cálculo de límites 67 Poiedo L = lím a, sabemos de mometo que L. Cosideremos ahora la sucesió { 2 a, que es ua sucesió parcial de { a, luego { 2 a L. Ahora bie, para todo N, es claro que a = ( 2 a ) 2 [( = 2 ) 2 ], { a luego { ( a = 2 ) 2 a L 2. Deducimos que L 2 = L, lo que siedo L 0 o deja más salida que L =, como queríamos. E el caso a <, basta pesar que { { a = / /a y, por lo ya demostrado, teemos { /a, luego tambié { a. E geeral, para ua sucesió de la forma { x, vamos a obteer ahora dos importates desigualdades, que sugiere ua estrategia: estudiar la sucesió de cocietes {x + /x. Lema. Sea {x ua sucesió de úmeros reales positivos y supogamos que la sucesió de cocietes {x + /x está acotada. Etoces la sucesió de raíces { x tambié está acotada y se verifica que: límif{x + /x límif { x límsup { x límsup{x + /x (5) Demostració. Supodremos de mometo que límif{x + /x > 0. Al fial se verá que basta trabajar e este caso. Fijamos etoces ρ,λ R + tales que ρ < límif{x + /x límsup{x + /x < λ La defiició de límite iferior y superior os dice que podemos ecotrar m N tal que ρ < íf{x + /x : m sup{x + /x : m < λ co lo cual, para m teemos ρx x + λx. E lo que sigue, m estará fijo. De ρx m x m+ λx m deducimos ρ 2 x m ρx m+ x m+2 λx m+ λ 2 x m, y ua obvia iducció os dice que ρ k x m x m+k λ k x m para todo k N. Equivaletemete, para m podemos escribir ρ x m /ρ m x λ x m /λ m, o bie, tomado a = x m /ρ m y b = x m /λ m, teemos ρ a x λ b Puesto que { a y { b, las sucesioes que aparece e el primer y último miembro de la desigualdad aterior coverge a ρ y λ respectivamete. E particular, podemos ya asegurar que la sucesió { x está acotada. Pero la misma desigualdad tambié os dice, siempre para m, que ρ íf { k a : k íf { k xk : k sup { k xk : k λ sup { k b : k de dode llegamos fialmete a: ρ límif { x límsup { x λ (6) Las desigualdades (5) se deducirá fácilmete de la libertad que tuvimos al elegir ρ y λ.

6 8. Cálculo de límites 68 E efecto, si límif { x < límif{x+ /x sería e particular límif{x + /x > 0, que es la suposició que hicimos al pricipio, y podríamos haber elegido ρ de forma que límif { x < ρ, e cotradicció co (6). Aálogamete, si fuese límsup{x + /x < límsup{ x, tomaríamos λ < límsup { x lo que tambié cotradice (6). De las dos desigualdades ateriores deducimos fácilmete lo siguiete: Criterio de la raíz para sucesioes. Sea {x ua sucesió de úmeros reales positivos. Si la sucesió de cocietes {x + /x es covergete, etoces la sucesió de raíces { x tambié es covergete y se verifica que lím x = lím x + x Si {x + /x +, etoces tambié { x +. Demostració. La primera afirmació se deduce directamete del lema aterior: límif { x = límsup { x = lím x + x E caso de divergecia, basta cosiderar la sucesió {y = {/x, pues teemos claramete {y + /y = {x /x + 0, luego { / { { x = y 0, de dode x +. Por ejemplo, el criterio de la raíz os dice claramete que lím =. Para teer otro ejemplo iteresate, cosideremos la sucesió { + x, co x R +. El criterio de la raíz os lleva a pesar e la sucesió {( + x + )/( + x ). Para x teemos claramete {( + x + )/( + x ), mietras que si x >, comprobamos si dificultad que {( + x + )/( + x ) x. E geeral, teemos que {( + x + )/( + x ) máx{,x. El criterio de la raíz os dice que tambié { + x máx{,x. Dados ahora y,z R +, podemos tomar x = z/y para obteer: { y + z = { y + (z/y) y máx{,z/y = máx{y,z Puesto que {( + )!/! = { + +, el criterio de la raíz os dice tambié que {! +. Ispirádoos e este último ejemplo, pero de maera más geeral, teemos: Criterio de la media geométrica. Sea {y ua sucesió de úmeros reales positivos y cosideremos la sucesió de medias geométricas defiida por ( ) / µ = y k = y y 2... y N Si {y L R, se tiee {µ L, y si {y +, etoces tambié {µ +.

7 8. Cálculo de límites 69 Demostració. Tomado x = y k para todo N, teemos {x + /x = {y + y { x = {µ, co lo que basta aplicar el criterio de la raíz. E realidad, el criterio de la media geométrica es equivalete al de la raíz. Para deducir el segudo del primero, dada ua sucesió {x de úmeros positivos, tomamos y = x /x para todo N co el coveio x 0 =. Teemos etoces {x + /x = {y + y al calcular la sucesió de las medias geométricas de {y os ecotramos co que {µ = { x, luego al aplicar el criterio de la media geométrica a la sucesió {y obteemos el criterio de la raíz para la sucesió {x. Fialmete, e relació co el criterio de la raíz, coviee observar que la sucesió { x puede ser covergete si que {x + /x lo sea. Para ello basta tomar {x = {2 + ( ). Puesto que { 2 x 2 = { 2 3 y x 2 = para todo N, teemos { x, pero la sucesió {x + /x o es covergete, pues para impar se tiee x + /x = 3, mietras que para par es x + /x = / Ejercicios. Estudiar la covergecia de las siguietes sucesioes y, cuado exista, calcular su límite: { { (a) 2 k (b) { { (c)! k! (d) k k 2. Sea {x x R. Para p N, estudiar la covergecia de la sucesió 3. Probar que las siguietes sucesioes so covergetes y calcular sus límites: { 3 (a) 3 2 (2 ) 2 (b) + { p k x k.

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Cálculo de límites. 3.1. Sumas, productos y cocientes. Tema 3

Cálculo de límites. 3.1. Sumas, productos y cocientes. Tema 3 Tema 3 Cálculo de ites El presete tema tiee u iterés emietemete práctico, pues su pricipal fialidad es aportar los ejemplos que se echaba de meos e el tema aterior. Empezaremos estableciedo las reglas

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

Problemas de Sucesiones

Problemas de Sucesiones Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]

Más detalles

Convergencia absoluta y series alternadas

Convergencia absoluta y series alternadas Tema 11 Covergecia absoluta y series alteradas Ua vez que dispoemos de diversos criterios de covergecia para series de térmios o egativos, abordamos el estudio de la covergecia de series de úmeros reales

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

Mó duló 21: Sumatória

Mó duló 21: Sumatória INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Sucesiones y series de números reales 1. Sucesiones de números reales

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Sucesiones y series de números reales 1. Sucesiones de números reales - Ferado Sáchez - - 7 Sucesioes Cálculo I y series de úmeros reales Sucesioes de úmeros reales 20 205 De maera similar a como se hizo para sucesioes de úmeros racioales, se defie ua sucesió de úmeros reales

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos Cálculo I ( o de Grado e Iformática, 202-3) Aputes sobre series uméricas: pregutas frecuetes y ejemplos resueltos ) Pregutas frecuetes. Coceptos, teoremas y ejemplos básicos P-. Ua serie ifiita es ua suma

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO 005-06 Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3,

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 2

EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 2 EJECICIOS DE ANÁLISIS FUNCIONAL (Asigatura VCAF) HOJA Ejercicio : Idicar u ejemplo de la sucesió x () (x (),x (),...) que perteezca a cada uo del par cosiderado de los espacios y que: a) Coverja e l,peroocoverjael.

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE

PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE Departameto de Aálisis Matemático Curso 00/003 Profesores resposables Oscar Blasco Atoio Galbis Jesús García Josep Martíez Aíbal Moltó Carme de las Obras Sergio Segura

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

R. Urbán Ruiz (notas de clase)

R. Urbán Ruiz (notas de clase) R. Urbá Ruiz (otas de clase) Fucioes E las ciecias Ecoómicas las fucioes so de mucho valor para resolver problemas dode haya que relacioar variables; como por ejemplo, la producció, la oferta, la demada,

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

Sucesiones y ĺımite de sucesiones

Sucesiones y ĺımite de sucesiones Tema 3 Sucesioes y ĺımite de sucesioes Ídice del Tema Sucesioes........................................ 60 Progresioes....................................... 63 3 Covergecia......................................

Más detalles

CAPITULO 2. Aritmética Natural

CAPITULO 2. Aritmética Natural CAPITULO Aritmética Natural Itroducció 1 Sumatorias Iducció Matemática Progresioes Teorema del Biomio 1. Coteidos. Itroducció 1) Asumiremos que el cojuto de úmeros reales R, +,, ) es u cuerpo ordeado completo.

Más detalles

Capítulo 1. Por tanto, como la sucesión 1 tiene límite cero, podríamos intuir que

Capítulo 1. Por tanto, como la sucesión 1 tiene límite cero, podríamos intuir que Capítulo SERIES DE NÚMEROS REALES ) Series covergetes. Comportamieto algebraico. Ejemplos otables. Codició ecesaria de covergecia 2) Criterio de comparació. Covergecia absoluta. 3) Criterios de covergecia

Más detalles

UNA FORMULA DADA POR VILLARREAL

UNA FORMULA DADA POR VILLARREAL UNA FORMULA DADA POR VILLARREAL Itroducció: El Biomio de Newto. U biomio, es ua epresió algebraica que costa de dos térmios algebraicos, (tambié llamados moomios, etediedo por térmio algebraico aquel que

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

Tema 4 Sucesiones numéricas

Tema 4 Sucesiones numéricas Tema 4 Sucesioes uméricas Objetivos 1. Defiir sucesioes co wxmaxima. 2. Calcular elemetos de ua sucesió. 3. Realizar operacioes co sucesioes. 4. Iterpretar la defiició de límite de ua sucesió. 5. Calcular

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

Funciones de variable compleja

Funciones de variable compleja Tema 10 Fucioes de variable compleja 10.1 Fucioes complejas de variable compleja Defiició 10.1 Ua fució compleja de variable compleja es ua aplicació f: A C dode A C. Para cada z A, fz) C, luego fz) =

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión Defiició y propiedades 5 5. Defiició y propiedades 6 5. Covergecia absoluta e icodicioal 65 5.3 Criterios de covergecia para series de térmios o egativos 66 5.4 Otros criterios 69 5.5 Suma de series 69

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA. Cálculo Diferencial Ejercicios y Problemas resueltos

MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA. Cálculo Diferencial Ejercicios y Problemas resueltos MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA Cálculo Diferecial Ejercicios y Problemas resueltos Juliá Rodríguez Ruiz (Catedrático de Ecoomía Aplicada. UNED) Mariao Matilla García (Profesor Titular

Más detalles

CAPÍTULO XIII. SUCESIONES

CAPÍTULO XIII. SUCESIONES CAPÍTULO XIII SUCESIONES NUMÉRICAS SECCIONES A Sucesioes covergetes y límites de oscilació Sucesioes moótoas y acotadas B Sucesioes recurretes C Ejercicios propuestos 59 A SUCESIONES CONVERGENTES Y LÍMITES

Más detalles

Propiedades de las series numéricas (18.03.2015)

Propiedades de las series numéricas (18.03.2015) Propiedades de las series uméricas 8.03.205) ) Si itercalamos e la sucesió {a } N u úmero fiito de térmios de suma b, el carácter de la serie a o varía y, si coverge, su suma aumeta e b. D: Sea b +b 2

Más detalles

Tema 4.7: Factorización de funciones holomorfas. Productos in nitos. Teorema de factorización de Weierstrass

Tema 4.7: Factorización de funciones holomorfas. Productos in nitos. Teorema de factorización de Weierstrass Tema 4.7: Factoriació de fucioes holomorfas. Productos i itos. Teorema de factoriació de Weierstrass Facultad de Ciecias Experimetales, Curso 008-09 E. de Amo Por u lado teemos que la teoría local de fucioes

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Sucesiones y series. Josep Bernat Pané P01/75005/00104

Sucesiones y series. Josep Bernat Pané P01/75005/00104 Sucesioes y series Josep Berat Paé P0/75005/0004 FUOC P0/75005/0004 Sucesioes y series Ídice Itroducció 5 Objetivos 7 Sucesioes de úmeros reales 9 Cocepto geeral de sucesió 9 Sucesioes acotadas 3 Sucesioes

Más detalles

a 1, a 2, a 3, a 4,..., a n,... La sucesión {a 1, a 2, a 3,...}también se denota mediante a n n 1 a n 1 n n 1 a n sn 3, n 3 a n cos n 3, 4 125, 6

a 1, a 2, a 3, a 4,..., a n,... La sucesión {a 1, a 2, a 3,...}también se denota mediante a n n 1 a n 1 n n 1 a n sn 3, n 3 a n cos n 3, 4 125, 6 . SUCESIONES Se puede cosiderar que ua sucesió es ua lista de úmeros escritos e u orde defiido: a, a 2, a 3, a 4,..., a,... El úmero a recibe el ombre de primer térmio, a 2 es el segudo térmio y, e geeral,

Más detalles

Cálculo para la ingeniería Tomo II. Salvador Vera

Cálculo para la ingeniería Tomo II. Salvador Vera Cálculo para la igeiería Tomo II Salvador Vera 9 de eero de 5 ii Copyright c by Salvador Vera Ballesteros, 998-4. Ídice geeral 7. Series Numéricas 7.. El sigo del sumatorio: Sigma Σ... 7... Propiedades

Más detalles

9 SUCESIONES. LÍMITES DE SUCESIONES

9 SUCESIONES. LÍMITES DE SUCESIONES 9 SUCESIONES. LÍMITES DE SUCESIONES EJERCICIOS PROPUESTOS 9. Co ua calculadora, forma térmios de las siguietes sucesioes y estudia a qué valores tiede. a) a b) b c) c 5 a) a a 8 5,6 a 0 00,98 a 0 00 0

Más detalles

Series numéricas Conceptos básicos. Lewis Carroll

Series numéricas Conceptos básicos. Lewis Carroll Capítulo9 Series uméricas Aquiles alcazó a la tortuga y se setó cofortablemete sobre su espalda. e modo que has llegado al fial de uestra carrera? dijo la tortuga. A pesar de que realmete cosiste e ua

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

Figuras geométricas y números enteros. Introducción

Figuras geométricas y números enteros. Introducción Revista del Istituto de Matemática y Física Figuras geométricas y úmeros eteros Juaa Cotreras S. 6 Claudio del Pio O. 7 Istituto de Matemática y Física Uiversidad de Talca Itroducció Etre las muchas relacioes

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

TEMA 12 ESPACIOS VECTORIALES. A lo largo de este tema 12 denotaremos mediante la letra K un cuerpo conmutativo, (K, +, ).

TEMA 12 ESPACIOS VECTORIALES. A lo largo de este tema 12 denotaremos mediante la letra K un cuerpo conmutativo, (K, +, ). 1. Espacios Vectoriales. 2. Subespacios Vectoriales. 2.1. tersecció de Subespacios. 2.2. Uió de Subespacios. 2.3. Suma de Subespacios. 2.4. Suma Directa de Subespacios. 3. Aplicacioes Lieales. Espacio

Más detalles

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad Tema 4.4: Teorema de Riema de sigularidades evitables. Ceros de ua fució holomorfa. Pricipio de idetidad Facultad de Ciecias Experimetales, Curso 2008-09 E. de Amo Comeamos e este tema extrayedo las primeras

Más detalles

TEMA 25 (Oposiciones de Matemáticas)

TEMA 25 (Oposiciones de Matemáticas) TEMA 25 (Oposicioes de Matemáticas) LÍMITES DE FUNCIONES. CONTINUIDAD Y DISCONTINUIDAD. TEOREMA DE BOLZANO.. Itroducció. 2. Límites de fucioes. 2.. Límite de ua fució e u puto. 2.2. Límites laterales.

Más detalles

+ + + = 6 no parece ayudarnos a comprender cómo llegar a conjeturar esta relación. Intentamos acá una aproximación geométrica.

+ + + = 6 no parece ayudarnos a comprender cómo llegar a conjeturar esta relación. Intentamos acá una aproximación geométrica. http://www.ricomatematico.com La fórmula para la suma de los cuadrados de los primeros úmeros aturales obteida visualmete Mario Augusto Buge Uiversidad de Bueos AIres Ciclo Básico Comú Departameto de Matemática

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

4. Series, Taylor y límites indeterminados

4. Series, Taylor y límites indeterminados 4 Series, Taylor y ites idetermiados 4 Series de úmeros reales Queremos hacer sumas de ifiitos úmeros reales, llamadas series: a + a + a + = a = Por ejemplo, sumemos /5+/5 +/5 +/5 4 +/5 5 + Sumar u úmero

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

( ) ( )( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( ) Algebra uiversitaria UNIDAD III. POLINOMIOS 3.. Técicas elemetales para buscar raíces Recordado la defiició de raíz U poliomio P(x) tiee ua raíz r si y solo si P(r) = 0. Recordar el teorema de factorizació

Más detalles

SERIES INFINITAS.SERIES DE POTENCIAS. S = lim S. ( 1)

SERIES INFINITAS.SERIES DE POTENCIAS. S = lim S. ( 1) SERIES INFINITAS.SERIES DE POTENCIAS. Defiicioes y otació. A la suma de ua sucesió de térmios se deomia SERIE y el valor de dicha suma, si es que tiee alguo, se defie como S lim S. U ejemplo de serie ifiita,

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

Tema 1: Números Complejos

Tema 1: Números Complejos Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Sucesiones y series numéricas

Sucesiones y series numéricas TEMA 6 Sucesioes y series uméricas Objetivos: Los objetivos so: () estudiar la covergecia de las sucesioes uméricas, (2) Coocer las series uméricas y sus propiedades; (3) saber aplicar los criterios y

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Ejercicios de Análisis Matemático Sucesiones numéricas

Ejercicios de Análisis Matemático Sucesiones numéricas Ejercicios de Aálisis Matemático Sucesioes uméricas. ado " > 0, calcula m " N tal que ara todo >m " se verifique jx xj < " dode x, x viee dados e cada caso or: a/ x C 3 3 50 ; x 3 I b/ x 3 C 3 ; x 0 c/

Más detalles

Ejercicios de Análisis Matemático Sucesiones y series de funciones

Ejercicios de Análisis Matemático Sucesiones y series de funciones Ejercicios de Aálisis Matemático Sucesioes y series de fucioes. Estudia la covergecia uiforme e itervalos de la forma Œ; a y Œa; CŒ dode a >, de la sucesió de fucioes ff g defiidas para todo > por: f./

Más detalles