ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS"

Transcripción

1 ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS JUAN ALFONSO OAXACA LUNA, MARÍA DEL CARMEN VALDERRAMA BRAVO Introducción Uno de los conceptos centrales en el aprendizaje de las ateáticas es el de función. Después de los conociientos de aritética y álgebra, la construcción del concepto de función es la base para que posteriorente el aluno pueda coprender otros conceptos ateáticos. La iportancia que se le da al tea de funciones no es nueva. Leonardo Euler (siglo XVIII) organizo una de sus obras alrededor de este tea. Desde entonces, se descubrió que las funciones son un pilar de las ateáticas que perite su desarrollo de una anera ás integral y profunda. Lo que se puede decir que es nuevo en el tea de funciones es su presentación de anera que se pueda apreciar inediataente la vinculación con otras raas científicas. Las nuevas teorías del aprendizaje han influido notableente en los nuevos acercaientos con las posibles representaciones en papel, pizarrón, coputadora y software ateático ya que son esenciales para la construcción de los conceptos ateáticos. Las nuevas teorías y la eperientación en educación ateática han puesto de anifiesto la iportancia para realizar tareas de conversión de una representación a otra del concepto ateático en cuestión. Una de las dificultades que presenta el aluno es la de interpretar entalente el significado de la epresión algebraica a su representación gráfica y aún ás difícil si se pide obtener la epresión algebraica a través de su representación gráfica 1

2 En esta investigación se enfatizo esencialente en fora las diferentes representaciones de las funciones y sus correspondientes conversiones de una representación a otra. Para logarlo fue necesario desarrollar en el estudiante la habilidad de la visualización ateática ya que esta tiene que ver con el entendiiento de un enunciado y la puesta en archa de una actividad. Una de las características de esta visualización es el vínculo entre representaciones para la búsqueda de la solución de un problea de la vida real. Por ejeplo se quiere fabricar un recipiente en fora cilíndrica y nos interesa ponerle arcas para saber el voluen del líquido que puede contener. Suponeos que teneos un recipiente con base circular y lo estaos llenando con un líquido que sale de un tubo de 5 c de radio a una velocidad de c/in, la altura del recipiente es H 0 c. Coo varía el voluen del líquido en función de su altura?, Cóo varia la altura en función del voluen? etc., y así por el estilo podeos retoa ejeplos cotidianos para construir su tabulación o tabla, gráfica y finalente el odelo ateático. La propuesta de enseñanza tiene un acercaiento relativo a la ateática en conteto; adeás, los aspectos teóricos integrados en la propuesta hacen posible la construcción del concepto de función en fora sólida, de anera que el estudiante podrá desenvolverse con ejores acercaientos a las nociones ateáticas relacionadas con la definición de función. Consideraos que es iportante esta línea de investigación dado que a través de ella se prooverá al estudiante de concepciones dináicas de fenóenos y de los odelos ateáticos asociados a esos fenóenos. Esta posibilidad de interacción dináica con los ejeplos prooverá en el estudiante la construcción de iágenes entales dináicas que posibleente lo ayudarán a entender ejor un concepto de función. La odelación depende del coportaiento de los datos, los cuales son llevados a diferentes representaciones, donde la siultaneidad de la edida de cabio y su

3 coportaiento es intrínseca a la gráfica. El coportaiento tendencial de las funciones es intrínseco a la gráfica y genera un conjunto de situaciones que abarca cierto contenido del Cálculo, enarcado en situaciones globales de variación. Las graficas de las funciones son representaciones privilegiadas de estas situaciones, sin ebargo, las representaciones en la perspectiva del coportaiento tendencial de la función tabién conllevan relaciones analíticas Marco teórico Función cuadrática Definición Una función cuadrática es aquella que puede escribirse de la fora: f ( ) a + b + c Donde a, b y c son núeros reales cualesquiera y a distinto de cero. Si representaos "todos" los puntos (, f()) de una función cuadrática, obteneos siepre una curva llaada parábola. Coo ejeplo, ahí tienes la representación gráfica de dos funciones cuadráticas sencillas: f() f() Si al térino cuadrático se le asocia un coeficiente A donde este es ayor que uno, podeos observar que a edida que este crece el coportaiento de la función es copriirse positivaente hacia el eje de las ordenadas y. 3

4 f() A si A>1 Si ahora al térino cuadrático se le asocia un coeficiente A donde este es ayor que cero pero enor que uno, podeos observar que a edida que este se hace ás pequeño el coportaiento de la función se epande hacia el eje de las absisas. f() A si 0 < A < 1 Si al térino cuadrático se le asocia un coeficiente A donde este es enor que cero, podeos observar que a edida que este se hace as pequeño el coportaiento de la función se coprie negativaente hacia el eje de las ordenadas negativo y. f() A si A < 0 4

5 Hasta ahora heos observado coo es el coportaiento de la función cuadrática con un térino cuadrático, pero que ocurre si adeás posee un terino lineal, ahora su fora será: f() A + B, si el coeficiente del térino cuadrático A>0 la parábola es cóncava hacia arriba y posee un ínio, pero si A< 0, entonces la parábola es cóncava hacia abajo y posee un áio, pero observeos coo se coporta la función al agregar el térino lineal. Cuando B > 0 Cuando B < 0 De las gráficas se observa que cuando B > 0, el desplazaiento de las parábolas es a la izquierda, y cuando el valor de B < 0 el desplazaiento es a la derecha, en abas situaciones a edida que el valor absoluto de B auenta la ordenada del vértice de la parábola se hace ás negativa. En los dos casos las parábolas coinciden en el origen. Ahora se analizara el coportaiento de la función cuadrática cuando el térino independiente se ve odificado, anteniendo constantes los valores de A y B, por lo que la fora de la función es: f() A + B,+C. 5

6 En la gráfica se observa que el desplazaiento de las parábolas es vertical, es decir la ordenada del vértice se hace ás positiva si C > 0 y es ás negativa si C < 0; conservando las características del efecto que proporciona el térino cuadrático y el térino lineal Intersección de la parábola con los ejes Toda función cuadrática f() a + b + c, representa una parábola tal que: Su fora depende eclusivaente del coeficiente a de. Los coeficientes b y c trasladan la parábola a izquierda, derecha, arriba o abajo. Si a > 0, las raas van hacia arriba y si a < 0, hacia abajo. Cuanto ás grande sea el valor absoluto de a, ás cerrada es la parábola. Eiste un único punto de corte con el eje y, que es el (0,c) Los cortes con el eje se obtienen resolviendo la ecuación a + b + c 0, pudiendo ocurrir que lo corte en dos puntos, en uno o en ninguno. Intersección con el eje y : Coo todos los puntos de este eje tienen la abscisa 0, el punto de corte de la parábola con el eje y tendrá de coordenadas (0,c) Intersección con el eje : Coo todos los puntos del eje tienen la ordenada y 0, para ver estos puntos de corte se resuelve la ecuación de segundo grado a + b + c 0. Dependiendo del valor del discriinante (D) de la ecuación, se pueden presentar tres situaciones distintas: 6

7 Si D > 0, donde D b 4ac, entonces la ecuación tiene dos soluciones reales y distintas y la parábola cortará al eje en dos puntos. 3 y Si D 0, donde D b 4ac, la ecuación tiene una solución real y, por tanto, la parábola cortará al eje en un punto (que será el vértice). y Si D < 0, donde D b 4ac, la ecuación no tiene soluciones reales y no corta al eje, Por lo que la parábola puede abrir hacia arriba o hacia abajo, pero sobre el eje o por abajo del eje, según sea el caso 15 y Ceros de la función cuadrática Tabién llaados "raíces", representa los valores de "" cuya iagen tiene valor cero, (,0). Al ser cuadrática sólo se obtiene, coo áio dos valores, denoinados 1 y. 7

8 Estos valores (raíces) pueden utilizarse para epresar la función cuadrática en fora de producto de factores: f () a ( 1 ) ( ) Para calcular los ceros de la función cuadrática Se aplica la fórula general ya conocida. 1, b b 4ac a Coo una de las características de la parábola es que esta es siétrica con respecto al eje focal, entonces la abscisa del vértice corresponderá al punto edio entre abos valores de la abscisa, esto es: 1 + Sustituyendo valores b + a b 4ac a b + a b 4ac a Siplificando b 4a b a Sustituyendo este valor en la función original y a + b + c b b y a + b + c a a Desarrollando ab b y + c 4a a 8

9 Siplificando y y y ab ab + 4a c 4a ab + 4a c 4a 4ac b 4a Entonces las coordenadas del vértice son: V - b ( y ) a, que les corresponde V, a 4 4ac b El cual se localizara coo un punto áio cuando la parábola abre hacia abajo, es decir cuando el coeficiente del térino cuadrático sea negativo y cuando este sea positivo la parábola abre hacia arriba y le corresponde un ínio. Graficar una función de segundo grado Para graficar una función cuadrática se debe tener por lo enos tres puntos, "las raíces" y el vértice. Grafiqueos f () La ordenada al origen es - 6, por lo tanto sabeos que el punto (0, 6) pertenece a la función. Halleos el vértice de la parábola: Ahora las raíces: 9

10 1, b b 4ac a Sustituyendo valores 1, 5 ± 5 (4)(1)(6) ()(!) , se obtiene el punto (1,0) 5 7 6, se obtiene el punto( 6,0) Con estos tres puntos podeos trazar la parábola: Si quereos graficar la ecuación y tiene coo doinio todos los núeros reales y coo rango el conjunto de los núeros reales positivos incluido el cero. El valor ínio (en la iagen) de esta función será para 0, obteniendo el punto (0, 0), al que denoinareos vértice de la parábola. Para f () teneos que el: D f() : R ientras que el R f() : [0, + ) y el vértice (0, 0). Si suaos a la ecuación cuadrática ( ) una unidad, o sea, " + 1", la iagen se desplaza "uno" hacia arriba, de anera que el intervalo queda definido desde [1, + ). Si restaos a la ecuación cuadrática ( ) una unidad, o sea, " 1" la iagen se desplaza "uno" hacia abajo, de anera que el intervalo queda definido desde [ 1, + ). En abos casos este intervalo es el rango de la función R f() 10

11 En si, el agregar una constante a la función f() consiste en desplazarla a la gráfica de la función verticalente de acuerdo al valor de la constante. Es decir, ahora la fora de la función será f() ± C Podeos preguntarnos ahora qué sucedería si eleváraos un binoio (dos térinos con letras y núeros) al cuadrado?. Por ejeplo f() ( + 1). Coo no suaos "ningún núero al cuadrado" la función no se desplaza en el eje de las "y", por lo tanto la segunda coordenada del vértice sigue siendo cero. Con respecto a la prier coordenada, para era "0", ese valor lo obtendreos si 1, de esa anera la parábola se desplaza "uno" hacia la izquierda. Otro ejeplo, f() ( 1). Por la isa justificación, la parábola se desplaza "uno" a la derecha, esto es gráficaente tendreos: De lo anterior podeos concluir que si a una función cuadrática, a la variable independiente se le agrega o disinuye una constante, el valor de la constante indica un 11

12 desplazaiento horizontal de la función pero en sentido opuesto, entonces la función tendrá la fora f() ( ± C ). Por otra parte si a la función f() ( ± C ), le agregaos una nueva constante, entonces la función f(), tendrá un desplazaiento horizontal de acuerdo al valor de C y un desplazaiento vertical que depende del valor de K, por lo que la nueva función será: f() ( ± C ) + K Su gráfica correspondiente es: 4 y f() (-)^ +1 f() (+)^ -1 f() (-)^ Conclusiones: Los profesores debeos ayudar a nuestros alunos a desarrollar las foras de pensaiento sintético-geoétrico y analítico-aritético para que ellos puedan transitar en abas foras.. El profesor en el aula induce a los alunos a conocer las foras de solución de la ecuación cuadrática, pero se olvida de instruirlos en sus representaciones 1

13 geoétricas para obtener su ecuación a partir de su gráfica y aún ás difícil obtener la ecuación a partir de su representación gráfica interpretando las características de cada paráetro. En este iso sentido están diseñados los libros de teto, inclinándose por el pensaiento analítico- aritético. o únicaente dan una introducción a sus representaciones de situaciones gráficas y continúan resolviendo los probleas en fora algorítica provocando que el aluno eorice o ecanice los étodos. Bibliografía Albert A. y Farfan,, R.(1997), Resolución gráfica de desigualdades. Segunda edición, Méico: Grupo Editorial Ibero Aérica Cordero, F. (1998). El entendiiento de algunas categorías del conociiento del cálculo y análisis del coportaiento tendencial de las funciones. Revista Latinoaericana de Investigación en Mateática Educativa. Cordero, F. y Solis,M. (1999). Coportaientos gráficos en la visualización de las ecuaciones diferenciales lineales. Acta Latinoaericana de Mateática Educativa. Cordero, F. y Solis,M. (1997). Las gráficas de las funciones coo una arguentación del cálculo. Serie de cuadernos de didáctica, Méico. Grupo Editorial Ibero Aérica. Hill, F. (00). Funciones en Conteto, Méico. Prentice Holl Kerlinger, F. (1990), Investigación del coportaiento, Méico : Mc Graw Hill. Martínez, M. (1999). Estudio de las relaciones que el estudiante hace para construir la gráfica de la derivada y la priitiva, efectos en la enseñanza en la transforación de funciones. Tesis de Maestría UAH, Méico Schoaf, P. (1997), Álgebra un enfoque oderno, Méico, Reverte Ediciones S.A. de C.V. 13

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES RESOLVER ECUACIONES LINEALES EN UNA VARIABLE RESOLVER ECUACIONES CUADRATICAS EN UNA VARIABLE RESOLVER PROBLEMAS

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA

ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA 1 ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA AUTORES: Cra. Laura S. BRAVINO Mgter. Oscar A. MARGARIA Esp. Valentina CEBALLOS SALAS Departaento de Estadística y Mateática

Más detalles

Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces complejas conjugadas)

Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces complejas conjugadas) .6.. Ecuación característica (raíces reales distintas, raíces reales iguales, raíces coplejas conjugadas).6.. Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces coplejas

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 Facultad de Ineniería UdelaR Maquina de Atwood doble Mathías Möller José Oscar Silva Francisco Paroli INRODUCCION: Este trabajo trata de aplicar las leyes de Newton

Más detalles

1. Introducción: aproximación de un vector

1. Introducción: aproximación de un vector .6 Ajuste lineal por ínios cuadrados (6_AL_T_v9;005.w0.4; C & / C) 0. Notación (, ) producto interno de vectores A atriz de diseño (rectangular; n); contiene por colunas los vectores de las funciones del

Más detalles

1.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES.

1.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES. º Bachillerato Mateáticas I Tea 6: Geoetría analítica.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES. Un Sistea de referencia en el plano está forado por: Un punto O llaado Origen

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. 3 2x + 1 dx (1,25 puntos por integral)

Materia: MATEMÁTICAS II PROPUESTA A. 3 2x + 1 dx (1,25 puntos por integral) Pruebas de Acceso a nseñanas Universitarias Oficiales de Grado. Bachillerato L. O.. Materia: MATMÁTICA II Instrucciones: l aluno deberá contestar a una de las dos opciones propuestas A o B. Los ejercicios

Más detalles

156 Ecuaciones diferenciales

156 Ecuaciones diferenciales 156 Ecuaciones diferenciales 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión en oviiento

Más detalles

ÁREA: BÁSICA CLAVE DE LA ASIGNATURA: LA 102

ÁREA: BÁSICA CLAVE DE LA ASIGNATURA: LA 102 TEÁTIS ÁRE: ÁSI LVE DE L SIGNTUR: L OJETIVO(S) GENERL(ES) DE L SIGNTUR: l térino del curso el aluno analizará los principios de las ateáticas; aplicará los isos coo herraientas para operar en los coportaientos

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eáenes de Mateáticas de Selectividad ndalucía resueltos http://qui-i.co/ Eaen de Selectividad Mateáticas JUNIO 8 - ndalucía OPCIÓN.- [,5 puntos] Halla los coeficientes a, b y c sabiendo que la función

Más detalles

Problema 1 F 1 , F 2. = G M 2 m D 2. = G M 1 m D 1. = ( D y) 2 + x 2. Las fuerzas que se ejercen sobre la estrella de masa m serían

Problema 1 F 1 , F 2. = G M 2 m D 2. = G M 1 m D 1. = ( D y) 2 + x 2. Las fuerzas que se ejercen sobre la estrella de masa m serían Problea 1 Las fuerzas que se ejercen sobre la estrella de asa serían 1, F D Podeos establecer las coordenadas de las estrellas en un plano cartesiano para siplificar el problea. La distancia de la estrella

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nobre: Curso: º Grupo: A Día: CURSO Opción A. Considera la atriz a a B a a que depende de un paráetro. a) [, puntos] Para qué valores de a tiene B

Más detalles

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano).

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano). JUNIO INSTRUCCIONES: El eaen presenta dos opciones B; el aluno deberá elegir una de ellas contestar raonadaente a los cuatro ejercicios de que consta dicha opción en h. in. OPCIÓN. Calificación áia: puntos

Más detalles

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²

Más detalles

La representación gráfica de una función cuadrática es una parábola.

La representación gráfica de una función cuadrática es una parábola. Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS.

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. C.- Qué es cómo se representa un sistema de coordenadas cartesianas rectangulares

Más detalles

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido.

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido. EY DE STOES Una esfera de radio r y densidad ρ parte del reposo en el seno de un fluido de densidad ρ f < ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton SOLUCIONARIO GUÍA ÉCNICO PROFESIONAL Dináica I: fuerza y leyes de Newton SGUICC016C3-A16V1 Solucionario guía Dináica I: fuerza y leyes de Newton Íte Alternativa Habilidad 1 C Reconociiento A Aplicación

Más detalles

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección Guía de verano Mecánica 3º Medios 17 Introducción Esta guía servirá coo un repaso, de las ideas asociadas con una raa de las ateáticas u iportantes para el físico. El algebra vectorial es iportante porque

Más detalles

Respuestas ejercicios edición 2007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1

Respuestas ejercicios edición 2007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1 Editorial Mc Graw Hill. Edición 007 Respuestas ejercicios edición 007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1 a) Simetría respecto de ambos ejes y respecto del origen. b) Simetría respecto

Más detalles

Fuerzas de fricción (o de rozamiento)

Fuerzas de fricción (o de rozamiento) Fuerzas de fricción (o de rozaiento) Si un cuerpo se ueve sobre una superficie áspera o rugosa, encontrará adeás de la resistencia del aire, otra fuerza de resistencia debida a la rugosidad de la superficie.

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

1-3 EXPONENTES 18 CAPÍTULO 1 ÁLGEBRA

1-3 EXPONENTES 18 CAPÍTULO 1 ÁLGEBRA . 8 9 t st. s. z z. y y y 9 t t t 6. z z z 7. t t t 8. 6 9. 0 0.. 0 y.. a a. 6 b b a. a 6 b 9b 7 6. 6 7. y 0 6 8. p 9. p yq y y z z 0. y y. y y. 6. 6 a. b a b b a 6. 9 y 6 8. y 7. y 0 9. 0... 6 7. a b

Más detalles

LA DERIVADA A PARTIR DE CONSIDERACIONES GEOMÉTRICAS DE LA RECTA TANGENTE

LA DERIVADA A PARTIR DE CONSIDERACIONES GEOMÉTRICAS DE LA RECTA TANGENTE LA DERIVADA A PARTIR DE CONSIDERACIONES GEOMÉTRICAS DE LA RECTA TANGENTE (1) Eduardo Tellechea Arenta () Gabriela Robles Arredondo (1) etellech@gauss.at.uson. () gaby@gauss.at.uson. Universidad de Sonora.

Más detalles

La gráfica de la ecuación y = x 2

La gráfica de la ecuación y = x 2 INSTITUTO TECNOLÓGICO DE COSTA RICA UNIVERSIDAD DE COSTA RICA Randall Blanco B. La gráfica de la ecuación y = x 2 Cuando se habla de la gráfica de una ecuación con dos incógnitas, se hace referencia a

Más detalles

Regresar Wikispaces. 01. El extremo de un segmento es A(6. 4) y su punto medio M(-2, 9), hallar su otro extremo B(x, y). B(x. y) M(-2, 9) A(6.

Regresar Wikispaces. 01. El extremo de un segmento es A(6. 4) y su punto medio M(-2, 9), hallar su otro extremo B(x, y). B(x. y) M(-2, 9) A(6. Regresar Wikispaces 01. El extreo de un segento es A(6. 4 y su punto edio M(-2, 9, hallar su otro extreo B(x, y. B(x. y M(-2, 9 A(6. 4 AB 2 x 6 01. = = 2 x 6 = 4 + 2x x = 10 BM 1 2 x y 4 = 2 y 4 = 18 +

Más detalles

Los koalindres colgantes

Los koalindres colgantes CASO 1:_DOS MASAS (UNA POLEA) Antes de estudiar el caso de infinitos koalindres colgando de infinitas poleas, planteaos el caso de dos koalindres colgando de una sola polea Dado que no hay rozaiento, la

Más detalles

Prueba Matemática. Resolución. Proceso de admisión Documento Oficial. Universidad de Chile

Prueba Matemática. Resolución. Proceso de admisión Documento Oficial. Universidad de Chile Proceso de adisión 0 6 de agosto de 00 Docuento Oficial Universidad de Chile VicerrectorÍa de asuntos acadéicos DEMRE Consejo de rectores UNIVERSIDADES CHILENAS Resolución Prueba Mateática Parte II En

Más detalles

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS A. ANÁLISIS DE UNA ECUACIÓN En la geometría analítica hay dos problemas por resolver: 1. Dada la ecuación de una curva construir una gráfica.. Dadas algunas condiciones

Más detalles

La gráfica de la ecuación

La gráfica de la ecuación INSTITUTO TECNOLÓGICO DE COSTA RICA UNIVERSIDAD DE COSTA RICA Randall Blanco B. La gráfica de la ecuación Cuando se habla de la gráfica de una ecuación con dos incógnitas, se hace referencia a la representación

Más detalles

TEMA 2: El movimiento. Tema 2: El movimiento 1

TEMA 2: El movimiento. Tema 2: El movimiento 1 TEMA 2: El oviiento Tea 2: El oviiento 1 ESQUEMA DE LA UNIDAD 1.- Introducción. 2.- Características del oviiento. 2.1.- Posición. 2.2.- Trayectoria. 2.3.- Desplazaiento. 2.4.- Velocidad. 2.5.- Aceleración.

Más detalles

a.- (0; 0), 3xy = 0 3 (0) (0) = 0, 0 = 0, Sí b.- (2; -4), x 2 + y = 0 (2) 2 + (-4) 2 = 0, 20 = 0, No c.- (9; 3), x - y 2 = (3) 2 = 0, 0 = 0, Si

a.- (0; 0), 3xy = 0 3 (0) (0) = 0, 0 = 0, Sí b.- (2; -4), x 2 + y = 0 (2) 2 + (-4) 2 = 0, 20 = 0, No c.- (9; 3), x - y 2 = (3) 2 = 0, 0 = 0, Si Tabién se dice que dos núeros x = x 0 e y = y 0, satisfacen a una ecuación de la fora f (x; y), si al sustituir estos núeros en la ecuación, en lugar de las variables x e y, el prier iebro se convierte

Más detalles

Qué modelos! Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Qué modelos! Plan de clase (1/3) Escuela: Fecha: Profr. (a): Qué odelos! Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Mateáticas 2 secundaria Eje teático: SNyPA Contenido: 8.2.3 Identificación y búsqueda de expresiones algebraicas equivalentes a partir

Más detalles

La Demanda Individual

La Demanda Individual 07//0 Tea 5 Microeconoía I Alfonso Rosa García Grado en Adinistración y Dirección de Epresas Modalidad Seipresencial Alfonso Rosa García Tlf. 968 7866 - arosa@uca.edu Universidad Católica Alfonso San Antonio

Más detalles

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema:

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema: ísica Dos planos inclinados con dos cuerpos, unidos a través de una cuerda que pasa por una polea despreciable. Supongaos que ha rozaiento en los dos planos inclinados. Supongaos que el sistea se ueva

Más detalles

Capítulo 3. Fundamentos matemáticos del estudio

Capítulo 3. Fundamentos matemáticos del estudio Capítulo 3. Fundaentos ateáticos del estudio 3.1 Ecuación de Darcy La ley de Darcy es el pilar fundaental de la hidrología subterránea. Es una ley experiental obtenida por el ingeniero francés Henry Darcy

Más detalles

Tema 9: EL TEOREMA DE LOS RESIDUOS. APLICACIONES Programa detallado:

Tema 9: EL TEOREMA DE LOS RESIDUOS. APLICACIONES Programa detallado: Tea 9: EL TEOREMA DE LOS RESIDUOS. APLICACIONES Prograa detallado: 9.1 Introducción. 9.2 Puntos singulares aislados de una función. 9.3 Residuos: Definición y cálculo. 9.4 El teorea de los residuos. 9.5

Más detalles

Clase. Función cuadrática y ecuación de segundo grado

Clase. Función cuadrática y ecuación de segundo grado Clase Función cuadrática y ecuación de segundo grado Aprendizajes esperados Aplicar los conceptos matemáticos asociados al estudio de la función cuadrática. Graficar una función cuadrática, determinando

Más detalles

Función cuadrática. Ecuación de segundo grado completa

Función cuadrática. Ecuación de segundo grado completa Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto

Más detalles

Matemática Discreta - IT Informática de Sistemas - Mónica Esquivel - Antonio J. Lozano

Matemática Discreta - IT Informática de Sistemas - Mónica Esquivel - Antonio J. Lozano Mateática Discreta - IT Inforática de isteas - Mónica squivel - Antonio J. Lozano Tea 4 Técnicas de contar La cobinatoria trata de contar el núero de eleentos de conjuntos finitos. ntre sus aplicaciones

Más detalles

Dinámica de un sistema de partículas (en trabajo de parto)

Dinámica de un sistema de partículas (en trabajo de parto) Dináica de un sistea de partículas (en trabajo de parto) W. Barreto Junio, 2008. El estudio de un sistea de partículas desde el punto de vista dináico es el siguiente paso natural. Existe la noción de

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD CONCEPTOS BÁSICOS ÍMITES Y CONTINUIDAD a deinición de ite para unciones de varias variables es siilar a aquélla para unciones de una variable, pero con la salvedad de que los entornos toados alrededor

Más detalles

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras,

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras, Pág. 7 Efectúa las siguientes transforaciones e indica qué rapidez, de las tres prieras, es ayor: a) 2 /s a k/h b) 54 k/h a /s c) 30 da/in a /s d) 28 r.p.. a rad/s a) 2 2 k 3 600 s 2 3 600 k 43,2 s s 0

Más detalles

Actividad: Principio de Pascal

Actividad: Principio de Pascal Nivel: 3º edio Subsector: Ciencias físicas Unidad teática: Ver video Pascal Actividad: Qué es un fluido? Noralente, hablaos de tres estados de la aterial: gas, líquido y sólido. Un fluido está forado por

Más detalles

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T 1 Ciencias Básicas Física Prograa Estándar Intensivo Cuaderno Estrategias y Ejercitación Dináica II: ley de gravitación, fuerza de roce CUACES007CB82-A16V1 Estrategias? PSU Pregunta PSU 1. Respecto de

Más detalles

Ecuación Función cuadrática

Ecuación Función cuadrática Eje temático: Álgebra y funciones Contenidos: Función cuadrática - Ecuaciones de segundo grado Traslaciones de función cuadrática y función raíz Nivel: 3 Medio Ecuación Función cuadrática 1. Ecuación cuadrática

Más detalles

Ecuaciones Cuadráticas

Ecuaciones Cuadráticas MB0003 _MAAL_Cuadráticas Versión: Septiembre 0 Ecuaciones Cuadráticas por Oliverio Ramírez Juárez Una ecuación cuadrática es una ecuación de segundo grado, cuya forma general o canónica es a b c 0. La

Más detalles

EJERCICIOS DE GEOMETRÍA ANALÍTICA Y PARÁBOLA. 1.- Encuentre la ecuación de la parábola con vértice V ( 0, 0 ) y F ( 3, 0 ). Grafique la ecuación.

EJERCICIOS DE GEOMETRÍA ANALÍTICA Y PARÁBOLA. 1.- Encuentre la ecuación de la parábola con vértice V ( 0, 0 ) y F ( 3, 0 ). Grafique la ecuación. EJERCICIOS DE GEOMETRÍA ANALÍTICA Y PARÁBOLA 1.- Encuentre la ecuación de la parábola con vértice V ( 0, 0 ) y F (, 0 ). Grafique la ecuación. La distancia del vértice al foco es a =, entonces la ecuación

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA GUÍA TEÓRICO PRÁCTICA Nº8 A la función de segundo grado f() = a + b + c, siendo a, b, c lr a 0 se le denomina función cuadrática. La

Más detalles

ECUACIONES DIFERENCIALES (0256)

ECUACIONES DIFERENCIALES (0256) ECUACIONES DIFERENCIALES (256) SEMANA 3 CLASE 8 MIÉRCOLES 25/4/12 1. Creciiento poblacional. La idea básica es deterinar el taaño futuro de una población suponiendo que su tasa de creciiento es conocida

Más detalles

TRABAJO PRACTICO Nº 9: FUNCIONES CUADRÁTICAS ASIGNATURA: RAZONAMIENTO Y RESOLUCION DE PROBLEMAS

TRABAJO PRACTICO Nº 9: FUNCIONES CUADRÁTICAS ASIGNATURA: RAZONAMIENTO Y RESOLUCION DE PROBLEMAS TRABAJO PRACTICO Nº 9: FUNCIONES CUADRÁTICAS ASIGNATURA: RAZONAMIENTO Y RESOLUCION DE PROBLEMAS Ecuaciones Cuadráticas Toda función cuadrática se puede expresar de la siguiente forma: f(x) = ax ± bx ±

Más detalles

Guía de aprendizaje Nº 2

Guía de aprendizaje Nº 2 Liceo Polivalente Juan Antonio Ríos Quinta Normal NIVEL : TERCERO MEDIO Guía de aprendizaje Nº 2 Unidad Temática: FUNCION CUADRATICA Objetivo General: Graficar y analizar las raices de la funcion cuadratica.

Más detalles

BVI_UII Más ejemplos de Solución de ecuaciones del tipo Cauchy-Euler 501

BVI_UII Más ejemplos de Solución de ecuaciones del tipo Cauchy-Euler 501 BVI_UII Más ejeplos de Solución de ecuaciones del tipo Cauchy-Euler Apéndice BVI_UII Más ejeplos de solución de ecuaciones del tipo Cauchy-Euler Coo se vio en la sección.8. Utilizando una sustitución y

Más detalles

FUNCIONES CUADRÁTICAS

FUNCIONES CUADRÁTICAS FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto

Más detalles

, x es la variable independiente e y es la variable dependiente.

, x es la variable independiente e y es la variable dependiente. INSTITUCIÓN EDUCATIVA COLEGIO ARTÍSTICO RAFAEL CONTRERAS NAVARRO OCAÑA N.S. ASIGANTURA: MATEMÁTICAS OCTAVO GRADO DOCENTE: Esp. HENRY CARRASCAL C. III PERÍODO FUNCIÓN Y ECUACIÓN CUADRÁTICA 1. DEFINICIÓN

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos .E.S. CSTELR DJOZ. Menguiano PRUE DE CCESO (LOGSE) UNVERSDD DE LERES SEPTEMRE - (RESUELTOS por ntonio Menguiano) MTEMÁTCS Tiepo áio: horas inutos Contesta de anera clara raonada una de las dos opciones

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Dinámica

Movimiento oscilatorio Movimiento armónico simple (MAS) Dinámica Moviiento oscilatorio Dináica IES a Magdalena. Avilés. Asturias a aceleración de un punto que oscila con MAS puede epresarse coo: a A sen ( t) En función del tiepo. a En función de la distancia al origen.

Más detalles

DEFINICION DE RELACIÓN

DEFINICION DE RELACIÓN DEFINICION DE RELACIÓN Se Define como relación o correspondencia R entre los conjuntos B C, a un subconjunto del producto cartesiano B C, compuesto por pares de elementos que cumplen cierta regla definida.

Más detalles

Propiedades De Los Materiales

Propiedades De Los Materiales Quíica de er Año 1 1ra Unidad Propiedades De Los Materiales 1.7 Propiedades Características. Densidad. Cuando aparentaos, estaos copiando características superficiales de otros, distrayendo la atención

Más detalles

Solemne 1 - Ecuaciones Diferenciales. Para cada uno de los siguientes problemas, resuelva ordenadamente y justifique sus respuestas.

Solemne 1 - Ecuaciones Diferenciales. Para cada uno de los siguientes problemas, resuelva ordenadamente y justifique sus respuestas. Universidad Diego Portales Facultad de Ingeniería Instituto de Ciencias Básicas Carrera: Ingeniería Civil Prier seestre de 013. Solene 1 - Ecuaciones Diferenciales Para cada uno de los siguientes probleas,

Más detalles

ACTIVIDADES COMPLEMENTARIAS

ACTIVIDADES COMPLEMENTARIAS ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Indica qué tipo de oviiento realizan los siguientes objetos en función de la trayectoria que describen: a) Una canica desplazándose por el interior de

Más detalles

Segunda parte: Modos de vibración

Segunda parte: Modos de vibración Segunda parte: odos de vibración Objetivo: Estudiar el oviiento general de un sistea oscilatorio de varios grados de libertad étodo: Deterinar los odos de vibración del sistea. El oviiento general será

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos I.E.S. ASTELAR BADAJOZ A. enguiano PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 8 (RESUELTOS por Antonio enguiano) ATEÁTIAS II Tiepo áio: horas inutos Se valorará la corrección la claridad en

Más detalles

SESIÓN 10 FUNCIONES Y GRÁFICAS

SESIÓN 10 FUNCIONES Y GRÁFICAS SESIÓN 10 FUNCIONES Y GRÁFICAS I. CONTENIDOS: 1. Funciones. 2. Variables dependientes e independientes. 3. Gráfica de funciones y su aplicación. II. OBJETIVOS: Al término de la Sesión, el alumno: Comprenderá

Más detalles

PLAN DE MEJORAMIENTO GRADO NOVENO. Comprensión de las expresiones algebraicas como estructuras matemáticas aplicables al desarrollo científico.

PLAN DE MEJORAMIENTO GRADO NOVENO. Comprensión de las expresiones algebraicas como estructuras matemáticas aplicables al desarrollo científico. PLAN DE MEJORAMIENTO GRADO NOVENO INSTITUCIÓN EDUCATIVA LOMA HERMOSA DOCENTE: WÍLMAR ALONSO RAMÍREZ G. Refuerzo matemáticas 2011, grado 9 o Fecha: 25/07/2011. PRIMER PERÍODO: Competencias: Comprensión

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla de contenido Página Aplicaciones de las ecuaciones diferenciales 3 Problea de enfriaiento 3 Caída de cuerpos 6 Mezclas o diluciones 0 Trayectorias ortogonales 3 Resuen 6 Bibliografía recoendada 6

Más detalles

Distancia entre dos puntos

Distancia entre dos puntos GAE-05_MAAL3_Distancia entre dos puntos Distancia entre dos puntos Por: Sandra Elvia Pérez Para deterinar una expresión que te ayude a calcular la distancia entre dos puntos cualesquiera, toa los siguientes

Más detalles

PROBLEMAS VISUALES DE FÍSICA

PROBLEMAS VISUALES DE FÍSICA PROLEMS VISULES DE FÍSIC PVF9-* Fotografía Fotografía La fotografía fue toada un inuto después de la. En ellas se observan dos buques cargueros, de 0 de eslora y 4970t de desplazaiento y de 89 de eslora

Más detalles

Facultad de Física, P. Universidad Católica de Chile

Facultad de Física, P. Universidad Católica de Chile Facultad de Física, P. Universidad Católica de Chile FIS-5-0: Física Clásica FIZ-0-0: Mecánica Clásica Ejercicios Resueltos de Dináica 30 de Aosto de 008 Problea : Considere el sistea de la fiura, que

Más detalles

PROCESOS TERMODINÁMICOS

PROCESOS TERMODINÁMICOS PROCESOS TERMODINÁMICOS U na teoría es tanto ás iportante cuanto ayor sea siplicidad de sus preisas, ás diversas sean las cosas que relaciona y ayor sea el área de su aplicación. Esta fue la causa de la

Más detalles

SOLUCIONES NOVIEMBRE 2016

SOLUCIONES NOVIEMBRE 2016 Página 1 de 16 SOLUCIONES NOVIEMBRE 016 Autor: Rafael Martínez Calafat (profesor jubilado de Mateáticas) Noviebre 1: Cuáles son las posibles longitudes del tercer lado del triángulo de lados 016 c y 017

Más detalles

Tema 6. Oscilaciones de sistemas con varios grados de libertad

Tema 6. Oscilaciones de sistemas con varios grados de libertad Tea 6. Oscilaciones de sisteas con varios grados de libertad Priera parte: Sistea de dos asas un uelle. Ecuaciones del oviiento Nuestro sistea está forado por dos asas, en general diferentes,, unidas por

Más detalles

UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA

UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA Objetivo general. Al terminar esta Unidad aplicarás las definiciones y los elementos que caracterizan a la circunferencia y a la parábola en las soluciones de

Más detalles

Funciones I. Par ordenado. Igualando los componentes: x + 9 = 11 y + 10 = 14 x= 2 y = 4

Funciones I. Par ordenado. Igualando los componentes: x + 9 = 11 y + 10 = 14 x= 2 y = 4 Funciones I Par ordenado Es un conjunto formado por dos objetos matemáticos cualesquiera "a" "b" denotado por (a; b) que se consideran ordenados con el criterio de uno antecede al otro. Notación: (a; b)

Más detalles

(Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS

(Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS (Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS En integración se pide que la función sea continua en el intervalo considerado que además éste sea finito. En este tema se pretende

Más detalles

En este tipo de relaciones siempre existe una variable que depende de la otra, es decir, una de ellas es independiente y la otra dependiente.

En este tipo de relaciones siempre existe una variable que depende de la otra, es decir, una de ellas es independiente y la otra dependiente. I-MIP71_MAAL1_Cédula Funciones Por:SandraElviaPérez Relacionesyfunciones En la vida diaria es muy común encontrar variables que se relacionan entre sí, por ejemplo la longitud de un bebé con respecto al

Más detalles

(B) Segundo parcial (1) Una función f se dice que es acotada si existe M 0 tal que f(x) M para toda x en dominio de f.

(B) Segundo parcial (1) Una función f se dice que es acotada si existe M 0 tal que f(x) M para toda x en dominio de f. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 A) Primer parcial 1) Completando el trinomio cuadrado perfecto, dibujar la gráfica de + 6 = y ) + 6 ) 1 6 4) Sea + si < 1 f) = 4 si < 1 si 1 4 a)

Más detalles

Ayudantía #1: MAT1532 Ecuaciones Diferenciales Carlos Pérez Arancibia

Ayudantía #1: MAT1532 Ecuaciones Diferenciales Carlos Pérez Arancibia Pontificia Universidad Católica de Chile Facultad de Mateáticas Departaento de Mateáticas Prier Seestre de 6 Ayudantía #1: MAT153 Ecuaciones Diferenciales Carlos Pérez Arancibia caperez3@puc.cl 1 Modelaiento

Más detalles

RECTAS PARALELAS Y PERPENDICULARES

RECTAS PARALELAS Y PERPENDICULARES RECTAS PARALELAS Y PERPENDICULARES Qué piensas cuando te dicen que dos líneas foran un ángulo recto? Qué terinología usarías para describir a estas líneas? Cóo describirías dos rectas paralelas? Después

Más detalles

2 x. x y &

2 x. x y & Sea y(x) = 3 sen(x) con x(t) = t - 3 a) d y d t no se puede calcular pues depende de la variable x y no de la variable t b) 3 cos (t -3) c) 3 cos (t -3) 4 t 4.- Cuál es la verdadera? e % x a) d x no existe

Más detalles

Tema 4 resolución de sistemas mediante Determinantes

Tema 4 resolución de sistemas mediante Determinantes Tea 4 resolución de sisteas ediante Deterinantes. Estudio del carácter de un sistea Teorea de Rouché Estudia la copatibilidad de los siguientes sisteas resuélvelos si tienen solución: 5 5 4 a b c t t a

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0500, 9 ENERO 2001, 19H

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0500, 9 ENERO 2001, 19H CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0500, 9 ENERO 00, 9H ) Para la función f) +, determine a) Dominio, raíces, paridad b) Intervalos de crecimiento y de decrecimiento c) Intervalos

Más detalles

Intensidad horaria semanal TAD: 6 TI: 6 C: 4

Intensidad horaria semanal TAD: 6 TI: 6 C: 4 UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE CIENCIAS Escuela de Física Prograa: Ciclo de Ciencias Básicas de Ingeniería Nobre de la asignatura: FÍSICA III CÓDIGO: 956, 3648 SEMESTRE: IV Requisitos:

Más detalles

FUNCIONES Y SUS GRÁFICAS. APLICACIONES GRADO: 11º AREA: MATEMÁTICAS.

FUNCIONES Y SUS GRÁFICAS. APLICACIONES GRADO: 11º AREA: MATEMÁTICAS. Gestores de Calidad 05 INSTITUCIÓN EDUCATIVA DEPARTAMENTAL RURAL EL ALTICO MUNICIPIO DE COGUA ESTRUCTURA CURRICULAR TECNICO PROFESIONAL EN AGROINDUSTRIA En equipo trabajando, personas mejorando FUNCIONES

Más detalles

Me temo que esto no me va a gustar mucho. El primer tema es bastante petardete,

Me temo que esto no me va a gustar mucho. El primer tema es bastante petardete, 0 Requisitos previos 0 Priitiva de una función 0 El problea del cálculo de priitivas 5 0 Priitivas inediatas 6 05 Funciones hiperbólicas 06 Cálculo de priitivas "por partes" 07 Cabio de variable 5 08 Priitiva

Más detalles

3.- Magnitudes Eléctricas.

3.- Magnitudes Eléctricas. alor icaz (): Es el valor de corriente continua por el que debeos sustituir la corriente alterna para que produzca el iso ecto. e calcula con la fórula: ax / Para la corriente de la red es de 30. Periodo

Más detalles

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS 134 5.1. DISCUSIÓN DE UNA ECUACIÓN Discutir una ecuación algebraica representada por una epresión en dos variables de la forma f (, y) = 0, significa analizar algunos

Más detalles

CAPÍTULO 11 CIRCULO DE MOHR

CAPÍTULO 11 CIRCULO DE MOHR Círculo de Mohr Capítulo CAPÍTULO CIRCULO DE MOHR. ESFUERZOS EN EL SUELO ESFUERZOS NORMALES Y TANGENCIALES Notación: Siga Esfuerzo noral o directo a la superficie. Tau Esfuerzo de cizalladura o cortante

Más detalles

PRINCIPIOS HIDROSTÁTICOS

PRINCIPIOS HIDROSTÁTICOS 1 GUIA FISICA GRADO ONCE: MECANICA DE FLUIDOS AUTOR Lic. Física, ERICSON SMITH CASTILLO PRINCIPIOS HIDROSTÁTICOS En cada una de las partes que se ha dividido el estudio de los fluidos teneos la participación

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

TEMA 4 Y 5 FUNCIONES. (El valor de la y es función de lo que valga x, depende de x).

TEMA 4 Y 5 FUNCIONES. (El valor de la y es función de lo que valga x, depende de x). TEMA 4 Y 5 FUNCIONES. FUNCIÓN Una función relaciona dos variables: x (variable independiente) e y (variable dependiente). (El valor de la y es función de lo que valga x, depende de x). y = 3x 5 Una función

Más detalles

Unidad 6: Funciones reales de variable real.

Unidad 6: Funciones reales de variable real. Funciones reales de variable real 1 Unidad 6: Funciones reales de variable real. 1.- Concepto de función. Expresión analítica de una función. Variables x e y Existe relación entre x e y No hay relación

Más detalles

Tema 4. Geometría analítica

Tema 4. Geometría analítica Tema 4. Geometría analítica Este documento tiene como propósito que conozcas la parábola y las reglas que la regulan. Para facilitar la comprensión del tema, se incluyen algunos ejemplos. Subtema 4.3 La

Más detalles

Segundo Parcial, Física, C.B.C. Pág. 1

Segundo Parcial, Física, C.B.C. Pág. 1 C l Segundo Parcial, Física, C..C. Pág. Ciudad Universitaria: 998 (prier cuatriestre). ) El sistea de la figura gira en una esa horizontal con rozaiento despreciable, de odo que los cuerpos se hallan alineados

Más detalles

Problemas Resueltos. Con estas dos ecuaciones, se deduce que

Problemas Resueltos. Con estas dos ecuaciones, se deduce que Probleas Resueltos 6.1 Deterinar la posición de equilibrio y la frecuencia angular del sistea de resorte, asa y polea ostrados. El resorte tiene una constante, y la polea puede considerarse coo desprovista

Más detalles

Tema 1: Combinatoria

Tema 1: Combinatoria Tea : Cobinatoria C. Ortiz, A. Méndez, E. Martín y J. Sendra Febrero de Índice Guía del tea. Introducción. Principios básicos del conteo 3. Variaciones 4. Perutaciones 4 5. Perutaciones circulares. 5 6.

Más detalles

EJERCICIOS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES (CAPÍTULO 5 ) PROPUESTOS EN EXÁMENES

EJERCICIOS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES (CAPÍTULO 5 ) PROPUESTOS EN EXÁMENES EJERCICIOS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES (CAPÍTULO 5 ) PROPUESTOS EN EXÁMENES 1º) Razone breveente sobre los conceptos de Casualidad, Causalidad y Especificación de odelos estadísticos.(junio

Más detalles