TEMA 4. APLICACIONES DE LA DERIVADA.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 4. APLICACIONES DE LA DERIVADA."

Transcripción

1 7

2 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads d las funcions drivabls 6.. Torma d opital 6.. Torma d Roll José uis ornt Aragón 7

3 Contto con la P.A.U. Unidad 4. Funcions. Aplicacions d la drivada. En los ámns d slctividad sul habr un problma n cada opción n dond s pid calcular l crciminto y/o la curvatura d una función. Por lo gnral las funcions qu aparcn son, n una opción, una fracción polinómica, y n la otra, o un ponnt o un logaritmo. Aunqu d primras pud parcr qu las funcions ponncials o logarítmicas son más complicadas, por lo gnral suln sr más sncillas, ya qu las drivadas, n spcial la sgunda, son más fácils d igualar a cro, y así studiar la curvatura o l crciminto. Otros problmas qu aparcn son los d optimización. Por lo gnral stos problmas son rlativos a la maimización o minimización d funcions áras máimas o mínimas, pndint mínima o máima. Una custión muy común n los ámns d slctividad son los límits, qu s calculan a partir d opital. También s utiliza opital n l studio d asíntotas d las funcions, la continuidad y la drivabilidad d funcions vr tma antrior. 7 Apunts d Matmáticas II para prparar l amn d la PAU

4 Unidad 4. Funcions. Aplicacions d la drivada. Monotonía. Crciminto y dcrciminto d una función En l tma antrior rlacionamos las drivadas con la pndint d las rctas tangnts a la gráfica dscrita por la función, s dcir, f s la pndint d la rcta tangnt a la gráfica f n. Vamos a rlacionar l signo d mf con l crciminto o dcrciminto d la función; para sto nos valmos dl siguint jmplo: yf 3-5 f ,- - -,, Signo f - Crciminto José uis ornt Aragón 73

5 Unidad 4. Funcions. Aplicacions d la drivada. Claramnt vmos qu cuando f > la rcta tangnt s crcint, pus la pndint s positiva, y por lo tanto f s crcint n. D igual forma si f < la rcta tangnt s dcrcint, pus su pndint s ngativa, y por lo tanto f s dcrcint n Conclusión: a Si f > la función f s strictamnt crcint n b Si f < la función f s strictamnt dcrcint n. Etrmos rlativos Ants d rlacionar los trmos rlativos con la drivada dfinámoslos. Dfinición: Etrmo rlativo d una función f s todo punto tal qu, para todo ntorno dl punto E,r, s cumpl qu la función n st intrvalo crc y dcrc. Sgún crzca ants o dspués d, distinguimos dos tipos d trmos rlativos: a Máimo rlativo n : la función crc hasta y dcrc a partir d. b Mínimo rlativo n : la función dcrc hasta y crc a partir d. Está claro qu si s un trmo rlativo d f, n st punto la gráfica ni crc ni dcrc, lugo una condición ncsaria s qu f, así la pndint d la rcta tangnt s m, sindo por tanto parallo al j. Pro stá no s la única condición. Es ncsario, qu admás, s cumpla una sgunda condición qu admás nos prmit discrnir si s máimo o mínimo rlativo: Sa un punto d una función n l qu s cumpl a f b f < ntoncs,f s máimo rlativo Sa un punto d una función n l qu s cumpl a f b f > ntoncs,f s mínimo rlativo En la práctica, si s cumpl qu f y vindo l crciminto d la función ants y dspués dl punto podmos vr si s punto rlativo y si s máimo o mínimo. En l caso d qu f pro también f sto ocurr cuando s raíz dobl o d mayor multiplicidad d f, no podmos asgurar qu st punto sa trmo rlativo y hay qu studiar las drivadas d ordn suprior. Tndrmos qu calcular las drivadas n, hasta la primra drivada no nula. Para vr si la función tin trmo rlativo o no vmos l siguint squma: 74 Apunts d Matmáticas II para prparar l amn d la PAU

6 Unidad 4. Funcions. Aplicacions d la drivada f n con n impar Punto d Inflión n f f f f n > mínimo f n n par f n < máimo Ejmplo: Estudiar si n las siguints funcions hay máimo, mínimo o punto d inflión n a yf 3 f 3 n f f 6 n f f 6 n f 6 Como la primra drivada no nula s la trcra impar, tnmos un Punto d Inflión n P. I,f, b yf 4 f 4 3 n f f n f f 4 n f f IV IV 4 n f 4 Como la primra drivada no nula s la cuarta par, tnmos un Punto rlativo n IV. Admás como f 4 > srá mínimo m,f, Vamos las gráficas d y 3 y 4 : 4 3 José uis ornt Aragón 75

7 Unidad 4. Funcions. Aplicacions d la drivada. Ejrcicio : Estudiar la monotonía, y los trmos rlativos d las siguints funcions: a yf Vamos l signo d la drivada: f f , 3 f -3 -,,3 3 3, Signo f - Crciminto,f,6 3,f33,5 f < Máimo f 3> Mínimo Máimo M,f,6 Mínimo m3,f33,5 M m b y/ln Primro studimos l dominio. Vamos los puntos qu no prtncn al dominio a > por l logaritmo npriano b Dnominador s cro: ln, asíntota vrtical Domf, -{} ln f ln ln ln ln- f ln ln ln ln ln ln ln ln ln 76 Apunts d Matmáticas II para prparar l amn d la PAU

8 Unidad 4. Funcions. Aplicacions d la drivada Admás d los puntos dond s anula la primra drivada hay qu añadir los puntos qu no prtncn al dominio, ya qu n llos pud cambiar l crciminto. En st caso añadimos. Nota: las asíntotas vrticals no suln cambiar la monotonía aunqu si la curvatura.,,, Signo f - - Crciminto Mínimo m,f, Dom f,f, f /> Mínimo m c y f DominioR-{4} 8 f, f Signo d f : 8 No solución no trmos rlativos f > Sólo tnmos qu vr l crciminto ants y dspués d 4, qu no prtnc al dominio: José uis ornt Aragón 77

9 Unidad 4. Funcions. Aplicacions d la drivada. -,4 4 4, Signo f Do min io Crciminto 3. Optimización En muchas situacions s plantan problmas d optimización, s dcir hacr qu una función sa máima o mínima para unas prmisas impustas. os casos d optimización qu trabajarmos s cuando la función dpnd d una sola variabl. Pasos a sguir para optimizar:. Eprsar la función qu dsamos optimizar n función todas variabls.. Si la función tin más d una variabl rlacionar las variabls con los datos dl problma y obtnr una función d una sola variabl mdiant la función ligadura. 3. Drivar la función, igualarla a cro y así obtnr los puntos rlativos 4. Comprobar, mdiant la sgunda drivada, si stos puntos son máimos o mínimos. Ejmplo: S quir construir bots d nlatar d forma cilíndrica d litros d capacidad. Calcular las dimnsions para qu l gasto sa mínimo y Vπ y función ligadura y /π El gasto s proporcional a la suprfici función a optimizar: Gasto,yK SuprficiK π π y GK [π π /π ]K[π /] G K[4π-/ ] 4π-/ 4π r π dm hy π 3 5 π dm G 4π4/ 3 G 3 5 π > Mínimo 78 Apunts d Matmáticas II para prparar l amn d la PAU

10 Unidad 4. Funcions. Aplicacions d la drivada Ejrcicio : Dscomponr l númro 48 n dos sumandos tal qu l quíntuplo dl cuadrado dl primro más l sétuplo dl cuadrado dl sgundo sa mínimo. 48y ligadura y48- f,y5y 6 función a optimizar f f -48 4/, y 88/ f f 4/> Mínimo Ejrcicio 3: Una hoja d papl db contnr 8 cm d tto imprso, márgns suprior infrior d cm y latrals d cm. Obtnr las dimnsions qu minimizan la suprfici dl papl y y8 ligadura y8/ Ara,y y4 función a optimizar A 8/48436/86436/ A 4-36/ 3cm y6cm A 7/ 3 4. Curvatura A 3> mínimo Dimnsions: 5cm cm Vamos las dfinicions d los dos tipos d curvaturas posibls n una función: Dfinición : Una función s cóncava hacia las y positivas o cóncava hacia arriba n un punto P,y, si la rcta tangnt n st punto stá por dbajo d los puntos próimos a P. Gráficamnt tin forma d Dfinición : Una función s cóncava hacia las y ngativas o cóncava hacia abajo n un punto P,y, si la rcta tangnt n st punto stá por ncima d los puntos próimos a P. Gráficamnt tin forma d. José uis ornt Aragón 79

11 Unidad 4. Funcions. Aplicacions d la drivada. Podmos sabr si una función s cóncava hacia arriba o hacia abajo a partir d la sgunda drivada: Si f >, ntoncs f s cóncava hacia arriba n l punto,f. Rcordar la curvatura d yf y como f > Si f <, ntoncs f s cóncava hacia abajo n l punto,f. Rcordar la curvatura d yf- y como f -< Ejmplo: yf 3 f 6, si > cóncava hacia arriba y si < hacia abajo Cóncava hacia abajo Cóncava hacia arriba 5. Puntos d Inflión Uno d los puntos más importants a la hora d rprsntar una función son los puntos d inflión; vamos qu s un punto d inflión: Dfinición: S dic qu f tin punto d inflión n,f si n s punto cambia la curvatura d la función, s dcir pasa d sr cóncava hacia arriba a cóncava hacia abajo o al rvés. En st punto la rcta tangnt a la función corta a la función. Vamos a vr la rlación ntr los puntos d inflión y las drivadas d la función, n l siguint torma: Si f cumpl n qu la sgunda drivada s nula f y admás la trcra drivada s distinta d cro f, ntoncs la función f tin un punto d inflión n,f. En l caso d qu tanto f como f, tndrmos qu rcurrir a las drivadas d ordn suprior, y vr l ordn d la primra no nula n. Como vimos n l apartado. f n con n impar Punto d Inflión 8 Apunts d Matmáticas II para prparar l amn d la PAU

12 Unidad 4. Funcions. Aplicacions d la drivada n f f f f n > mínimo f n n par f n < máimo Ejmplo: Estudia l crciminto, puntos rlativos, la curvatura y los puntos d inflión d la función f Primro studimos l dominio DomfR-{-} f Vmos qu simpr s positiva para todo valor d qu prtnzca al dominio: -,- - -, Signo f No ist - Domf Crciminto No Punto rlativo Calculmos ahora la curvatura y los puntos d inflión 4 f 3 El signo d la sgunda drivada s: -,- - -, Signo f No ist - Domf - Cocavidad No P.I. José uis ornt Aragón 8

13 Unidad 4. Funcions. Aplicacions d la drivada. Ejrcicio 4: Estudiar monotonía y curvatura d f Primro vmos l dominio d f, como --, ntoncs DomfR-{} f f -,,, Signo f - No ist - 3 Crciminto m,f, Domf 4 f f > Mínimo 4 3 [ ] 4 / 4 S anula n -/ Apunts d Matmáticas II para prparar l amn d la PAU

14 Unidad 4. Funcions. Aplicacions d la drivada -,-/ -/ -/,, Signo f - No ist Concavidad PI-/,f-/ -.5,/9 Domf f -/ PI m Nota: dars cunta qu n st jmplo n la asíntota vrtical si cambia la curvatura, pasando d crcint a dcrcint, sto s porqu s una raíz dobl dl dnominador. Cuando sto ocurr cambia la monotonía pro no la curvatura. José uis ornt Aragón 83

15 Unidad 4. Funcions. Aplicacions d la drivada. Ejrcicio 5: san f 3, g 4 y h 5 ; dtrminar si n hay un P.I. o un punto rlativo. a f 3 f f 6 f f 6 f 6 n3 P.I., b g 4 3 g g g g 4 g g 4 4 g 4 4> n4 Punto rlativo Mínimo m, c h 5 4 h h 3 h h 6 h h 4 h 4 h 5 h 5 n5 P.I., y 3 y 4 y 5 84 Apunts d Matmáticas II para prparar l amn d la PAU

16 Unidad 4. Funcions. Aplicacions d la drivada José uis ornt Aragón Propidads d las funcions drivabls 6.. Torma d opital Ya hmos visto n l tma antrior qu hay límits qu, para calcularlos, s ncsario utilizar l torma d opital, vamos n qu consist: Torma: San f y g continuas y drivabls n qu vrifican: a g f b ± g f ntoncs s cumpl: g f g f Esta rgla s válida para R, o -. Esta rgla s pud aplicar sucsivas vcs si l límit sigu sindo / o / Ejmplos: a cos sn b cos cos 6 3 sn sn c ln d / ln ln cos cos cos cos sn sn tg tg π π π π π π π π π π π

17 Unidad 4. Funcions. Aplicacions d la drivada. 6.. Torma d Roll Un torma muy important s l dnominado torma d Roll qu nos dmustra qu cuando una función drivabl pasa dos vcs por la misma altura ntoncs tin un punto rlativo ntr stos dos puntos: Torma d Roll: Sa f, qu cumpl las siguints condicions: continua n [a,b] drivabl n a,b fafb ntoncs ist al mnos un punto c a,b, tal qu f c s dcir tin al mnos un máimo o mínimo rlativo Vamos cómo s fácil d intrprtar st torma, si lo hacmos d forma gráfica, s smjant al d Bolzano Intrprtación gráfica: Pud ocurrir qu haya dos o más puntos qu cumplan l torma f c a c c b 86 Apunts d Matmáticas II para prparar l amn d la PAU

18 Unidad 4. Funcions. Aplicacions d la drivada Ejrcicios PAU: Sólo vrmos los qu stán rlacionados con la optimización y con opital, los rlativos al crciminto y a la curvatura s vrán n l tma siguint A Optimización Sptimbr 4. Pruba B. PR.- a Dada la función f/ln dfinida n [,], calcular la rcta tangnt con mayor pndint. Escribir cuación d dicha rcta a pndint d las rctas tangnts vin dada por la drivada d f f -/ /. Como tnmos qu buscar l valor con mayor pndint, la función a optimizar s f, qu llamarmos g, gf. Optimicémosla g - [,] 3 3 Vamos si s máima o mínima: g / 3-6/ 4 g /4-3/8< máimo a pndint máima s m ma gf -/4//4; sta s la pndint d la rcta tangnt n l punto P,f,/ln a rcta tangnt s por tanto: y-/ln/4- y.5 ln Junio 6. Pruba A. PR- Considérns las funcions f, g- -. Para cada rcta r prpndicular al j OX, san A y B los puntos d cort d dicha rcta con las gráficas d f y g, rspctivamnt. Dtrmíns la rcta r para la cual l sgmnto AB s d longitud mínima. as rctas prpndiculars al j OX son dl tipo. Cort con las gráficas a f A, o b g- - B,- -o ongitud sgmnto AB da,b AB, d. Como tin qu sr distancia mínima, calculmos la drivada d d igualmos a cro d -. Vamos si s mínima o máima d d > Mínimo Por tanto la rcta s. Corta con f n,, y con g n,- -,- Así la rcta qu minimiza la distancia ntr las dos funcions s José uis ornt Aragón 87

19 Unidad 4. Funcions. Aplicacions d la drivada. A, B,- - - Sptimbr 8. Pruba B PR-. allar, d ntr los puntos d la parábola d cuación y -, los qu s ncuntran a distancia mínima dl punto A-,-/ os puntos d la parábola son P, -. a distancia ntr P y A s: 4 d A, P AP, d 4 Nota si buscamos l valor qu minimic la distancia s 4 cumplirá también qu para s valor d también srá mínima, sindo la función mucho más sncilla al quitarnos la raíz: fd f P-, Vamos qu s mínimo f, f ->, s mínimo 4 88 Apunts d Matmáticas II para prparar l amn d la PAU

20 Unidad 4. Funcions. Aplicacions d la drivada Otros jrcicios optimización: Ejrcicio 6: san las funcions f- y g, d todas las rctas parallas al j OX qu cortan n A a g y a B a f, calcular aqulla qu minimiza las distancias ntr los dos puntos. as rctas parallas al j OX son d la forma yt, qu srá l parámtro libr. os puntos A y B srán: y t A t Alnt,t y y B y t t Bt,t da,b AB t ln t, t ln t t ln t a función qu tnmos qu maimizar srá dtt--lnt: d t t. t Comprobmos qu s un mínimo: d t t ugo la rcta buscada s y. d < Ejrcicio 7: sa la función f, calcular l punto P d la gráfica tal qu la ordnada n l orign d la rcta tangnt a dicha función n P sa máima. os puntos d la gráfica srán Pt,ftt, y las pndints d las rctas tangnts para stos puntos vinn dfinidas por mf t-t. D sta forma las rctas tangnts son: r: y-y m- r: y- -t -t r: y-t t. Por lo tanto la ordnada n l orign s nt t. Calculmos l valor d t qu minimiza la función: José uis ornt Aragón 89

21 Unidad 4. Funcions. Aplicacions d la drivada. n t-t 4t -4t 3 t-4t 3 t-t t, t ± Vamos cuál d stos valors máimiza la función: n t 4t 4-8t n > Mínimo n ± < Máimo. ugo los punto son P, -/, P -, -/ Ejrcicio 8: calcular l rctángulo d ára máima inscrita n una circunfrncia d radio cm: Ára,y4 y función a optimizar y y 4 ligadura Ay4y 4 y 4 y A y4 4 y - 4y 4 y 6 4y 4y 4 y y y cm cm cuadrado Vamos qu s máima: A <. Máimo 9 Apunts d Matmáticas II para prparar l amn d la PAU

22 Unidad 4. Funcions. Aplicacions d la drivada B opital PAU Sptimbr 6. Pruba A C-3. sn sn lncos cos cos tg cos tg sn PAU Junio 6 Pruba A C-3. lncos sn cos tg tg PAU Junio 6 Pruba BC-4. Calcular a y b para qu l límit sa : a b cos a b sn b b para it sn cos a sn cos a cos cos 4 sn a a / PAU Sptimbr 4 Pruba A C-3 tg tg tg π tg π tg π tg 6 PAU Junio 4 Pruba B C- 3 sn sn sn sn cos cos sn cos sn cos PAU Sptimbr 5 Pruba A C-4. Calcular λ para qu l límit valga -: sn cos λ sn cos λ cos 4 sn λ 4 λ cos λ cos λ sn λ cos λ λ λ λ±. José uis ornt Aragón 9

23 Unidad 4. Funcions. Aplicacions d la drivada. 9 Apunts d Matmáticas II para prparar l amn d la PAU PAU Sptimbr 5 Pruba B C-3 cos cos cos cos ln ln sn sn sn sn sn sn PAU Junio 5 Pruba A C-3 / ln ln PAU Junio 7 Pruba A. C- ln ln ln ln ln ln PAU Sptimbr 7 Pruba B C PAU Junio 8 Pruba A. C-: cos 4 3 cos 3 sn sn sn PAU Sptimbr 8 Pruba B. C-3: Calcular a para qu l límit sa 8 8 a a a a a a a a a a a±4

24 Unidad 4. Funcions. Aplicacions d la drivada José uis ornt Aragón 93

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x ( ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto.

Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto. http://matmaticas-tic.wikispacs.com Lambrto Cortázar Vinusa 06 DERIVADAS EJERCICIOS WIKI Ida La drivada d una unción, (), n un punto P s intrprta gométricamnt con la pndint d la rcta tangnt a la curva

Más detalles

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

ANÁLISIS (Selectividad 2014) 1

ANÁLISIS (Selectividad 2014) 1 ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San

Más detalles

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x ANÁLISIS Junio 9.. Dada la función cos si 0 b si f() a si 0 a) [ punto] Calcular los valors d a y b para qu la función f() sa continua n b) [ punto] Es drivabl la función obtnida n = 0?. En =?. Razona

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8 Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula

Más detalles

ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 ANÁLISIS (Slctividad 5) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 5 Andalucía, junio 5 Sa f la función dfinida por f( ) para a) [ punto] Estudia y calcula las asíntotas

Más detalles

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros

Más detalles

12 Representación de funciones

12 Representación de funciones Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando -PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES El cálculo d límits cuando Límits cuando a R a R s raliza sustituyndo por a Si st valor s un númro ral ntoncs ya stá calculado y st límit s único, pro n algunos

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

LÍMITES DE FUNCIONES. CONTINUDAD

LÍMITES DE FUNCIONES. CONTINUDAD LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS (Oposicions d Scundaria) TEMA 3 FUNCIONES CIRCULARES E HIPERBÓLICAS Y SUS RECÍPROCAS. SITUACIONES REALES EN LAS QUE APARECEN.. Introducción.. Funcions circulars... Funcions d Sno y

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MTEMÁTICS II PRUEBS DE CCESO L UNIVERSIDD DE OVIEDO.- NÁLISIS ª PRTE.- Cálclo Intgral.- MODELO DE PRUEB Dada la parábola, s corta por la rcta d cación ; n los pntos d intrscción s trazan las tangnts a

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS

Más detalles

DERIVACIÓN DE UNA FUNCIÓN REAL DE VARIABLE REAL

DERIVACIÓN DE UNA FUNCIÓN REAL DE VARIABLE REAL Drivación una función ral variabl ral DERIVACIÓN DE UNA FUNCIÓN REAL DE VARIABLE REAL Autor: Patrici Molinàs Mata (pmolinas@uoc.u), José Francisco Martínz Boscá (jmartinzbos@uoc.u) ESQUEMA DE CONTENIDOS

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

TEMA 5. REPRESENTACIÓN DE FUNCIONES

TEMA 5. REPRESENTACIÓN DE FUNCIONES 94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 2 : EMPUJES SOBRE SUPERFICIES PLANAS Y CURVAS

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 2 : EMPUJES SOBRE SUPERFICIES PLANAS Y CURVAS UNDD HDRÚL. ENERLDDES apítulo PRESONES EN LOS LÍQUDOS : HDROSTT SEÓN : EPUJES SORE SUPERFES PLNS Y URVS ÁLULO DEL EPUJE EN SUPERFES PLNS Una suprfici plana sumrgida n un líquido con pso spcífico γ s ncuntra

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS.

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. 1.- En ausncia d autoabsorción, la intnsidad d fluorscncia d una mustra s proporcional a la concntración, solo a concntracions bajas. Calcular

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS Tma Límits, continuidad y asíntotas Matmáticas I º Bachillrato TEMA LÍMITES, CONTINUIDAD ASÍNTOTAS CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f), halla : 8 8 8 f f c) f f ) f f f c) f f )

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL CUADERNILLO DE TRABAJO EN CLASE TERCER CUADERNILLLO DE CÁLCULO DIFERENCIAL

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL CUADERNILLO DE TRABAJO EN CLASE TERCER CUADERNILLLO DE CÁLCULO DIFERENCIAL TERCER CUADERNILLLO DE COMPETENCIAS A DESARROLLAR: 1. Intrprta gráficas d funcions continuas y discontinuas analizando l dominio y contradominio; y argumnta l comportaminto gráfico d la variabl dpndint

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?. ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

La Integral Definida-Usando la técnica de Integración por Partes.- b u dv

La Integral Definida-Usando la técnica de Integración por Partes.- b u dv a Dtrminar la intgral dfinida f ( ). g ( ) d, bosqjar l ára rprsntada por b la crva y las rctas a y b, con rspcto l j, aplicando l método d intgración por parts d cada no d los sigints problmas: Ejmplo

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES 96 LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES JUSTIFICACIÓN: En sta Lcción s cntrará la atnción n l studio d aqullas cuacions difrncials ordinarias d primr ordn

Más detalles

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

NÚMEROS COMPLEJOS. Autor: Patrici Molinàs Mata (pmolinas@uoc.edu), José Francisco Martínez Boscá (jmartinezb@uoc.edu) NÚMEROS COMPLEJOS

NÚMEROS COMPLEJOS. Autor: Patrici Molinàs Mata (pmolinas@uoc.edu), José Francisco Martínez Boscá (jmartinezb@uoc.edu) NÚMEROS COMPLEJOS Númros complos NÚMEROS COMPLEJOS Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martín Boscá (martinb@uoc.du) MAPA CONCEPTUAL Dfinición Fórmula d Cardano NÚMEROS COMPLEJOS Rsolución d cuacions

Más detalles

4.2. Ejemplo de aplicación.

4.2. Ejemplo de aplicación. HEB 8 Dsarrollo dl método d los dsplazamintos 45 4.. Ejmplo d aplicación. ontinuando con l pórtico dscrito n l apartado (3.8), s van a calcular las cargas y, postriormnt, sguir con l cálculo matricial,

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría 6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría

Más detalles

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS (EDOS)

ECUACIONES DIFERENCIALES ORDINARIAS (EDOS) EUAIONES DIFERENIALES ORDINARIAS EDOS.- Introducción onsidrmos los siguints roblmas. Problma uáls srán las curvas qu vrifican qu la ndint n cada uno d sus untos s igual al dobl d la suma d las coordnadas

Más detalles

La función exponencial (propiamente dicha) es una función matemática, que aparece además en muchas ecuaciones de la física.

La función exponencial (propiamente dicha) es una función matemática, que aparece además en muchas ecuaciones de la física. Univrsidad d Chil Facltad d Cincias Vtrinarias y Pcarias DU- Métodos d Cantificación 9, Smstr Otoño Aydant Ignacio Trjillo Silva Eponncials y logaritmos: La fnción ponncial (propiamnt dicha s na fnción

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA 4 ANALISIS IENSIONAL Y SIILITU ISICA www.rivra-001.com Contnido 4.1. Introducción 4.. Qué s un parámtro adimnsional? 4.3. Naturalza adimnsional dl flujo fluido 4.4. El torma d Pi d Buckingham 4.5. Cómo

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones DERIVADAS LECCIÓN Índice: Representación gráfica de funciones. Problemas.. Representación gráfica de funciones Antes de la representación de la gráfica de una función se realiza el siguiente estudio: º)

Más detalles

PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB

PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB PRÁCTICA Nº 3: RESPUESTA DE SISTEMAS 4. RESPUESTA TEMPORAL DE SISTEMAS Contnido: D las funcions d transfrncia y sistmas antriors, s prtnd obtnr

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco

UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Marita d Franco A Francisco José, Shrl, Marión, Paola, Constanc, Luis Migul Migul. AGRADECIMIENTOS Al Ing. Pdro Rangl por su comprnsión,

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles

Tema 11. Limite de funciones. Continuidad

Tema 11. Limite de funciones. Continuidad Tma. Limit d fucios. Cotiuidad. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles