Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica."

Transcripción

1 Corriente eléctric 1. Corriente eléctric: ntensidd y densidd de corriente. 2. Ley de Ohm. Resistenci. Conductividd eléctric. 3. Potenci disipd en un conductor. Ley de Joule. Fuerz electromotriz. BBLOGRAFÍA:. TiplerMosc. "Físic". Cp. 25, vol 2, 5ª ed. SerwyJewett. "Físic". Cp.21. Vol 2. 3ª ed. MGUEL ÁNGEL MONGE BEGOÑA SAVON Deprtmento de Físic 1

2 ntroducción Luigi Glvni ( ) propone l teorí de l electricidd niml. Alejndro Volt ( ): nvent en 1800 l pil de volt, es l primer bterí cpz de producir corriente eléctric. Henry Cvendish reliz los primeros experimentos de conducción eléctric hci 1775, pero no los public. Georg Simon Ohm ( ) descubre l ley de Ohm. Georg Simon Ohm Hermnn Ludwig Ferdinnd Helmholtz ( ) descubre que l primer ley los circuitos eléctricos cumple l ley de l conservción de l energí. Jmes Prescott Joule ( ), descubridor de l equivlenci entre clor y energí, invent l solddur eléctric de rco.

3 Corriente eléctric: ntensidd y densidd de corriente. Se puede imginr un conductor como un esponj mojd. L prte sólid de l esponj l formn los ctiones, y confieren rigidez l sólido. Los electrones libres (en el cso de un metl) son como el líquido que se mueve libremente por el interior de l esponj, y se les denomin portdores de crg, crgs libres o crgs de conducción. Bjo l cción de un cmpo eléctrico, ls crgs libres se moverán. El flujo de crg eléctric por unidd de tiempo trvés de un superficie se denomin corriente eléctric. Medio conductor dq() t dt Unidd: Amperio 1A = 1C/s El sentido de l corriente eléctric coincide con el del cmpo E responsble de l corriente eléctric en cso de que los portdores de crg positivos. Si los portdores de crg son negtivos (como los electrones) l corriente tiene el sentido opuesto l movimiento de ls crgs eléctrics.

4 Corriente eléctric: densidd de corriente. Si en un medio conductor no existe un cmpo eléctrico: E 0 F qe 0 no ctú fuerz sobre los portdores de crg y no se moverán. El conductor está en equilibrio electrostático. Esto no implic que los portdores estén en reposo. Mejor hbrí que decir que no se produce un desplzmiento neto de crg en el conductor. Debido l tempertur, los portdores, electrones libres en los metles, están en un continuo movimiento letorio chocndo con los iones de l red cristlin del mteril de form que no se produce un flujo neto de crg lo lrgo del conductor. = Los e libres en l red se comportn como ls moléculs de un gs chocndo con los átomos de l red cristlin del mteril En equilibrio térmico y electrostático no hy flujo neto de crg trvés de un sección del conductor, y no hy corriente eléctric net. Por tnto: Pr que exist un corriente eléctric net en un conductor debe existir un cmpo eléctrico E en su interior.

5 Corriente eléctric: ntensidd Velocidd de desplzmiento o rrstre (v ) L velocidd de rrstre crcteriz el movimiento de los electrones dentro de un conductor sometido un cmpo eléctrico externo en l dirección en que se produce l corriente eléctric. Es inferior l velocidd de ls crgs en el interior del mteril debido que l moverse vn chocndo con los iones que formn el mteril. L corriente eléctric depende del tipo de portdores de crg, de l velocidd de los portdores, de l crg de los portdores y de por dónde circule l corriente eléctric. Llmremos: n: densidd de portdores de crg q: crg de cd portdor v : velocidd de cd portdor v No hy que confundir l densidd de portdores de crg, n, con l densidd de crg. L densidd de portdores de crg n es el número de crgs libres por unidd de volumen. Sus uniddes en el S.. son: [n]=1/m 3

6 Corriente eléctric: ntensidd Suponer que queremos clculr l crg eléctric que ps por un superficie dd S=A 1. Podemos imginr es superficie como l sección rect de un cble. q S=A 1 t=0 v L crg totl que ps por l superficie S en un tiempo Δt es función de l densidd de portdores n (portdores/m 3 ), l crg de cd uno y l velocidd l que se mueven v : Q qn Sv t Luego l corriente que circul por el cble de sección S es: Q t dq dt nqv d S q S v d=v Δt t=δt

7 Corriente eléctric: ntensidd Si l crg circul por un superficie A 2 cuy norml n no es prlel l velocidd de rrstre de ls crgs portdors, entonces hy que tener en cuent que solo l componente perpendiculr de l velocidd l superficie permite ls crgs psr por dich superficie. Esto hce que l crg totl que ps por se A 2 (que es igul l que circul por A 1 ) se: Como Q dq dt qn A2v t cos( ) S=A 1 A2 n v Q nqva 2 cos( ) nqv t S Es clro que l intensidd de corriente que circul por l sección del cble es igul se cul se l sección considerd. Es lo mismo que l corriente de gu que circul por un mnguer: sle el mismo gu por l boc de l mnguer unque cortemos l mnguer con el ángulo que se.

8 Corriente eléctric: ntensidd Ejemplo: Estime l velocidd de desplzmiento de los electrones libres en un cble de cobre de S= 3 mm 2 cundo ps un corriente de 10 A. Solución en los problems. ntent solucionrlo sin mirr el resultdo

9 Corriente eléctric: ntensidd y densidd de corriente. Densidd de corriente: L densidd de corriente, J, dice cuntos portdores de crg trviesn un superficie por unidd de superficie y tiempo. Es un vector Si l densidd de portdores es constnte y se mueven todos l mism velocidd. En generl: L densidd de corriente, J, nos dice cuntos portdores de crg trviesn un superficie por unidd de superficie y tiempo, y puede vrir de un punto otro del mteril. d nqv d ds nqv J nqv J J nqv ds v n S ds d nqvds JdS v n J ds J cos( ) ds S S v = ángulo que form l norml l superficie con l velocidd de ls crgs portdors.

10 v Corriente eléctric: ntensidd y densidd de corriente. Densidd de corriente y dirección de movimiento de ls crgs L densidd de corriente tiene el sentido del cmpo eléctrico plicdo y no el del movimiento de ls crgs portdors. Este resultdo se observ clrmente en el esquem siguiente. E v J n( q)( v ) nqv J nqv d J nqv J J nqv dt v v

11 Ley de Ohm: resistividd y resistenci eléctrics Siempre que hy un corriente eléctric debe existir un cmpo eléctrico E que mnteng l corriente. El cmpo E está dirigido de ls regiones de myor potencil ls de menor potencil: V Resistenci eléctric: Es un medid de l oposición que ejerce un mteril en un conductor concreto l flujo de crg trvés de él. Se define como: R V b V V b E dl Unidd: Ohmio 1=1V/A b E dl EL V R Ley de Ohm (simplificd)

12 Ley de Ohm: resistividd y resistenci eléctrics J E =conductividd 1 Ley de Ohm: estblece l relción entre el cmpo eléctrico en el interior de un mteril y l densidd de corriente producid por ese cmpo eléctrico. L relción entre l diferenci de potencil plicd y l corriente eléctric es l resistenci eléctric totl R: b b J V V E d d En generl se define l resistenci pr un conductor: b resistividd se mide en.m R b d A Si el conductor es de sección constnte, homogéneo e isótropo: R A Donde l es l longitud y A l sección rect.

13 Ley de Ohm: resistividd y resistenci eléctrics Resistenci eléctric 20ºC: Algunos ejemplos de resistividd eléctric L resistividd depende de l tempertur según el coeficiente. En primer proximción es dependenci es linel. ( T) (1 T) o Como se observ en l tbl, l vrición de l resistividd es enorme entre un conductor y un islnte. 0 (m) Coeficiente de tempertur (K 1 ) Plt 1, , Cobre 1, , Oro 2, , Aluminio 2, , Wolfrmio 5, , Níquel 6, , Hierro 9, Pltino 10, , Plomo 20, , Silicio , Germnio 0,46 4, Vidrio Curzo 7, Azufre Mder Dimnte 10 11

14 Ley de Ohm: resistividd y resistenci eléctrics Según su comportmiento l plicr un corriente, los mteriles se clsificn. V V Mteriles óhmicos Mteriles no óhmicos L resistenci no depende de l cíd de potencil ni de l intensidd (R es l pendiente de l curv V). L resistenci depende de l corriente de form no linel (R es l pendiente de l curv V).

15 Ley de Ohm: resistividd y resistenci eléctrics Se llm resistenci equivlente de un circuito o socición de resistencis, R eq, l vlor de l resistenci únic que hbrí que poner pr que l resistenci totl fuese l mism. Los csos más sencillos de socición de resistencis son resistencis en serie y en prlelo. Asocición de resistencis en serie: En este cso l corriente que circul por tods ls resistencis es l mism. R 1 R 2 A B C V AC = V AB V BC R eq n 1 R i

16 Ley de Ohm: resistividd y resistenci eléctrics Asocición de resistencis en prlelo: En este cso tods ls resistencis están sometids l mism cíd de potencil. R 1 1 A B = 1 2 R 2 2 n 1 1 R R eq 1 i

17 Ley de Joule: Potenci y energí Ley de Joule: Permite clculr l energí disipd por un resistenci en form de clor. U 2 =qv 2 Si durnte un intervlo de tiempo t por l resistenci R del circuito h psdo l cntidd de crg Q, l vrición de energí potencil que experiment dich cntidd de crg l psr desde l entrd l slid del circuito es: V 1 V 2 U 1 =qv 1 R U = qv = q (V 2 V 1 ) = q R Luego, l potenci disipd P (energí por unidd de tiempo) es: du dq P R R dt dt 2 du = dq R U qv 1 R P = 2 R = V = 2 V R vtio (W) qv 2 x L energí consumid por efecto Joule durnte cierto tiempo t será: t 2 W P( t) dt Pt R t 0 Si P no depende de t.

18 Fuerz electromotriz Fuerz electromotriz y bterís: El dispositivo que suministr l energí eléctric suficiente pr que se produzc un corriente estcionri en un conductor se llm fuente de fuerz electromotriz (fem). Convierte l energí químic o mecánic en energí eléctric r V fem R L fuente de fem reliz trbjo sobre l crg que l trvies, elevndo su energí potencil en (q V). Este trbjo por unidd de crg es suministrdo por l fuerz electromotriz, fem, de l bterí: =Fuerz Electro Motriz = V fem

19 Fuerz electromotriz Fuente de fem idel: Mntiene constnte l diferenci de potencil entre sus bornes e igul, independientemente de donde esté conectd. Fuente de fem rel: L diferenci de potencil entre sus bornes disminuye con el umento de l corriente l tener l fuente de potencil un resistenci intern r. V ε εr del V r r =Resistenci intern de l fuente de potencil. Rel L fem,, es l myor diferenci de potencil que puede suministrr un fuente de potencil. Cundo un fuente de potencil se conect un dispositivo, l diferenci de potencil l slid, en bornes, depende de l corriente que suministre, l resistenci intern r y l fem. = ΔV R

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

F = fuerza electrostática. f = fuerza de viscosidad efectiva. v = velocidad límite (cuando F = f )

F = fuerza electrostática. f = fuerza de viscosidad efectiva. v = velocidad límite (cuando F = f ) Tem 6..-- Corriientte ellécttriic y ffuerz ellecttromottriiz 6.1.- Nturlez de l corriente eléctric A V A conductor metálico - - - B - - - V B Corriente eléctric: flujo to de crg trvés de un superficie.

Más detalles

I 5 dq. 5 n 0 q 0 v d A dt. r5 E J. r 1 T 2 5r 0 31 1a1 T 2 T 0 24 V 5 IR. R 5 rl A. V ab 5 E 2 Ir (fuente con resistencia interna)

I 5 dq. 5 n 0 q 0 v d A dt. r5 E J. r 1 T 2 5r 0 31 1a1 T 2 T 0 24 V 5 IR. R 5 rl A. V ab 5 E 2 Ir (fuente con resistencia interna) CPÍTULO 25 REUMEN Corriente y densidd de corriente: Corriente es l cntidd de crg que fluye trvés de un áre especificd, por unidd de tiempo. L unidd del pr l corriente es el mpere, que es igul un coulomb

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Corriente, Resistencia y Fuerza Electromotriz

Corriente, Resistencia y Fuerza Electromotriz Corriente Corriente, Resistencia y Fuerza Electromotriz La unidad de corriente en MKS es:1 Ampere(A)=1 C s La dirección de la corriente es la dirección de movimiento de las cargas positivas Corriente Eléctrica

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

Tema 2 CIRCUITOS DE CORRIENTE CONTINUA

Tema 2 CIRCUITOS DE CORRIENTE CONTINUA Tem CCUTOS DE COENTE CONTNU Lección : esistenci eléctric..- esistenci. Definición, representción y modelo mtemático..- Fuentes de corriente continu: tensión e intensidd...- Fuentes reles..- Conversión

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL RAFAEL HERRERÍAS PLEGUEZUELO EDUARDO PÉREZ RODRÍGUEZ Deprtmento de Economí Aplicd Universidd de Grnd. INTRODUCCIÓN Se supone que el Sr. Corto dispone de

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Capítulo III AGUA EN EL SUELO

Capítulo III AGUA EN EL SUELO Cpítulo III AGUA EN EL SUELO Curso de Hidrologí e Hidráulic Aplicds Agu en el Suelo III. AGUA EN EL SUELO III.1 AGUA SUBSUPERFICIAL (Cp. 4 V.T.Chow) Entre l superficie del terreno y el nivel freático (del

Más detalles

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II Introducción Electricidad- Análisis en C.C. Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II- UD1 CONTENIDO

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio.

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio. Electromgnetismo olución Prueb 1 de Cátedr Profesor: José ogn C. 17 de Abril del 24 Ayudntes: Pmel Men. Felipe Asenjo Z. 1. Un distribución de crg esféricmente simétric de rdio tiene un densidd interior

Más detalles

Bases Físicas del Medio Ambiente. Corriente Eléctrica y Circuitos de Corriente Continua

Bases Físicas del Medio Ambiente. Corriente Eléctrica y Circuitos de Corriente Continua Bases Físicas del Medio Ambiente Corriente Eléctrica y Circuitos de Corriente Continua Programa XII. COIENTE ELÉCTICA. CICUITOS DE COIENTE CONTINUA.(2h) Corriente. Ley de Ohm. esistencia. Conductores,

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis

Más detalles

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m Problem 5.54 A w A 4 kn 0 kn.8 m 0. m w L vig A soport dos crgs concentrds y descns sobre el suelo el cul ejerce un crg linelmente distribuid hci rrib como se muestr. Determine ) l distnci pr l cul w A

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS

FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS 7.- Utilizción del Polímetro

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

EQUIVALENCIA CALOR-TRABAJO. Elaborado por M en C Omar Hernández Segura

EQUIVALENCIA CALOR-TRABAJO. Elaborado por M en C Omar Hernández Segura EQUIVALENCIA CALOR-TRABAJO TRABAJO 1 TRABAJO Y SUS VARIEDADES Tipo de trabajo: δw Donde: Unidades δw (J) Expansión-compresión P op dv P op es la presión de oposición dv es el cambio de volumen Superficial

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Cuestiones y Ejercicios numéricos. Capítulo 4

Cuestiones y Ejercicios numéricos. Capítulo 4 1. Teniendo en cuent los vlores de l tbl de Z ef pr los primeros 18 elementos ) Cuánto vle l constnte de pntll del orbitl 1s en el átomo de He? σ 1s (He) = Z- Z ef = 2-1,69 =,31 b) Cuánto vle l constnte

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable) Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y PROBLEMAS DE DE MÁUINAS ÉRMICAS, REFRIGERADORES y BOMBAS BOMBAS DE DE CALOR CALOR Equipo docente Antonio J. Brero / Alfonso Cler / Mrino Hernández Dpto. Físic Aplicd. E..S. Agrónomos (Alcete) Plo Muñiz

Más detalles

ELECTRICIDAD Y MAGNETISMO. Electrostática-Vacío

ELECTRICIDAD Y MAGNETISMO. Electrostática-Vacío ELECTRCDAD Y MAGNETSMO. Electrostátic-Vcío 1) Suponiendo un nue de electrones confind en un región entre dos esfers de rdios 2 cm y 5 cm, tiene un densidd de crg en volumen expresd en coordends esférics:

Más detalles

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA ZAO AÑO 014 Ing.

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

I. Modelos de la Atmósfera II. La atmósfera como sistema dinámico. Tem a 1. I. Modelos de la Atmósfera

I. Modelos de la Atmósfera II. La atmósfera como sistema dinámico. Tem a 1. I. Modelos de la Atmósfera Modelizción Atmosféric y Predicción I. Modelos de l Atmósfer II. L tmósfer como sistem dinámico Tem 1 I. Modelos de l Atmósfer Modelizción Atmosféric y Predicción Modelizción Atmosféric y Predicción Modelizción

Más detalles

TEMA VI: ACIDOS Y BASES

TEMA VI: ACIDOS Y BASES www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph

Más detalles

Corriente continua (Repaso)

Corriente continua (Repaso) Fundamentos de Tecnología Eléctrica (º ITIM) Tema 0 Corriente continua (epaso) Damián Laloux, 004 Índice Magnitudes esenciales Tensión, corriente, energía y potencia Leyes fundamentales Ley de Ohm, ley

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

PROPORCIONALIDAD DIRECTA E INVERSA

PROPORCIONALIDAD DIRECTA E INVERSA PROPORCIONALIDAD DIRECTA E INVERSA Rzón entre dos números Siempre que hblemos de Rzón entre dos números nos estremos refiriendo l cociente (el resultdo de dividirlos) entre ellos. Entonces: Rzón entre

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES 1) CONCEPTOS BÁSICOS DE ELECTRICIDAD 1.1 TEORÍA ELECTRÓNICA Los físicos distinguen cuatro diferentes tipos de fuerzas que son comunes en todo el Universo.

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

CUARTA PARTE TRANSFORMADORES

CUARTA PARTE TRANSFORMADORES CUARTA PARTE TRANSFORMADORES Trnsformdor Aprto electromgnético que es cpz de umentr o reducir un voltje lterno en un relción predetermind. Es un coplmiento mgnético de lt eficienci entre bobins. Se pueden

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

2. Electrónica. 2.1. Conductores y Aislantes. Conductores.

2. Electrónica. 2.1. Conductores y Aislantes. Conductores. 2. Electrónica. 2.1. Conductores y Aislantes. Conductores. Se produce una corriente eléctrica cuando los electrones libres se mueven a partir de un átomo al siguiente. Los materiales que permiten que muchos

Más detalles

Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero

Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero Ejemplo práctico de obtención de l resistenci pndeo de los soportes de cero Apellidos, nombre Gurdiol Víllor, Arinn (gurdio@mes.upv.) Deprtmento Centro Mecánic del Medio Continuo Teorí de Estructurs Escuel

Más detalles

5. MÁQUINAS DE CORRIENTE CONTINUA

5. MÁQUINAS DE CORRIENTE CONTINUA 5. MÁQUINAS DE CORRIENTE CONTINUA 5.1. INTRODUCCIÓN Entre los distintos tipos de máquins eléctrics que ctulmente se emplen en plicciones de potenci, l primer en ser desrrolld fue l máquin de corriente

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Tercera evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Tercera evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 0-03 FÍSICA C Tercer evlucón SOLUCIÓN Pregunt (5 puntos) Un eser conductor con rdo nteror de 7 cm y rdo exteror de 8 cm

Más detalles

PRÁCTICA 5. Corrección del factor de potencia

PRÁCTICA 5. Corrección del factor de potencia PRÁTIA 5 orrección del fctor de potenci Objetivo: Determinr el fctor de potenci de un crg monofásic y de un crg trifásic Efectur l corrección del fctor de potenci de un crg monofásic y de un crg trifásic.

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 200-20 MATERIA: TECNOLOGÍA INDUSTRIAL II INSTRUCCIONES Y CRITERIOS GENERALES DE

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

5. Conductores en equilibrio electrostático Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca

5. Conductores en equilibrio electrostático Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca 5. Conductores en equilibrio electrostático Félix Redondo Quintel y Roberto Crlos Redondo Melchor Universidd de Slmnc Conductores en equilibrio electrostático Definición.- Un conductor está en equilibrio

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

TEMA 10 FINANCIACIÓN

TEMA 10 FINANCIACIÓN TEMA 10 FINANCIACIÓN 1.-Considerciones generles. 2.-Ptrimonio neto. 2.1.-Fondos propios. 2.2.-Subvenciones, donciones y legdos. 3.-Psivo. 3.1.-Provisiones contingentes. 3.2.-Deuds. 1.-CONSIDERACIONES GENERALES.

Más detalles

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd

Más detalles

EL CIRCUITO ELÉCTRICO

EL CIRCUITO ELÉCTRICO EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles

UNIDADES DE GUIADO TIPOLOGIA. La gama de unidades de guía es muy amplia. Las guías se pueden agrupar en diversas familias.

UNIDADES DE GUIADO TIPOLOGIA. La gama de unidades de guía es muy amplia. Las guías se pueden agrupar en diversas familias. UNIDADES DE GUIADO TIPOLOGIA L gm de uniddes de guí es muy mpli. Ls guís se pueden grupr en diverss fmilis. Uniddes de guí pr l conexión con cilindros estándres. Ests son uniddes pr su conexión con un

Más detalles

Pruebas t para una y dos muestras independientes

Pruebas t para una y dos muestras independientes Densidd Densidd AGRO 55 LAB 9 Pruebs t pr un y dos muestrs independientes 1. Clcule ls siguientes probbiliddes usndo l tbl t e InfoStt. Incluy un digrm en cd cso.. P(T>1.356) si gl=1 b. P(T

Más detalles

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES

CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES CAPÍTULO 8 INTRODUCCIÓN A LA RESISTENCIA DE ATERIALES CONCEPTO DE PIEZA PRISÁTICA Centro de grvedd Directriz o eje G C Sección trnsversl ADERTENCIA: Eisten otrs rms de l ecánic de edios Continuos en ls

Más detalles

El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C

El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C El Dipolo Plegdo Lbortorio de Electrónic de Comunicciones Dpto. de Señles y Comunicciones, U.L.P.G.C 1 Introducción Un nten muy utilizd en l práctic como receptor es el dipolo plegdo. Este tipo de dipolo

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

TEMA 1: LA ELECTRICIDAD: CONCEPTOS, FENÓMENOS Y MAGNITUDES ELÉCTRICAS 2. FORMAS DE PRODUCCIÓN DE LA ENERGÍA ELÉCTRICA

TEMA 1: LA ELECTRICIDAD: CONCEPTOS, FENÓMENOS Y MAGNITUDES ELÉCTRICAS 2. FORMAS DE PRODUCCIÓN DE LA ENERGÍA ELÉCTRICA TEMA 1: LA ELECTRICIDAD: CONCEPTOS, FENÓMENOS Y MAGNITUDES ELÉCTRICAS 1. QUÉ ES LA ELECTRICIDAD? 2. FORMAS DE PRODUCCIÓN DE LA ENERGÍA ELÉCTRICA 3. TEORÍA ATÓMICA 4. CARGA ELÉCTRICA 5. CORRIENTE ELÉCTRICA

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó?

Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó? Fuerz: soluciones 1.- Un óvil cuy s es de 600 kg celer rzón de 1,2 /s 2. Qué uerz lo ipulsó? = 600 kg = 1,2 /s 2 F = >>>>> F = 600 kg 1,2 /s 2 = 720 2.- Qué s debe tener un cuerpo pr que un uerz de 588

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES

Más detalles

Tema 1: Circuitos eléctricos de corriente continua

Tema 1: Circuitos eléctricos de corriente continua Tema 1: Circuitos eléctricos de corriente continua Índice Magnitudes fundamentales Ley de Ohm Energía y Potencia Construcción y aplicación de las resistencias Generadores Análisis de circuitos Redes y

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

Capítulo 4: Circuitos de corriente continua

Capítulo 4: Circuitos de corriente continua Capítulo 4: Circuitos de corriente continua Corriente promedio: carga que pasa por A por unidad de tiempo Corriente Instantánea [ I ] = C/s = A (Ampere) J = q n v d Ley de Ohm George Simon Ohm (1789-1854)

Más detalles

Laboratorio de Física Universitaria 2: Lentes de aire delgadas junio 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero.

Laboratorio de Física Universitaria 2: Lentes de aire delgadas junio 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero. Lortorio de Físic Universitri : Lentes de ire delgds junio 006 LENTES DE AIRE DELGADAS: DISTANCIA FOCAL Y RADIOS DE CURVATURA OBJETIVO GENERAL: Entender el concepto de distnci ocl. Entender los conceptos

Más detalles

Unidad 4. Circuitos eléctricos

Unidad 4. Circuitos eléctricos Unidad 4 Circuitos eléctricos ELEMENTOS DE FíSICA 115 4.1. Corriente eléctrica y unidades El movimiento de cargas eléctricas produce un fenómeno denominado corriente eléctrica. Si se considera una superficie

Más detalles