11 Perímetros y áreas de figuras planas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "11 Perímetros y áreas de figuras planas"

Transcripción

1 86464 _ qxd 1//07 09:4 Págin 371 Perímetros y áres de figurs plns INTRODUCCIÓN En est unidd repsmos ls uniddes de longitud y superficie. Se introducen tmbién lguns uniddes de medid del sistem métrico inglés, como son l mill, l yrd y l pulgd. Se hrá hincpié en quells uniddes que más se emplen hbitulmente pr medir longitudes y superficies de figurs geométrics, que y son conocids por los lumnos. Aprender clculr el perímetro y el áre de los principles polígonos es uno de los objetivos más importntes de est unidd, pues mbos conceptos tienen un mpli plicción en l vid rel. Se debe incidir en el cálculo del áre del rectángulo, el cudrdo y el triángulo, prcticndo sus expresiones mtemátics con los diferentes ejercicios propuestos y utilizndo tmbién l representción gráfic. Es fundmentl l comprensión de l relción entre l longitud de l circunferenci y su diámetro, el número π. Pr ello se propone l relizción de diversos ejercicios bsdos en situciones de l vid rel donde intervienen figurs plns con form de circunferenci, con el fin de que los lumnos similen estos conceptos. RESUMEN DE LA UNIDAD El metro es l unidd principl de longitud (m). Pr trnsformr un unidd de longitud en otr se multiplic o se divide por 10. Pr expresr medids y longitudes de figurs geométrics se utilizn usulmente el decímetro (dm) y el centímetro (cm). El metro cudrdo es l unidd principl de superficie (m ). Pr trnsformr un unidd de superficie en otr se multiplic o se divide por 100. Pr expresr superficies de figurs geométrics se utiliz principlmente el decímetro cudrdo (dm ) y el centímetro cudrdo (cm ). El perímetro de un polígono se clcul sumndo ls longitudes de sus ldos. L longitud o perímetro de l circunferenci es igul l diámetro multiplicdo por el número π. El áre de un polígono es l medid de su superficie. Rectángulo Cudrdo Rombo Romboide Triángulo A = b A = l l D d A = A = b b A = Polígono regulr P A = OBJETIVOS CONTENIDOS PROCEDIMIENTOS 1. Reconocer ls diferentes uniddes de longitud y superficie. Relizr cmbios de uniddes.. Clculr perímetros de polígonos. Hllr l longitud de l circunferenci. Uniddes de longitud y superficie. Perímetro de un polígono. Relción entre l longitud y el diámetro de un circunferenci. El número π. Medición de longitudes de objetos y superficies con cudrículs. Relizción de cmbios en ls uniddes de longitud y superficie. Cálculo del perímetro de los principles polígonos. Relizción de ejercicios prácticos. Relción entre l longitud de l circunferenci con su diámetro. ADAPTACIÓN CURRICULAR 3. Clculr el áre de los principles polígonos. Superficie de un polígono: concepto de áre. Áres de los principles polígonos. Cálculo del áre de los principles prlelogrmos, el triángulo y los polígonos regulres. Aplicción de l fórmul del áre de ls figurs. MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 371

2 86464 _ qxd 1//07 09:4 Págin 37 OBJETIVO 1 UNIDADES DE LONGITUD Y SUPERICIE. REALIZAR CAMBIOS DE UNIDADES NOMBRE: CURSO: ECHA: UNIDADES DE LONGITUD El metro es l unidd principl de longitud. Abrevidmente se escribe m. Los múltiplos (uniddes myores) del metro son el decámetro, el hectómetro y el kilómetro. Los submúltiplos (uniddes menores) del metro son el decímetro, el centímetro y el milímetro. Pr trnsformr un unidd de longitud en otr se multiplic o se divide por mm km hm dm m dm cm mm : 10 : 10 : 10 : 10 : 10 : 10 : 10 Pr expresr medids y longitudes de figurs geométrics vmos utilizr principlmente el decímetro (dm), el centímetro (cm) y, en ocsiones, el metro (m). 1 Observ en tu ul qué elementos tiene l siluet de estos polígonos. Mídelos y not el resultdo. ) b) c) Reliz l mism operción pero con elementos que tengn form de circunferenci. Mide con un cint métric el contorno de l figur. Expres el resultdo en m y en cm. ) b) 3 Con tres segmentos de medids: 30 mm, 0,5 dm y 7 cm, form ests figurs. ) Un cudrdo de 3 cm de ldo. b) Un triángulo equilátero de 5 cm de ldo. c) Un rectángulo de 7 3 cm. 37 MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

3 86464 _ qxd 1//07 09:4 Págin 373 OTRAS UNIDADES DE LONGITUD Existen otrs uniddes de longitud, como, por ejemplo: l mill, l yrd y l pulgd (medids ingless). 1 mill = 1.610,4 m 1 yrd = 0,914 m 1 pulgd =,54 cm L pulgd es un unidd que utilizmos con frecuenci; sí, cundo decimos que hemos comprdo un televisor de 5 pulgds nos estmos refiriendo l medid de l digonl de l pntll. 5 pulgds = 5,54 cm = 63,5 cm mide l digonl. 4 L distnci entre tres puntos viene expresd en mills. Exprésl en metros, kilómetros y yrds. A 6 mills 9 mills B 7 mills C AB = 6 mills =... metros =... kilómetros =... yrds BC = 7 mills =... metros =... kilómetros =... yrds AC = 9 mills =... metros =... kilómetros =... yrds 5 Expres en cm y en mm ls medids del tblero de tu pupitre. Qué tipo de polígono es? Clcul l medid de su digonl. Exprésl en cm y en pulgds. Después, dibuj un figur representtiv. 6 En un estblecimiento venden televisores de 14, 1, 5 y 8 pulgds. Expres en centímetros ests medids. ADAPTACIÓN CURRICULAR 14 pulgds =... cm de... 1 pulgds =... cm... 5 pulgds =... cm... 8 pulgds =... cm... MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 373

4 86464 _ qxd 1//07 09:4 Págin 374 MEDIDAS DE SUPERICIE igur A Coloremos 6 cudrículs, que se considern 6 uniddes cudrds. Es l superficie de l figur. igur B Coloremos 10 cudrículs, que se considern 10 uniddes cudrds. Es l superficie de l figur. 7 Tomndo como unidd de medid un unidd cudrd, clcul l superficie de ls figurs. ) d) b) e) c) 8 Colore ls siguientes figurs pr obtener 0 uniddes cudrds de superficie. ) d) b) e) c) f) 374 MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

5 86464 _ qxd 1//07 09:4 Págin 375 UNIDADES DE SUPERICIE El metro cudrdo es l unidd principl de superficie. Se escribe m. Un metro cudrdo es l superficie de un cudrdo de 1 m de ldo. Los múltiplos (uniddes myores) del m son: dm, hm, km. Los submúltiplos (uniddes menores) del m son: dm, cm, mm. Pr trnsformr un unidd de superficie en otr se multiplic o se divide por km hm dm m dm cm mm Pr expresr superficies de figurs geométrics vmos utilizr principlmente el decímetro cudrdo (dm ), el centímetro cudrdo (cm ) y el metro cudrdo (m ). 9 Dibuj un rectángulo de 7 cm de lrgo y 3 cm de ncho. Trz cudrículs de 1 cm de ldo. íjte en l figur djunt. Cuánts uniddes cudrds de 1 cm contiene? Expréslo en cm. 10 Dibuj un cudrdo de 6 cm de ldo. Trz cudrículs de 1 cm de ldo. íjte en l figur djunt. Cuánts uniddes cudrds de 1 cm contiene? Expréslo en cm. ADAPTACIÓN CURRICULAR : 100 : 100 : 100 : 100 : 100 : 100 MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 375

6 86464 _ qxd 1//07 09:4 Págin 376 OBJETIVO CALCULAR PERÍMETROS DE POLÍGONOS. LONGITUD DE LA CIRCUNERENCIA NOMBRE: CURSO: ECHA: PERÍMETRO DE UN POLÍGONO El perímetro de un polígono es l medid de su contorno. Pr clculr el perímetro se sumn todos sus ldos. El perímetro es un medid de longitud. EJEMPLO Hll el perímetro de un rectángulo de ldos 7 cm y 3 cm. 7 cm 3 cm 3 cm P = 7 cm + 3 cm + 7 cm + 3 cm = 0 cm 7 cm Clcul el perímetro de un pentágono regulr de 3 cm de ldo. 3 cm P = 3 cm 5 = 15 cm 1 Clcul el perímetro del tblero de tu pupitre. Reliz un dibujo significtivo y utiliz el instrumento y l unidd de medid decudos. Hll el perímetro de ls siguientes figurs y reliz un dibujo. ) Un triángulo equilátero de 5 cm de ldo. b) Un cudrdo de 5 cm de ldo. c) Un rectángulo de 10 cm y 4 cm de ldo. d) Un pentágono de 4,5 cm de ldo. 376 MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

7 86464 _ qxd 1//07 09:4 Págin Determin el perímetro de ls figurs y hz un dibujo. ) Un romboide de ldos 5 cm y,5 cm. b) Un hexágono regulr de 6 cm de ldo. c) Un decágono regulr de 3 cm de ldo. d) Un trpecio de ldos 7 cm, 6 cm, 5 cm y 4 cm. 4 L bnd y el fondo de un cmpo de fútbol miden 100 y 70 m, respectivmente. Si se quiere pintr su longitud, cuántos metros de líne blnc se pintrán? Reliz un dibujo. 5 Un pstor quiere construir un cercdo pr sus ovejs con form de hexágono regulr. Si emple 7, dm de vll, cuántos metros medirá cd ldo del cercdo? Hz un dibujo. 6 El perímetro de un polígono regulr es 77 cm. Si cd ldo mide cm, qué tipo de polígono es? Reliz un dibujo. ADAPTACIÓN CURRICULAR MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 377

8 86464 _ qxd 1//07 09:4 Págin 378 RELACIÓN ENTRE LA CIRCUNERENCIA Y SU DIÁMETRO Consider que medimos en clse los siguientes objetos. CONTORNO (Longitud de l circunferenci) DIÁMETRO COCIENTE DEL CONTORNO Y EL DIÁMETRO Reloj 78,5 cm 5 cm 3,14 Ppeler 157 cm 50 cm 3,14 Portlápices 3,55 cm 7,5 cm 3,14 Observmos que: Al dividir l longitud de l circunferenci entre el diámetro se obtiene siempre el mismo número: 3,14. 78,5 : 5 = 3,14157 : 50 = 3,143,55 : 7,5 = 3,14 3,14 es el número π y se lee pi. longitud de l circunferenci L =π =π diámetro d 7 Complet l siguiente tbl. LONGITUD DE LA CIRCUNERENCIA DIÁMETRO LONGITUD ENTRE DIÁMETRO Srtén Aro de gimnsi Rued Rotond 55 cm 6 cm 168,5 cm 04 m 17,5 cm 7 cm 53,5 cm 65 m 8 Locliz objetos circulres en tu ul. Mide el borde de l circunferenci y complet est tbl. LONGITUD DE LA CIRCUNERENCIA DIÁMETRO LONGITUD ENTRE DIÁMETRO LONGITUD DE LA CIRCUNERENCIA En los ejemplos nteriores tmbién se observ que: L longitud del contorno de l circunferenci es lgo myor que el triple del diámetro: 3,14 veces. 78,5 = 3, = 3, ,55 = 3,14 7,5 L De =π, se tiene que L = d π. d El diámetro de un circunferenci es l sum de dos rdios: d = r. Por tnto, l longitud de l circunferenci es: L = d π L = r π. 378 MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

9 86464 _ qxd 1//07 09:4 Págin Complet l siguiente tbl. LONGITUD DE LA CIRCUNERENCIA DIÁMETRO 15 cm 35 cm L = d π 0,5 cm 7 m 10 Complet l siguiente tbl. LONGITUD DE LA CIRCUNERENCIA RADIO 5 cm 50 cm L = r π 0,15 cm 4 m Cuál es l longitud de un circunferenci de diámetro 5 cm? Reliz un dibujo representtivo. 1 L rued de l biciclet de Luis tiene un diámetro de 44 cm. ) Qué distnci recorre l biciclet cd vez que l rued d un vuelt? b) Y si d tres vuelts? c) Determin cuánts vuelts drá l biciclet en 10 metros. ADAPTACIÓN CURRICULAR 13 Clcul el rdio de un circunferenci de longitud 80 cm. Recuerd que L = r π. MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 379

10 86464 _ qxd 1//07 09:4 Págin 380 OBJETIVO 3 CALCULAR EL ÁREA DE LOS PRINCIPALES POLÍGONOS NOMBRE: CURSO: ECHA: CONCEPTO DE ÁREA El áre de un polígono es l medid de su superficie. EJEMPLO L superficie de l figur son 18 uniddes cudrds. Si cd cudrdo tiene 1 cm de ldo, podemos medir l superficie de l figur, en este cso un rectángulo. Se dice entonces que el rectángulo tiene un áre de 18 cm. 1 Clcul el áre de ls figurs, tomndo como unidd un cudrdo que tiene 1 cm de ldo. ) c) b ) d) ÁREA DEL RECTÁNGULO ÁREA DEL CUADRADO ALTURA = 5 dm 3 dm 3 dm BASE b = 7 dm El rectángulo tiene 35 cudrdos de 1 dm. El cudrdo tiene 6 cudrdos de 1 dm. Son 7 columns y 5 fils. Son 3 columns y 3 fils. Pr hllr el áre del rectángulo se multiplic Pr hllr el áre del cudrdo se multiplic l longitud de l bse por l longitud de l ltur. l longitud de un ldo por l longitud del otro ldo. A = bse ltur = b = 7dm 5dm= 35 dm A = ldo ldo = l l = 3 dm 3 dm = 9 dm Clcul el áre de estos rectángulos y reliz un dibujo representtivo. ) Bse = 7 cm, ltur = 3 cm b) Bse = 9 cm, ltur = 4 cm 380 MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

11 86464 _ qxd 1//07 09:4 Págin Clcul el áre de estos cudrdos y reliz un dibujo representtivo. ) Ldo = 5 cm b) Ldo = 4 cm 4 Dibuj un rectángulo que teng 4 cm de áre. 5 Clcul el áre de ls siguientes figurs. ) 9 cm 4 cm b) 6 cm 1 cm cm 4 cm ADAPTACIÓN CURRICULAR 8 cm 6 cm MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 381

12 86464 _ qxd 1//07 09:4 Págin 38 ÁREA DEL ROMBO ÁREA DEL ROMBOIDE d D b El áre del rectángulo el producto de l bse y l ltur (D d). El rombo ocup l mitd de l superficie del rectángulo. D d A = b El romboide lo podemos trnsformr en rectángulo. A = bse ltur = b 6 Hll el áre de los siguientes rombos. ) Digonl myor = 1 cm b) Digonl myor = 15 cm Digonl menor = 6 cm Digonl menor = 7 cm 7 Clcul el áre de un romboide de bse 7 cm y ltur 3 cm. Reliz un dibujo representtivo. 8 Dibuj un rectángulo de bse 6 cm y ltur 3 cm. ) Obtén su áre. b) Trz ls medins de cd ldo y dibuj sus digonles. c) Hll el áre del rombo. 38 MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

13 86464 _ qxd 1//07 09:4 Págin 383 ÁREA DEL TRIÁNGULO G G b Al trzr l digonl del romboide, este qued dividido en dos triángulos. Los dos triángulos ocupn igul superficie. Áre del romboide b Áre del triángulo = = A = b 9 Clcul el áre de los siguientes triángulos. 18 cm 5 dm 6 m G G 1 cm G G 17 dm m 10 Determin el áre de los triángulos. ) b) c) 15 dm G A 5 dm 4,1 cm G 5,7 cm B G 8,7 cm C 5,4 cm Observ l siguiente figur. A C D B ) Qué figur es? b) Su bse mide 7 cm y su ltur 4 cm. Nómbrls. c) Clcul el áre de l figur. d) Trz l digonl AD. Qué figurs se hn formdo? e) Hll el áre de ls figurs del prtdo nterior. ADAPTACIÓN CURRICULAR MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 383

14 86464 _ qxd 1//07 09:4 Págin 384 ÁREA DEL POLÍGONO REGULAR Observ el siguiente hexágono regulr, que tiene 6 ldos igules. l El hexágono se descompone en 6 triángulos igules cuy ltur es l potem. Áre de cd triángulo = bse ltur ldo potem l = = l 6 Áre de los 6 triángulos = l perímetro potem = 6 l = perímetro del hexágono (sum de sus ldos) A = P l l l l l 1 Clcul el áre de los siguientes polígonos. ) Áre del triángulo = 15 cm b) Áre del triángulo = 1 cm 13 Hll el áre de ls figurs. ) Apotem =,4 cm Ldo del octógono = cm b) Apotem =,6 cm Ldo del hexágono = 3 cm 384 MATEMÁTICAS 1. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

COMPRENDER EL CONCEPTO DE VOLUMEN DE LOS CUERPOS

COMPRENDER EL CONCEPTO DE VOLUMEN DE LOS CUERPOS OBJETIVO 1 COMPRENDER EL CONCEPTO DE VOLUMEN DE LOS CUERPOS NOMBRE: CURSO: ECHA: CONCEPTO DE VOLUMEN El volumen de un cuerpo es l cntidd de espcio que ocup. Pr medir el volumen de un cuerpo, lo comprmos

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

COMPRENDER EL TEOREMA DE PITÁGORAS

COMPRENDER EL TEOREMA DE PITÁGORAS OBJETIVO 1 COMPRENDER EL TEOREMA DE PITÁGORAS NOMBRE: CURSO: ECHA: TRIÁNGULO RECTÁNGULO Un triánguo rectánguo tiene un ánguo recto (90 ). Los os que formn e ánguo recto se enominn ctetos, b y c. E o myor

Más detalles

SOLUCIONARIO 1. PERÍMETROS Y ÁREAS DE LOS POLÍGONOS (I) 4. Calcula el área de un triángulo rectángulo en el que los catetos miden 22 m y 16 m

SOLUCIONARIO 1. PERÍMETROS Y ÁREAS DE LOS POLÍGONOS (I) 4. Calcula el área de un triángulo rectángulo en el que los catetos miden 22 m y 16 m 11 elige Mtemátics, curso y tem. 13. Perímetros y áres 4. Clcul el áre de un triángulo rectángulo en el que los ctetos miden m y 16 m 1. PERÍMETROS Y ÁREAS DE LOS POLÍGONOS (I) PIENSA Y CALCULA Hll mentlmente

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 06 EJERCICIOS Tipos de poliedros 1 Di, justificdmente, qué tipo de poliedro es cd uno de los siguientes: A B C D E Hy entre ellos lgún poliedro regulr? A Prism pentgonl recto. Su bse es un

Más detalles

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de: UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto.

1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto. 13 Perímetros y áres 1. Perímetro y áre de los polígonos (I) Hll mentlmente el perímetro y el áre de un rectángulo que mide 60 m de lrgo y 40 m de lto. Perímetro: (60 + 40) = 00 m Áre = 60 40 = 400 m P

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Los polígonos y la circunferencia

Los polígonos y la circunferencia l: ldo 12 Los polígonos y l circunferenci 1. Polígonos lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos: P I E N S Y L U L R l: ldo R R? R? R R? R R? R E l: ldo l: ldo F E 360 : 3 =

Más detalles

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras.

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras. POIROS - PRISMS POIRO I. POIRO: es el sólido limitdo por cutro o más regiones poligonles llmdos crs. RIST TR TUR RIST SI PRISM VRTI S R 1. PRISM: l prism es un poliedro cuys crs lterles son tres o más

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

10 Figuras planas. Áreas

10 Figuras planas. Áreas 89485 _ 0309-0368.qxd 1/9/07 15:37 Págin 355 igurs pns. Áres INTRODUCCIÓN Por e teorem de Pitágors, podemos ccur cuquier de os dos de un triánguo rectánguo en función de os otros. Se pnten probems reciondos

Más detalles

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

Volúmenes. Volúmenes. Unidades de volumen Cuerpos geométricos Formulario

Volúmenes. Volúmenes. Unidades de volumen Cuerpos geométricos Formulario Volúmenes El volumen es un concepto que expres l medid del espcio que ocup un cuerpo. Es un vrible tridimensionl. En l División El Teniente se utiliz este concepto pr mrcr grndes bloques rectngulres de

Más detalles

Área del rectángulo y del cuadrado

Área del rectángulo y del cuadrado 59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:

Más detalles

P I E N S A Y C A L C U L A

P I E N S A Y C A L C U L A Áres y volúmenes. Uniddes de volumen P I E N S Y C C U L Clcul mentlmente el volumen de ls siguientes figurs teniendo en cuent que cd cubo es un unidd. ) b) c) d) e) ) 7 u b) 4 u c) 8 u d) 6 u e) 8 u Crné

Más detalles

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 009 TEMA 1: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 1: Longitudes y Áreas. TEMA 1: LONGITUDES Y ÁREAS. 1.

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos Centro Educcionl Sn Crlos de Argón. Dpto. Mtemátic. Nivel: NM 4 Prof. Ximen Gllegos H. PSU Mtemátic NM-4 Guí : Congruenci de Triángulos Nombre: Curso: Fech: - Contenido: Congruenci. Aprendizje Esperdo:

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA N

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA N PÁGINA: 1 de 5 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado: OCTAVO Periodo: Duración: 8 HORAS Asignatura: Geometría ESTÁNDAR: Generalizo procedimientos de cálculo válidos para

Más detalles

UNIDAD: GEOMETRÍA PERÍMETROS Y ÁREAS

UNIDAD: GEOMETRÍA PERÍMETROS Y ÁREAS u r s o : Mtemátic Mteril N 17 GUÍ TÓRI PRÁTI Nº 14 UNI: GMTRÍ PRÍMTRS Y ÁRS Perímetro de un polígono, es l sum de ls longitudes de todos sus ldos. l perímetro se denotrá por p y el semiperímetro por s.

Más detalles

2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices.

2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices. GEOMETRÍ 1.- Determin ls medids de los ángulos desconocidos. ) b) " 31º " 20º 47º 2.- Dos ángulos de un triángulo miden 73º y 58º respectivmente. Determin el ángulo que formn sus bisectrices. 3.- uánto

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Rectas y puntos notables en un triángulo.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Rectas y puntos notables en un triángulo. Figurs pns INTRODUCCIÓN Ls figurs pns y e cácuo de áres son y conocidos por os umnos de cursos nteriores. Conviene, sin embrgo, señr presenci de s figurs pns en distintos contextos rees y destcr importnci

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

Guía del estudiante. 9 Hm. 8 Hm

Guía del estudiante. 9 Hm. 8 Hm MATEMÁTICAS Grado Séptimo Bimestre II Semana 5 Número de clases 21-25 Clase 21 Tema: Perímetro Actividad 1 Halle el perímetro del terreno del lote que se representa en la siguiente figura. Utilice el espacio

Más detalles

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.

Más detalles

Volumen de cuerpos geométricos

Volumen de cuerpos geométricos 829485 _ 0369-0418.qxd /9/07 15:06 Págin 381 Volumen de cuerpos geométricos INTRODUCCIÓN RESUMEN DE LA UNIDAD Como complemento l estudio del Sistem Métrico Deciml, inicimos est unidd con el concepto de

Más detalles

1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto.

1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto. 13 Perímetros y áres 1. Perímetro y áre de los polígonos (I) Hll mentlmente el perímetro y el áre de un rectángulo que mide 60 m de lrgo y 40 m de lto. Perímetro: (60 + 40) = 00 m Áre = 60 40 = 400 m P

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

Cálculo de perímetros y áreas

Cálculo de perímetros y áreas Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES I TRJ Nombre Nº orden imestre IVº 4ºgrdo - sección iclo IVº ech: - 11-10 Áre : temátic Tem LIRS RULRS IRRULRS LIRS RULRS s quel poliedro en el cul sus crs son regiones poligonles congruentes entre sí,

Más detalles

UNIDAD: GEOMETRÍA TRIÁNGULO RECTÁNGULO

UNIDAD: GEOMETRÍA TRIÁNGULO RECTÁNGULO u r s o : Mtemátic 3º Medio Mteril Nº MT-16 UNI: GOMTÍ TIÁNGULO TÁNGULO TOM ITÁGOS n todo triángulo rectángulo, l sum de ls áres de los cudrdos construidos sobre sus ctetos, es igul l áre del cudrdo construido

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5

Más detalles

ÁREAS DE FIGURAS PLANAS

ÁREAS DE FIGURAS PLANAS 6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS

Más detalles

MEDIDAS DE LONGITUDES Y SUPERFICIES_ADAPT (6ºEP)

MEDIDAS DE LONGITUDES Y SUPERFICIES_ADAPT (6ºEP) Adaptación Unidad 11 _La longitud y la superficie. Página 1 LA LONGITUD. Copia en tu cuaderno y aprende. Adaptación Unidad 11 _La longitud y la superficie. Página 2 1. Copia y completa: metros (m) centímetros

Más detalles

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros)

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) 3 TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) Ejemplo 1: Un rectángulo tiene 60 m de área y 3m de perimetro. Hallar sus dimensiones.. Ejemplo : La base de un rectángulo es el triple de su altura

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

Perímetros y áreas CONTENIDOS PREVIOS 132 MATEMÁTICAS 1. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. CONVIENE QUE

Perímetros y áreas CONTENIDOS PREVIOS 132 MATEMÁTICAS 1. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. CONVIENE QUE CONTENIDOS PREVIOS Sepas lo que es el perímetro de un polígono. 9 cm 4 cm 8 cm 10 cm 1 cm prenderás a medir perímetros de polígonos y a calcular la longitud de una circunferencia. Perímetro = 8 + 1 + 10

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

3. Resuelve y simplifica: 6. Resuelve y simplifica: Nombre y apellidos : Materia: MATEMATICAS (PENDIENTES) Curso: 2º ESO.

3. Resuelve y simplifica: 6. Resuelve y simplifica: Nombre y apellidos : Materia: MATEMATICAS (PENDIENTES) Curso: 2º ESO. Nombre y pellidos : Mteri: MATEMATICAS PENDIENTES) Curso: º ESO ª entreg Fech: INSTRUCCIONES: Pr est primer entreg deberás trbjr losejercicios del l que quí te djuntmos pr ello debes yudrte de tu cuderno

Más detalles

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental L myorí de los omres ncen como originles y terminn como copis 15 ESO Orientl ÍNDICE: MILLA NÁUTICA PISTA DE ATLETISMO 1. FÓRMULAS FUNDAMENTALES PARA CÁLCULO DE LONGITUDES, SUPERFICIES Y VOLÚMENES. LONGITUDES

Más detalles

12 Áreas. y volúmenes. 1. Área de figuras planas

12 Áreas. y volúmenes. 1. Área de figuras planas Áres y volúmenes. Áre de figurs plns Hll mentlmente ls áres de un cudrdo de 7 m de ldo y de un rectángulo de 9 m de lrgo y 5 m de lto. Áre del cudrdo: 49 m Áre del rectángulo: 45 m P I E N S A Y C C U

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

13 LONGITUDES Y ÁREAS

13 LONGITUDES Y ÁREAS 1 LONGITUDES Y ÁREAS EJERCICIOS PROPUESTOS 1.1 Calcula el perímetro de las siguientes figuras. a),5 cm b) cm cm cm cm a) p,5 8 5 1 cm b) p 9 cm 1. Halla el perímetro de estas figuras. a) Un cuadrado de

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

Guía -5 Matemática NM-4: Volumen de Poliedros

Guía -5 Matemática NM-4: Volumen de Poliedros Centro Educcionl Sn Crlos de Argón. Coordinción Acdémic Enseñnz Medi. Sector: Mtemátic. Prof.: Ximen Gllegos H. 1 Guí -5 Mtemátic NM-4: Volumen de Poliedros Nombre: Curso: Fech: Unidd: Geometrí. Contenido:

Más detalles

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS Prlels y Perpendiulres Lámin nº 1 Prlels y Perpendiulres Lámin nº 1 Trzr un perpendiulr en el extremo de un segmento de 60 mm. de longitud. Trzr un perpendiulr

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero

Más detalles

FÓRMULAS - FIGURAS PLANAS

FÓRMULAS - FIGURAS PLANAS SUPERFICIES (Círculo F. circulares) 1 FÓRMULAS - FIGURAS PLANAS L. circunferencia = 2 r = d 2 r x n o L. del arco = 360 o r d n o distancia = L x n o vueltas r = L : 2 d = L : n o vueltas = distancia :

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

Actividad introductoria: Animación sobre el abuelo y su nieto hablando de medidas de longitud, peso y tiempo.

Actividad introductoria: Animación sobre el abuelo y su nieto hablando de medidas de longitud, peso y tiempo. Grado 6 Matemáticas Diferentes formas para expresar la misma medida, el sistema internacional. TEMA: DESARROLLO DE CONVERSIONES ENTRE UNIDADES DE MEDIDA DE LONGITUD DEL SISTEMA INTERNACIONAL Nombre: Grado:

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 UÍ TÓRIO PRÁTI Nº 11 UNI: OMTRÍ POLÍONOS URILÁTROS POLÍONOS INIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus puntos

Más detalles

Esquema de la unidad. 10 Medida del volumen MEDIDA DEL VOLUMEN. dam 3. m 3 dm 3. dal l dl. 10 m 3 = cm 3 7 l = dam 3 1 hm 3 = dl V =

Esquema de la unidad. 10 Medida del volumen MEDIDA DEL VOLUMEN. dam 3. m 3 dm 3. dal l dl. 10 m 3 = cm 3 7 l = dam 3 1 hm 3 = dl V = 10 Medid del volumen Esquem de l unidd Nombre y pellidos:... Curso:... Fec:... MEDIDA DEL VOLUMEN UNIDADES DE VOLUMEN dm 3 m 3 dm 3 : 10 3 Ò 10 3 dl l dl : 10 Ò 10 EJEMPLOS: 10 m 3 = cm 3 7 l = dm 3 1

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2. GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

Respuesta: Con este resultado Anahí decide contratar a estos pintores.

Respuesta: Con este resultado Anahí decide contratar a estos pintores. Universidd de Concepción Fcultd de Ciencis Veterinris Nivelción de Mtemátics(0) Unidd-I: Conjunto de los Números Rcionles Introducción: Al plnter l necesidd de dividir números enteros, surge un problem:

Más detalles

Medimos en el aula y en nuestras casas

Medimos en el aula y en nuestras casas 1. Secuencias curriculares correspondientes Área: Matemática SC 16: Longitud y perímetro Temporalización: 6 sesiones de 45 minutos. 1 Recuerda La longitud es la distancia entre dos puntos determinados.

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES OJETIVO 1 CONOCER Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro son: Caras:

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

Múltiplos. Múltiplos. 1.- Cuántos kilómetros medirá una circunferencia que dé la vuelta a la Tierra pasando por los polos? -1-

Múltiplos. Múltiplos. 1.- Cuántos kilómetros medirá una circunferencia que dé la vuelta a la Tierra pasando por los polos? -1- 4.- MEDIDAS Al finalizar el sexto curso de Educación Primaria, los estudiantes deben dominar las relaciones entre las unidades de medida del sistema métrico decimal, usando múltiplos y submúltiplos sencillos,

Más detalles

Mª Rosa Villegas Pérez

Mª Rosa Villegas Pérez Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

CONOCER LAS UNIDADES. REALIZAR CAMBIOS DE UNIDADES

CONOCER LAS UNIDADES. REALIZAR CAMBIOS DE UNIDADES OBJETIVO 1 CONOCER LAS UNIDADES. REALIZAR CAMBIOS DE UNIDADES NOMBRE: CURSO: ECHA: Una magnitud es una cualidad, característica de un objeto que podemos medir. Ejemplo: longitud, masa, capacidad, superficie,

Más detalles