Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales"

Transcripción

1 Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre Lenguajes Formales (u otros conjuntos) Ingeniería Técnica en Informática de Sistemas 2 1

2 Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre Lenguajes Formales (u otros conjuntos) Ingeniería Técnica en Informática de Sistemas 3 Concepto de Lenguaje Formal Qué es un lenguaje? Informalmente: un lenguaje es un conjunto de palabras o sentencias formadas sobre un alfabeto Pasaremos a definirlo de manera formal. Ingeniería Técnica en Informática de Sistemas 4 2

3 Concepto de Lenguaje Formal Alfabeto: Definición (Alfabeto): Conjunto finito, no vacío, de elementos. Generalmente usaremos Σ para especificar alfabetos y los elementos los denominaremos letras o símbolos. los alfabetos español, inglés, o alemán Σ 1 ={0,...,9}, 0 Σ1 Σ 2 ={x x es un símbolo del código ASCII} Σ 3 ={(, )} Σ 4 ={1, A, 2, B} Σ 5 ={a, b, c, d} Σ 6 ={} Σ 7 =ℵ Ingeniería Técnica en Informática de Sistemas 5 Concepto de Lenguaje Formal Palabras: Definición (Palabra): Sea un alfabeto Σ. Una palabra sobre Σ es una secuencia finita de las letras de ese alfabeto. La secuencia vacía representa la palabra vacía y la anotamos con λ. sobre Σ 5 ={a,b,c,d}: λ, a, b, c, d, abc, aab, dcba,... sobre Σ 1 ={0,...,9}: λ, 0, 0000, 010, 9980,... sobre Σ 3 ={(,)} λ, (, ), (), (()()), )())),... Ingeniería Técnica en Informática de Sistemas 6 3

4 Concepto de Lenguaje Formal Palabras: Definición (Longitud de una palabra): Se llama longitud de una palabra x, y se representa por x, al número de símbolos que la componen. sobre Σ 5 ={a,b,c,d}: λ =0, a =1, abc =3 Ingeniería Técnica en Informática de Sistemas 7 Concepto de Lenguaje Formal Operaciones con palabras: Definición (Concatenación): Sean dos palabras x e y definidas sobre el alfabeto Σ. La concatenación de x e y, denominada xy, es una palabra que contiene todos los símbolos (de derecha a izquierda) de x seguidos de los símbolos de y (de derecha a izquierda). Sean x=a 1 A 2...A n e y=b 1 B 2...B m con A i, B i Σ: xy= A 1 A 2...A n B 1 B 2...B m x =abc, y =da, definidos sobre Σ={a,b,c,d} xy=abcda ; xy = x + y =5 Ingeniería Técnica en Informática de Sistemas 8 4

5 Concepto de Lenguaje Formal Operaciones con palabras: Propiedades de la concatenación: Operación cerrada: sí Si x e y están definidos sobre Σ, entonces xy está definido sobre Σ. asociativa: sí x(yz)=(xy)z Elemento nulo: λ xλ=λx=x Conmutatividad: no xy yx Ingeniería Técnica en Informática de Sistemas 9 Concepto de Lenguaje Formal Operaciones con palabras: Definición (Potencia): Sea i un número natural, y x una palabra. La potencia i-ésima de x, denominada x i, es la operación que consiste en concatenarla consigo misma i veces. x =abc x 1 =abc x 2 =abcabc x 3 =abcabcabc Ingeniería Técnica en Informática de Sistemas 10 5

6 Concepto de Lenguaje Formal Operaciones con palabras: Propiedades de la potencia: i, j > 0 x i+1 =xx i =x i x x i x j =x i+j Se define x 0 =λ (palabra vacía): Si i=0 x 0+1 =x 1 =x=xλ=xx 0 =λx=x 0 x Si i,j=0 x i x j =x 0 x 0 =λλ=λ=x 0 =x 0+0 Nota: λλ=λ; λx=x; λλxλ=x x i =i x Ingeniería Técnica en Informática de Sistemas 11 Concepto de Lenguaje Formal Operaciones con palabras: Definición (Palabra inversa): Sea x=a 1 A 2...A n con A i Σ una palabra sobre el alfabeto Σ. Se llama palabra refleja o inversa de x, y se representa por x -1, a la palabra A n A n-1...a 1. Si x=λ entonces x -1 =λ. x =abc x -1 =cba Propiedades de la palabra inversa: x -1 = x Ingeniería Técnica en Informática de Sistemas 12 6

7 Concepto de Lenguaje Formal Lenguajes Formales: Definición (Lenguaje universal): Sea Σ un alfabeto. El lenguaje universal de Σ es el conjunto formado por todas las palabras que se pueden formar con las letras de Σ. Representamos dicho lenguaje con W(Σ). Σ 1 ={a} W(Σ 1 )={λ, a, aa, aaa,...} Nota: La palabra vacía pertenece a todos los lenguajes universales de todos los alfabetos posibles. Ingeniería Técnica en Informática de Sistemas 13 Concepto de Lenguaje Formal Lenguajes Formales: Definición (Lenguaje): Sea un alfabeto Σ. Un lenguaje L sobre Σ es cualquier subconjunto del lenguaje universal W(Σ). Σ 1 ={a} W(Σ 1 )={λ, a, aa, aaa,...} L 1 ={a} W(Σ 1 ) L 2 ={} W(Σ 1 ) (L 2 = ) L 3 =Σ 1 W(Σ 1 ) L 4 =W(Σ 1 ) W(Σ 1 ) L 5 ={λ} W(Σ 1 ) (Nota: L 5 L 2 ) L 6 ={λ, a, aaa, aaaaa} W(Σ 1 ) L 7 ={λ, a, aaa, aaaaa,...} W(Σ 1 ) Hay lenguajes finitos, infinitos y vacíos. Ingeniería Técnica en Informática de Sistemas 14 7

8 Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre Lenguajes Formales (u otros conjuntos) Ingeniería Técnica en Informática de Sistemas 15 Operaciones con lenguajes (u otros conjuntos) Unión: Definición (Unión de lenguajes): Sea el alfabeto Σ y dos lenguajes L 1 W(Σ) y L 2 W(Σ). La unión de L 1 y L 2, L 1 L 2, es un lenguaje que se define de la siguiente forma: L 1 L 2 ={x x L 1 o x L 2 }. Propiedades de la unión: Operación cerrada: L 1 W(Σ), L 2 W(Σ) L 1 L 2 W(Σ) (la unión de dos lenguajes sobre el mismo alfabeto es también un lenguaje sobre este alfabeto) Asociativa: (L 1 L 2 ) L 3 =L 1 (L 2 L 3 ) Elemento neutro: L 1, N L 1 = L 1 Que es N? Conmutativa: L 1 L 2 = L 2 L 1 Idempotencia: L L = L Ingeniería Técnica en Informática de Sistemas 16 8

9 Operaciones con lenguajes (u otros conjuntos) Concatenación: Definición (Concatenación de lenguajes): Sean dos lenguajes L 1, L 2. La concatenación de L 1 y L 2, representado por L 1 L 2 (a veces por L 1.L 2 ), es un lenguaje que se define de la siguiente forma: L 1 L 2 ={xy x L 1, y L 2 }. Ejemplos: Σ ={a,b,c} L 1 ={ab, ac, cb}; L 2 ={b, bba} L 1 L 2 ={abb,abbba,acb,acbba,cbb,cbbba} L 1 ={a, aa, aaa,...}; L 2 ={λ, b, bb, bbb,...} L 1 L 2 =? Qué pasa si L 1 o L 2 es? Propiedades de la concatenación Cerrada: L 1 W(Σ), L 2 W(Σ) L 1 L 2 W(Σ) Asociativa: (L 1 L 2 )L 3 = L 1 (L 2 L 3 ) No es conmutativa: ( L 1, L 2 : L 1 L 2 =L 2 L 1 ) Elemento neutro({λ}): L 1 : L 1 {λ}={λ}l 1 =L 1 No es idempotente: ( L: LL=L) Ingeniería Técnica en Informática de Sistemas 17 Operaciones con lenguajes (u otros conjuntos) Potencia de un lenguaje: Definición (Potencia de un lenguaje): La potencia i-ésima de un lenguaje L consiste en el lenguaje resultante de concatenar el lenguaje consigo mismo i veces. L i = LLL...L (i veces) Propiedades de la potencia Cerrada: L W(Σ) L i W(Σ) L i+1 = L i L = LL i (i>0) L i L j = L i+j (i,j>0) Que pasa si i, j = 0? Se define L 0 = {λ} L 0+1 = L 1 = L = {λ}l=l 0 L L 0 L 0 = {λ}{λ} ={λ}=l 0 = L 0+0 Ingeniería Técnica en Informática de Sistemas 18 9

10 Operaciones con lenguajes (u otros conjuntos) Potencia de un lenguaje: Ejemplos: L 1 = {λ,ab, ac} L 1 2 ={λ,ab,ac,abab,abac,acab,acac} L 1 3 ={λ,ab,ac,abab,abac,acab,acac,ababab,ababac, abacab,abacac,acabab,acabac,acacab,acacac} L 2 = {a, aa, aaa,...} L 22 =? L 23 =? Ingeniería Técnica en Informática de Sistemas 19 Operaciones con lenguajes (u otros conjuntos) Clausura de un lenguaje Definición (Clausura positiva): La clausura positiva de un lenguaje L se define por: L + = U i i=1l Ejemplos: L ={a,aa,aaa,aaaa,...} = {a n n 1} L 2 ={ aa,aaa,aaaa,...} = {a n a m n,m 1} = {a n n 2} L 3 ={ aaa,aaaa,...} = {a n a m n 1, m 2} = {a n n 3} L + i = L ={a,aa,aaa,aaaa,...} = L U i=1 Σ={a,b}, Σ es un lenguaje sobre Σ, ya que Σ W(Σ) Σ + = U Σ i ={a,b,aa,ab,ba,bb,aaa,...} = W(Σ) - {λ} i= 1 Nota: Si λ L, entonces λ L +. Ingeniería Técnica en Informática de Sistemas 20 10

11 Operaciones con lenguajes (u otros conjuntos) Definición (Clausura, Iteración o cierre): La clausura de un lenguaje L se define por: L*= U i L i=0 Nota: L: λ L*, ya que {λ}=l 0. Propiedades de la clausura: Cerrada: L W(Σ) L + W(Σ), L* W(Σ) L*=L 0 ( U i i=1l )= L 0 L + ={λ} L + L + =LL*= L*L Demostración? Ingeniería Técnica en Informática de Sistemas 21 Operaciones con lenguajes (u otros conjuntos) Reflexión de un lenguaje Definición (Reflexión): Sea L un lenguaje. Se llama lenguaje inverso (lenguaje reflejo) de L, y se representa por L -1 al lenguaje: L -1 ={x -1 x L}. Ejemplos: L ={ana,julio,jesus,norma} L -1 ={ana, oiluj,susej,amron} L ={a,aa,aaa,...} L -1? Propiedades de la reflexión: Cerrada: L W(Σ) L -1 W(Σ) Ingeniería Técnica en Informática de Sistemas 22 11

12 Operaciones con lenguajes (u otros conjuntos) Otras operaciones clásicas de conjuntos Definición (Intersección): Sean dos lenguajes L 1 y L 2. La intersección de L 1 y L 2, L 1 L 2, es el lenguaje que se define por: L 1 L 2 ={x x L 1 y x L 2 }. Propiedades de la intersección Cerrada: L 1 W(Σ), L 2 W(Σ) L 1 L 2 W(Σ) Asociativa: (L 1 L 2 ) L 3 =L 1 (L 2 L 3 ) Conmutativa: L 1 L 2 = L 2 L 1 Idempotencia: L L=L L = Ingeniería Técnica en Informática de Sistemas 23 Operaciones con lenguajes (u otros conjuntos) Otras operaciones clásicas de conjuntos Definición (Complemento): Sea L un lenguaje sobre el alfabeto Σ. El complemento de L, denotado con L (o con c(l)) es el siguiente lenguaje: ={x x W(Σ) y x L} L Propiedades del complemento Cerrada: L W(Σ) L W(Σ) W(Σ) = L =L Ingeniería Técnica en Informática de Sistemas 24 12

13 Operaciones con lenguajes (u otros conjuntos) Otras operaciones clásicas de conjuntos Definición (Diferencia): Sean dos lenguajes L 1 y L 2. La diferencia de L 1 y L 2, L 1 - L 2 (o L 1 \L 2 ) es el lenguaje que se define por: L 1 - L 2 ={x x L 1 y x L 2 }. Propiedades de la diferencia Cerrada: L 1 W(Σ), L 2 W(Σ) L 1 -L 2 W(Σ) No es asociativa: ( L 1, L 2 : (L 1 -L 2 )-L 3 =L 1 -(L 2 -L 3 )) No es conmutativa: ( L 1, L 2 : L 1 -L 2 =L 2 -L 1 ) No es idempotente: L: L-L= A- =A Ingeniería Técnica en Informática de Sistemas 25 Operaciones con lenguajes (u otros conjuntos) Otras leyes de las operaciones sobre conjuntos Leyes de De Morgan: L 1 L 2 = L1 L 2 L 1 L 2 = L1 L 2 Leyes de complemento: L L = L L =W(Σ) Distributividad: L 1 (L 2 L 3 )= (L 1 L 2 ) ( L 1 L 3 ) L 1 (L 2 L 3 )= (L 1 L 2 ) ( L 1 L 3 ) L 1 -L 2 =L 1 = L =W(Σ)-L L2 L1 L2 Ingeniería Técnica en Informática de Sistemas 26 13

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

Lenguajes y Gramáticas

Lenguajes y Gramáticas Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas

Más detalles

Clase 03: Alfabetos, símbolos y cadenas

Clase 03: Alfabetos, símbolos y cadenas Solicitado: Ejercicios 01: Cadenas M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfranco@ipn.mx 1 Contenido Alfabetos, símbolos y cadenas Operaciones

Más detalles

CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS

CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS 2.1. NOCIONES PRIMITIVAS Consideraremos tres nociones primitivas: Conjunto, Elemento y Pertenencia. Conjunto Podemos entender al conjunto como, colección,

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se

Más detalles

Números reales Conceptos básicos Algunas propiedades

Números reales Conceptos básicos Algunas propiedades Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que

Más detalles

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ. Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de

Más detalles

ESTRUCTURAS ALGEBRAICAS. Parte 1

ESTRUCTURAS ALGEBRAICAS. Parte 1 ESTRUCTURAS ALGEBRAICAS Parte 1 ESTRUCTURAS ALGEBRAICAS Una estructura algebraica es una n-tupla (a 1,a 2,...,a n ), donde a 1 es un conjunto dado no vacío, y {a 2,...,a n } un conjunto de operaciones

Más detalles

UNIDAD 4. Álgebra Booleana

UNIDAD 4. Álgebra Booleana UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,

Más detalles

Lenguajes (gramáticas y autómatas)

Lenguajes (gramáticas y autómatas) Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

Pregunta 1 Es correcta esta definición? Por qué?

Pregunta 1 Es correcta esta definición? Por qué? TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta

Más detalles

Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R.

Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R. Conjuntos Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por se entiende que a pertenece a R. a R Normalmente, podremos definir a un conjunto de dos maneras: Por

Más detalles

John Venn Matemático y filósofo británico creador de los diagramas de Venn

John Venn Matemático y filósofo británico creador de los diagramas de Venn Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan

Más detalles

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO

INSTITUTO TECNOLÓGICO DE APIZACO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar

Más detalles

MATEMÁTICAS BÁSICAS. 2 de marzo de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS

MATEMÁTICAS BÁSICAS. 2 de marzo de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS 2 de marzo de 2009 Parte I Conjuntos Definición intuitiva de conjunto Definición Un conjunto es una colección de objetos. Ejemplos A = {a, e, i, o, u} B = {blanco, gris, negro} C = {2, 4, 6, 8, 9} D =

Más detalles

CONJUNTOS UNIDAD II. a A. En caso I.1 CONCEPTOS BÁSICOS DE CONJUNTOS

CONJUNTOS UNIDAD II. a A. En caso I.1 CONCEPTOS BÁSICOS DE CONJUNTOS CONJUNTOS UNIDAD II I.1 CONCEPTOS BÁSICOS DE CONJUNTOS Un conjunto es la agrupación en un todo de objetos bien definidos y diferenciables entre si, que se llaman elementos del mismo. Los conjuntos se denotan

Más detalles

Conjuntos y Conjuntos Numéricos

Conjuntos y Conjuntos Numéricos Conjuntos y Conjuntos Numéricos Alguna Nociones Básica Sobre Conjuntos Definición: Un conjunto es una colección de objetos o cosas, llamados los elementos o miembros del conjunto. Formas de expresar un

Más detalles

Capítulo 1 Lenguajes formales 6

Capítulo 1 Lenguajes formales 6 Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Espacios Vectoriales Departamento de Matemáticas ITESM Espacios Vectoriales Álgebra Lineal - p. 1/80 En esta lectura se introduce el concepto de espacio vectorial. Este concepto generaliza

Más detalles

Expresiones Algebraicas en los Números Reales

Expresiones Algebraicas en los Números Reales Operaciones con en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido Operaciones con Operaciones con : Contenido Operaciones con Discutiremos: qué es una: expresión algebraica

Más detalles

SISTEMA DE NUMEROS REALES

SISTEMA DE NUMEROS REALES SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto

Más detalles

Banco de reactivos de Álgebra I

Banco de reactivos de Álgebra I Banco de reactivos de Álgebra I Compilación: Ochoa Cruz Rita Julio de 006 Temario. Unidad I: El campo de los números reales. Conjunto y conjuntos de números. Orden y distancia. Valor absoluto 4. Operaciones

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total. U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán

Más detalles

CAPÍTULO II TEORÍA DE CONJUNTOS

CAPÍTULO II TEORÍA DE CONJUNTOS TEORÍ DE ONJUNTOS 25 PÍTULO II TEORÍ DE ONJUNTOS 2.2 INTRODUIÓN Denotaremos los conjuntos con letras mayúsculas y sus elementos con letras minúsculas, si un elemento p pertenece a un conjunto escribiremos

Más detalles

Capítulo 7: Expresiones Regulares

Capítulo 7: Expresiones Regulares Capítulo 7: Expresiones Regulares 7.1. Concepto de expresión regular 7.1.1. Definición 7.1.2. Lenguaje descrito 7.1.3. Propiedades 7.2. Teoremas de equivalencia 7.2.1. Obtener un AFND a partir de una expresión

Más detalles

TEORIA DE CONJUNTOS. 2.-Subconjunto: A es subconjunto de B si todo elemento de A lo es también de B.

TEORIA DE CONJUNTOS. 2.-Subconjunto: A es subconjunto de B si todo elemento de A lo es también de B. TEORI DE CONJUNTOS Definiciones: 1.- Conjunto: es una lista, clase o colección de objetos bien definidos, objetos que, pueden ser cualesquiera: números, personas, letras, etc. Estos objetos se llaman elementos

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA NOMENCLATURA ALGEBRAICA Definición (Término). Es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Por ejemplo a, 3b, xy, son términos.

Más detalles

Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto.

Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto. TEORÍ DE CONJUNTOS. Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto. Ejemplos: Los libros de una biblioteca. Los alumnos de una escuela.

Más detalles

TEMA 3 ÁLGEBRA DE CONMUTACIÓN

TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES

Más detalles

Oliver A. Vilca H. Pág. 1. Resumen de clases Oliver Amadeo Vilca Huayta

Oliver A. Vilca H. Pág. 1. Resumen de clases Oliver Amadeo Vilca Huayta Oliver A. Vilca H. Pág. 1 Expresiones regulares y autómatas finitos Resumen de clases Oliver Amadeo Vilca Huayta Una expresión regular sirve como un descriptor de un lenguaje, también es una herramienta

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

BLOQUE 1. LOS NÚMEROS

BLOQUE 1. LOS NÚMEROS BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números

Más detalles

CONCEPTOS BÁSICOS SOBRE TEORÍA DE CONJUNTOS

CONCEPTOS BÁSICOS SOBRE TEORÍA DE CONJUNTOS Teorìa de conjuntos CONCEPTOS BÁSICOS SOBRE TEORÍA DE CONJUNTOS 2.1 DEFINICIONES: 2.1.1 Conjunto: Término básico no definido. Concepto intuitivo: Lista, colección o clase de objetos, bien definidos. Notación:

Más detalles

Álgebra Lineal V: Subespacios Vectoriales.

Álgebra Lineal V: Subespacios Vectoriales. Álgebra Lineal V: Subespacios Vectoriales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

Probabilidad y Estadística Descripción de Datos

Probabilidad y Estadística Descripción de Datos Descripción de Datos Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 19 Contenido 1 Teoria de

Más detalles

OPERACIONES CON NÚMEROS REALES

OPERACIONES CON NÚMEROS REALES NÚMEROS REALES Por número real llamaremos a un número que puede ser racional o irracional, por consiguiente, el conjunto de los números reales es la unión del conjunto de números racionales y el conjunto

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 }

TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 } TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar

Más detalles

CONJUNTOS Y RELACIONES BINARIAS

CONJUNTOS Y RELACIONES BINARIAS UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL CONJUNTOS Y RELACIONES BINARIAS INTRODUCCIÓN Intuitivamente, un conjunto es una

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

UNIDAD II: TEORÍA DE CONJUNTOS 2.1. INTRODUCCIÓN

UNIDAD II: TEORÍA DE CONJUNTOS 2.1. INTRODUCCIÓN UNDD : TEORÍ DE CONJUNTOS 2.1. NTRODUCCÓN Según Georg Cantor un conjunto es la reunión, agrupación o colección de elementos bien definidos que tienen una propiedad en común, concepto que ha penetrado y

Más detalles

Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G

Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G Capítulo 1 Grupos y Subgrupos 001. El concepto de grupo Sea G un conjunto no vacío y sea G G G una operación interna en G para la cual denotaremos a la imagen de un par (x, y) mediante xy. Supongamos que

Más detalles

José de Jesús Ángel Ángel, c 2010. Factorización

José de Jesús Ángel Ángel, c 2010. Factorización José de Jesús Ángel Ángel, c 2010. Factorización Contenido 1. Introducción 2 1.1. Notación.................................. 2 2. Factor común 4 2.1. Ejercicios: factor común......................... 4

Más detalles

Lenguajes Regulares. Antonio Falcó. - p. 1

Lenguajes Regulares. Antonio Falcó. - p. 1 Lenguajes Regulares Antonio Falcó - p. 1 Cadenas o palabras I Una cadena o palabra es una sucesión finita de símbolos. cadena {c, a, d, e, n}. 10001 {0, 1} El conjunto de símbolos que empleamos para construir

Más detalles

Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole.

Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole. Tema 1: Teoría de Conjuntos. Logica proposicional y lgebras de oole. 1.1 Teoria de conjuntos Objetivo específico: Operar con conjuntos y aplicar sus propiedades para resolver problemas reales. Piensa Elabora

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en

Más detalles

Análisis Matemático I: Numeros Reales y Complejos

Análisis Matemático I: Numeros Reales y Complejos Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.

Más detalles

LEX. Las definiciones y subrutinas son opcionales. El segundo %% es opcional pero el primer %% indica el comienzo de las reglas.

LEX. Las definiciones y subrutinas son opcionales. El segundo %% es opcional pero el primer %% indica el comienzo de las reglas. LEX Estructura de un programa en LEX { definiciones { reglas { subrutinas del usuario Las definiciones y subrutinas son opcionales. El segundo es opcional pero el primer indica el comienzo de las reglas.

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso 202-203 Universidad Rey Juan Carlos GUÍA PARA LA REALIZACIÓN DE LA HOJA DE PROBLEMAS No 3 (Tema 3: Expresiones Regulares)

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA

COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA COLEGIO NUESTRO SEÑOR DE L UEN ESPERNZ signatura: NÁLISIS MTEMÁTICO 11º Profesor: Lic. EDURDO DURTE SUESCÚN TLLER OPERCIONES CON CONJUNTOS OPERCIONES CON CONJUNTOS En aritmética se suma, resta y multiplica,

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

El conjunto de las operaciones de simetría que se pueden aplicar a una molécula tienen las propiedades de un grupo matemático.

El conjunto de las operaciones de simetría que se pueden aplicar a una molécula tienen las propiedades de un grupo matemático. TEORIA DE GRUPOS El conjunto de las operaciones de simetría que se pueden aplicar a una molécula tienen las propiedades de un grupo matemático. Propiedades de un grupo Existe un operador identidad (E)

Más detalles

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

Tema 2: El grupo de las permutaciones

Tema 2: El grupo de las permutaciones Tema 2: El grupo de las permutaciones Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Octubre de 2014 Olalla (Universidad de Sevilla) Tema 2: El grupo de las

Más detalles

Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior

Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas Tema 3.1: Autómatas Finitos Deterministas Luis Peña luis.pena@urjc.es http://www.ia.urjc.es/cms/es/docencia/ic-msal Sumario Tema 3.1: Autómatas Finitos Deterministas. 1. Concepto de AFD 2. Equivalencia

Más detalles

Conjuntos. () April 4, / 32

Conjuntos. () April 4, / 32 Conjuntos En general, un conjunto A se de ne seleccionando los elementos de un cierto conjunto U de referencia (o universal) que cumplen una determinada propiedad. () April 4, 2014 1 / 32 Conjuntos En

Más detalles

Apuntes de Matemática Discreta 2. Operaciones con Conjuntos

Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 2 Operaciones con Conjuntos

Más detalles

UNIDAD 14 CONJUNTOS. Objetivo 1. Recordarás la definición de un conjunto y sus elementos.

UNIDAD 14 CONJUNTOS. Objetivo 1. Recordarás la definición de un conjunto y sus elementos. UNIDAD 14 CONJUNTOS Objetivo 1. Recordarás la definición de un conjunto y sus elementos. Ejercicios resueltos: 1. {2, 4, 6} es un conjunto. Los elementos que forman este conjunto son: 2, 4, 6 2. Cuántos

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

Sistemas de numeración, operaciones y códigos.

Sistemas de numeración, operaciones y códigos. Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo

Más detalles

CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE

CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE Lógica FE IRUITOS LÓGIOS 1. LGER DE OOLE 1.1 Introducción Tanto la teoría de conjuntos como la lógica de enunciados tienen propiedades similares. Tales propiedades se utilizan para definir una estructura

Más detalles

PROBABILIDAD Introducción La Probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.

PROBABILIDAD Introducción La Probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO F A C U L T A D D E Q U Í M I C A P R O G R A M A E D U C A T I V O D E Q U Í M I C O E N A L I M E N T O S PROBABILIDAD Y ESTADÍSTICA UNIDAD TEMÁTICA TEORÍA DE

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales.

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. Números tales como:1,3, 3 5, e,

Más detalles

Operaciones con monomios y polinomios

Operaciones con monomios y polinomios Operaciones con monomios y polinomios Para las operaciones algebraicas se debe de tener en cuenta que existen dos formas para representar cantidades las cuales son números o letras. Al representar una

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]

ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6] ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 Analizadores sintácticos

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CSI/ITESM 7 de junio de 28 Índice 5.. Objetivos................................................ 5.2. Motivación...............................................

Más detalles

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Factorización Ejercicios de factorización www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Introducción 2 1.1. Notación...........................................

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles