CUERPOS REDONDOS. LA ESFERA TERRESTRE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CUERPOS REDONDOS. LA ESFERA TERRESTRE"

Transcripción

1 IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes son los cuepos de evolución. Los cuepos de evolución son los cuepos geométicos que se foman al gia una figua plana alededo de un eje. Actividad 1. Cuáles de las siguientes figuas son cuepos edondos? Cuáles son cuepos de evolución? De cuáles conoces el nombe? Razona tus espuestas. A B C D E F G H I J. CILINDRO El cilindo es un cuepo edondo limitado po una supeficie cilíndica y dos bases paalelas. La supeficie cilíndica es una supeficie cuva fomada po infinitos segmentos paalelos. Los cilindos pueden se: - Rectos, si los segmentos que foman la supeficie cilíndica son pependiculaes a las bases. - Oblicuos, si los segmentos que foman la supeficie cilíndica no son pependiculaes a las bases. El cilindo de evolución ecto es un cuepo de evolución geneado po el gio de un ectángulo o cuadado alededo de uno de sus lados. Coloquialmente lo llamaemos cilindo. Los elementos del cilindo son: - Las bases, dos cículos iguales y paalelos. - La supeficie lateal o supeficie cilíndica que es la caa lateal no plana que une las bases. - El adio del cilindo que es el adio de las bases. - El eje es el lado del paalelogamo que, al gia sobe si mismo, genea la supeficie cilíndica. - La geneatiz, es el lado opuesto al eje que genea la supeficie cilíndica. - La altua, es la distancia ente las bases. Actividad : Indica los elementos del cilindo en la siguiente figua.

2 IES PEÑAS NEGRAS. Geometía. º ESO. Desaollo de un cilindo: Al desaolla un cilindo ecto obtenemos un ectángulo (o cuadado) y dos cículos iguales que son sus bases. La base del ectángulo es la longitud de la cicunfeencia de la base y la altua del ectángulo es la altua (que coincide con la geneatiz) del cilindo. Veáse la figua: Al desaolla un cilindo oblicuo obtenemos un omboide (o ombo) y dos cículos iguales que son sus bases. La base del omboide es la longitud de la cicunfeencia de la base y la altua del omboide es la altua (que no coincide con la geneatiz) del cilindo. Veáse la figua: Áea de un cilindo: o Áea lateal, el áea del paalelogamo que se obtiene en el desaollo. A L o Áea de la base, el áea del cículo. A B o Áea total del cilindo es la suma del áea lateal más el áea de las dos bases. AT AL AB donde es el adio de la base y es la altua del cilindo. Volumen de un cilindo: V AB Actividad : Responde a las siguientes cuestiones: a. Calcula el áea del cilindo. Actividad 4: Responde a las siguientes cuestiones, sabiendo que = dm, d = y = 5 dm a. Calcula el áea del cilindo.. CONO d Cuepo edondo limitado po una supeficie cónica y po una base plana. La supeficie cónica está fomada po infinitos segmentos con un punto común, llamado vétice. Los conos pueden se: - Rectos: cuando el vétice equidista de los puntos fontea de su base, un cículo. El eje de otación es pependicula a la base. - Oblicuos: cuando el vétice no equidista de los puntos fontea de su base, un cículo. El eje de otación no es pependicula a la base. El cono de evolución ecto es un cuepo de evolución geneado po el gio de un tiángulo ectángulo alededo de uno de sus catetos. Coloquialmente lo llamaemos cono ecto o cono. Los elementos del cono ecto son: - Las base que es un cículo. - La supeficie lateal o supeficie cónica que es la caa lateal no plana que une la base con el vétice.

3 IES PEÑAS NEGRAS. Geometía. º ESO. - El adio del cono es el adio de la base. - El eje es el cateto del tiángulo ectángulo que, al gia sobe él, genea la supeficie cónica. - La geneatiz, es la ipotenusa del tiángulo ectángulo que genea la supeficie cilíndica. - La altua, es la distancia ente la base y el vétice. Actividad 5: Indica los elementos del cono en la siguiente figua. Desaollo de un cono: Al desaolla un cono ecto obtenemos un secto cicula y un cículo. La longitud de aco del secto cicula es (con el adio del cono) y su adio es la geneatiz del cono. Veáse la figua: Áea de un cono: o Áea lateal, el áea del secto cicula que se obtiene en el desaollo. g A L o Áea de la base, el áea del cículo. A B o Áea total del cono es la suma del áea lateal más el áea de la base. A T AL AB donde es el adio de la base y g es la geneatiz del cono. Volumen de un cono: V AB Actividad 6: Responde a las siguientes cuestiones, siendo R = cm y = 4 cm. a. Calcula el áea del cono. Actividad 7: Responde a las siguientes cuestiones, siendo R = 6 cm y g = 10 cm a. Calcula el áea del cono, 4. TRONCO DE CONO Un tonco de cono ecto se foma al cota un cono ecto po un plano paalelo a la base. Los toncos de cono tienen dos bases ciculaes de difeente tamaño y una caa lateal cuva. Un tonco de cono ecto es un cuepo de evolución que se genea al ota un tapecio ectángulo alededo de su lado pependicula. Los elementos del tonco de cono ecto son: - Las bases que son los cículos (base mayo y base meno)

4 IES PEÑAS NEGRAS. Geometía. º ESO. - La supeficie lateal es la caa lateal no plana que une las dos bases. - Los adios del tonco de cono son los adios de las bases. - El eje, lado del tapecio ectángulo que, al gia sobe él, genea la supeficie cónica. - La geneatiz, es el lado del tapecio ectángulo que no es base ni el eje. - La altua, es la distancia ente las bases. La altua del tonco (), la difeencia de los adios (R-) y la geneatiz (g) foman un tiángulo ectángulo. Desaollo de un tonco de cono ecto: Al desaolla un tonco de cono ecto obtenemos un tapecio cicula y dos cículos. La longitudes de aco del tapecio cicula son: R y (con R es el adio mayo y es el adio meno) y su difeencia de adios es la geneatiz del tonco de cono. Veáse la figua: Áea de un tonco de cono: o Áea lateal: es el áea del secto cicula que se obtiene en el desaollo. A L ( R ) g o Áea de las bases: A B ( R ) o Áea total del cono es la suma del áea lateal más el áea de la base. A T AL AB donde R es el adio mayo, es el adio meno, g es la geneatiz y es la altua del cono. Volumen de un tonco de cono: V R R Actividad 8: Responde a las siguientes cuestiones: a. Calcula el áea del tonco de cono. 5. ESFERA. Una esfea es un cuepo edondo limitado po una supeficie esféica. La supeficie esféica es una supeficie cuva ceada cuyos puntos equidistan de oto inteio llamado cento de la esfea. Una esfea es un cuepo de evolución que se genea al ota un semicículo alededo de su diámeto. Los elementos de la esfea son: - El cento de la esfea, el punto que equidista de todos los puntos de la supeficie esféica que delimita a la esfea - El adio de la esfea, cada uno de los segmentos que unen un punto de la supeficie esféica con el cento. También se le llama así a la longitud común de estos segmentos. La esfea es un cuepo edondo cuya supeficie esféica que lo delimita no es desaollable en el plano. Es deci, no es posible extende la supeficie esféica en un plano de foma exacta. A lo lago de la istoia se an apotado difeentes tipos de epesentaciones planas de la supeficie esféica, todas ellas muy elacionadas con la epesentación plana del globo teeste. Áea de una esfea: A 4 donde es el adio de la esfea.

5 IES PEÑAS NEGRAS. Geometía. º ESO. 4 Volumen de una esfea: V donde es el adio de la esfea. Actividad 9: Responde a las siguientes cuestiones: a. Calcula el áea de una esfea de adio = cm. b. Calcula el volumen de dica esfea. Actividad 10: En tu vida cotidiana obseva a tu alededo y encuenta ejemplos de objetos (apaatos, utensilios, edificios, fomas de la natualeza, ) con foma de cuepo edondo. Anota el objeto y el tipo de cuepo edondo. OBJETO 1... TIPO DE CUERPO REDONDO 6. FIGURAS ESFERICAS Casquete esféico. Cada una de las pates que se foman en la supeficie esféica al cotala po un plano. Áea del casquete esféico: A casquete Volumen del casquete esféico: V casquete Actividad 11: Responde a las siguientes cuestiones: a. Calcula el áea del casquete esféico de adio, = 7 cm, y altua, = cm. b. Calcula el volumen de dico casquete esféico. 6.. Zona esféica. Pate de la supeficie esféica compendida ente dos planos paalelos. La poción de esfea delimitada po dos planos paalelos se denomina segmento esféico. Áea de la zona esféica: A zona Volumen de la zona esféica: V segmento R 6 Actividad 1: Responde a las siguientes cuestiones: a. Calcula el áea de la zona esféica de adios, R = 9 cm y = 7 cm, y altua, = cm. b. Calcula el volumen del segmento esféico. 6.. Huso esféico. Pate de la supeficie esféica compendida ente dos planos secantes que pasan po el cento de la esfea. La poción de esfea delimitada po dos planos secantes que pasan po el cento de la esfea se denomina cuña esféica. Áea del uso esféico: Áea de la cuña esféica: A uso V cuña α

6 IES PEÑAS NEGRAS. Geometía. º ESO. Actividad 1: Responde a las siguientes cuestiones: a. Calcula el áea del uso esféico de adio, = 8 cm, y amplitud α = 45º. b. Calcula el volumen de la cuña esféica. 7. LA ESFERA TERRESTRE Elementos de la esfea teeste. - Eje teeste: Eje imaginaio de la Tiea cuando gia sobe sí misma. Sus extemos son el Polo Note y el Polo Su. - Ecuado: Es la cicunfeencia máxima pependicula al eje de la Tiea. Divide a la Tiea en dos Hemisfeios, el Hemisfeio Note y el Hemisfeio Su. Los Polos están sepaados 90º del Ecuado. - Meidianos: Cicunfeencias que pasan po los Polos, y que son pependiculaes al Ecuado. Cada punto de la Tiea tiene su Meidiano, po lo tanto, ay un númeo infinito de ellos. El llamado "Meidiano Ceo", es aquél que sive de efeencia paa medi las Longitudes, también se le denomina Meidiano de Geenwic, ya que pasa po la ciudad inglesa de Geenwic. - Paalelos: Son las cicunfeencias paalelas y menoes al Ecuado. También ay un númeo infinitos de ellos, peo se destacan: el Tópico de Cánce, el Tópico de Capiconio, el Cículo Pola Ático y el Cículo Pola Antático. 7.. Coodenadas geogáficas. Los paalelos y meidianos foman una ed geogáfica de líneas imaginaias que pemiten ubica la posición de un punto cualquiea en la supeficie teeste. Las Coodenadas Geogáficas o Teestes son la Latitud y Longitud y se expesan en gados sexagesimales. - La Latitud: es la medida en gados, sobe el mismo meidiano, ente el Ecuado y el punto coespondiente. El Ecuado se toma como línea de base, y le coesponde la Latitud de 0º. Todos los puntos que estén ubicados en el mismo paalelo, les coesponden la misma Latitud. Puede medi de 0º a 90º, todos aquellos que se encuenten al Su del Ecuado, eciben la denominación Su (S), con signo negativo; y aquellos que se encuenten al Note del Ecuado, eciben la denominación Note (N), con signo positivo. - La Longitud: es la medida en gados, sobe el Ecuado, ente el Meidiano Ceo y el meidiano que pasa po el punto coespondiente. El llamado Meidiano de Geenwic se toma como línea de base, y le coesponde la Longitud de 0º. Todos los puntos que estén ubicados en el mismo meidiano, les coesponden la misma Longitud.

7 IES PEÑAS NEGRAS. Geometía. º ESO. Puede medi de 0º a 180º, todos aquellos que se encuenten al Oiente (Este) del Meidiano de Geenwic, eciben la denominación Este (E); y aquellos que se encuenten al Oeste del Meidiano de Geenwic, eciben la denominación Oeste (O). Los polos Note y Su no tienen Longitud.

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 223 EJERCICIOS Cuepos de evolución 1 Cuáles de las siguientes figuas son cuepos de evolución? De cuáles conoces el nombe? a) b) c) d) e) f) g) h) i) Todos son cuepos de evolución, excepto

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página 68 Reconoce, nomba y descibe figuas geométicas que apaecen en esta ilustación. Respuesta libe. Po ejemplo: cilindo, otoedo, cono, pisma tiangula Recueda otas figuas geométicas que foman pate

Más detalles

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro OBJETIVO 1 CLASIICAR POLIEDROS NOMBRE: CURSO: ECHA: POLIEDROS Un poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Aista Los polígonos que limitan al poliedo se llaman caas. Caa

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

CLASIFICAR POLIEDROS. Nombre: Curso: Fecha:

CLASIFICAR POLIEDROS. Nombre: Curso: Fecha: CLASIICAR POLIEDROS OBJETIVO 1 Nombe: Cuso: eca: POLIEDROS poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Los polígonos que limitan al poliedo se llaman caas. Los lados de las

Más detalles

( ) RESOLUCIÓN RESOLUCIÓN SEMANA 16 ESFERA Y ROTACIONES RPTA.: E RPTA.: C

( ) RESOLUCIÓN RESOLUCIÓN SEMANA 16 ESFERA Y ROTACIONES RPTA.: E RPTA.: C SEMN 6 ESFER Y ROTCIONES. Calcule a que distancia del cento de una esfea de adio R ( + 5) se debe secciona con un plano paa que la difeencia de las áeas de los casquetes esféicos deteinados sea igual al

Más detalles

UNIDAD 4: CIRCUNFERENCIA CIRCULO:

UNIDAD 4: CIRCUNFERENCIA CIRCULO: UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y

Más detalles

plano de la siguiente pirámide está compuesto por un cuadrado (base) y cuatro (4) triángulos isósceles. Longitud del lado del cuadrado 3 cm

plano de la siguiente pirámide está compuesto por un cuadrado (base) y cuatro (4) triángulos isósceles. Longitud del lado del cuadrado 3 cm Matemáticas 9 Bimeste: III Númeo de clase: 26 Clase 26 Esta clase tiene video Tema: Áea y volumen de las piámides Actividad 60 1 El áea total de una piámide se puede calcula a pati de su desaollo plano.

Más detalles

CAPÍTULO 11: ÁREAS Y VOLÚMENES (I)

CAPÍTULO 11: ÁREAS Y VOLÚMENES (I) CAPÍTULO 11: ÁREA Y VOLÚMENE (I) Dante Gueeo-Canduví Piua, 015 FACULTAD DE INGENIERÍA Áea Deatamental de Ingenieía Industial y de istemas CAPÍTULO 11: ÁREA Y VOLÚMENE (I) Esta oba está bajo una licencia

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Mateia: Matemáticas. Tema: Geometía 18 Exploando la esfea-1. Fecha: Pofeso: Fenando Viso Nombe del alumno: Sección del alumno: CONDICIONES: Tabajo individual. Sin libos, ni cuadenos, ni

Más detalles

Ejercicios. 100 Capítulo 8 Construcciones geométricas

Ejercicios. 100 Capítulo 8 Construcciones geométricas jecicios 1. a. Taza la ecta (MN). b. Taza la semiecta [N). c. Taza el segmento [Q]. d. Taza el segmento []. e. Taza la ecta (). f. Taza la semiecta [).. 7. () [] [) (G) G () [) [) () [] [] [) (G) H 8.

Más detalles

OPTIMIZACIÓN DE FUNCIONES DE UNA VARIABLE

OPTIMIZACIÓN DE FUNCIONES DE UNA VARIABLE Matemáticas º Bacilleato. OTIMIZACIÓN DE UNCIONE DE UNA VARIABLE ROBLEMA DE OTIMIZACIÓN aa esolve un poblema de optimización se siguen los siguientes pasos:. Lee bien el enunciado.. i el poblema tiene

Más detalles

Generalidades y ángulos en la circunferencia. II Medio 2016

Generalidades y ángulos en la circunferencia. II Medio 2016 Genealidades y ángulos en la cicunfeencia II Medio 2016 pendizajes espeados Identifica los elementos de una cicunfeencia y un cículo. Calcula áeas y peímetos del cículo, del secto cicula y del segmento

Más detalles

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A.

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A. 1 Halla la mediatiz del segmento. 2 Taza la ecta pependicula a la ecta po el punto. 3 Taza la pependicula a la ecta desde el punto. uál es la distancia del punto a la ecta? 4 Dibuja dos ectas pependiculaes

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Definición 39. Circunferencia de centro en O y radio r en un plano π. Figura 141. Podemos definir este conjunto por comprensión así: C O,

Definición 39. Circunferencia de centro en O y radio r en un plano π. Figura 141. Podemos definir este conjunto por comprensión así: C O, 9.1 NOCIONES BÁSICAS Definición 9. Cicunfeencia de cento en O y adio en un plano π. Es el conjunto (luga geomético) de todos los puntos de un plano un punto dado O, llamado cento, una distancia., que equidistan

Más detalles

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =

Más detalles

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA CIRCUNRNCIA UNIA III III. INICIÓN CIRCUNRNCIA Una cicunfeencia se define como el luga geomético de los puntos P, que equidistan de un punto fijo en el plano llamado cento. La distancia que eiste de cualquiea

Más detalles

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía

Más detalles

La recta n forma un ángulo de 60 (trazar con reglas) con la recta r. Qué ángulos forma la recta n con la recta s? NOMBRE: Nº 1ºESO

La recta n forma un ángulo de 60 (trazar con reglas) con la recta r. Qué ángulos forma la recta n con la recta s? NOMBRE: Nº 1ºESO 1. OCBULRIO BÁSICO 1. Dibuja las siguientes ectas siguiendo las instucciones: La ecta vetical es pependicula a las ectas s y q. La distancia ente estas dos ectas es de 20mm. o La ecta n foma un ángulo

Más detalles

Apuntes de Trigonometría Elemental

Apuntes de Trigonometría Elemental Apuntes de Tigonometía Elemental José Antonio Salgueio González IES Bajo Guadalquivi - ebija ii Agadecimientos A Rocío, que con su apoyo hace posible la ealización de este poyecto 1 Índice geneal Agadecimientos

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS 1.3. OPERCIONES CON SEGMENTOS 1. Realiza las siguientes opeaciones con segmentos a b c 1º a+2b-c 1º 2º a+c-b 2º 3º 3a+c-b 3º TEM 1 - Opeaciones con segmentos página 3 1.3.2. TEOREM DE TLES 1. Divide el

Más detalles

IV: Medida de magnitudes para maestros. Capitulo 1: Magnitudes y medida

IV: Medida de magnitudes para maestros. Capitulo 1: Magnitudes y medida IV: Medida de magnitudes paa maestos. apitulo 1: Magnitudes y medida SELEIÓN DE EJERIIOS RESUELTOS ATIVIDAD INTRODUTORIA (Ejecicios 1 y 13): 1. Viginia avanza un meto, apoximadamente, cada dos pasos. En

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

11 FORMAS GEOMÉTRICAS

11 FORMAS GEOMÉTRICAS 11 FRMS GEMÉTRIS EJERIIS PRPUESTS 11.1 Dos puntos deteminan una ecta. a) uántas ectas se pueden taza con un solo punto? b) ómo son las ectas que pasan po ese punto? a) Tantas como se quiea. b) Secantes,

Más detalles

ELIMINATORIA, 14 de abril de 2007 PROBLEMAS

ELIMINATORIA, 14 de abril de 2007 PROBLEMAS ELIMINATORIA, 14 de abil de 007 PROBLEMAS 1) Un númeo positivo tiene la popiedad de que su doble es una unidad más gande que él, cuántos divisoes positivos tiene? a) 1 b) c) 3 d) No se puede detemina )

Más detalles

IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS

IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS A. COORDENADAS POLARES Dado un punto en el plano catesiano, (coodenadas ectangulaes), dicho punto puede se epesentado con otas coodenadas (coodenadas polaes)

Más detalles

Fig. 1 Esquema para el cálculo de B

Fig. 1 Esquema para el cálculo de B P1- CAMPO DE UN AAMRE (EY DE OT-SAVART). Considee una poción de un alambe ecto de longitud po el que cicula una coiente constante. (a) Calcule la inducción magnética paa puntos sobe el plano que divide

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Matemáticas para Maestros Primer Curso Grado en Primaria 2014/2015. Tema 2. Magnitudes Geométricas

Matemáticas para Maestros Primer Curso Grado en Primaria 2014/2015. Tema 2. Magnitudes Geométricas Tema 2. Magnitudes Geométicas 1. Intoducción En pime luga tataemos de una cualidad de las figuas planas (su extensión, lo que ocupan en el plano) llamada, genealmente, supeficie o áea. Algunos autoes establecen

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

5.2 PROBLEMAS PRACTICOS DE MÁXIMOS Y MINIMOS

5.2 PROBLEMAS PRACTICOS DE MÁXIMOS Y MINIMOS 8. Un avión que vuela a velocidad constante de Km/h pasa sobe una estación teeste de ada a una altua de 1 Km. Y se eleva a un ángulo de º. qué velocidad aumenta la distancia ente el avión la estación de

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO.

9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO. REPASO Y APOYO OBJETIVO 1 9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO. ESTUDIAR LAS POSICIONES RELATIVAS RECTA ecta G A A y B A B A ACTIVIDADES 1 Dibuja un punto P y taza cuato ecta que

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas ETS. Ingenieía de Telecomunicación Dpto. Teoía de la Señal Comunicaciones CAMPOS ELECTROMAGNÉTICOS Tema. Cálculo Vectoial Coodenadas Catesianas, Cilíndicas Esféicas P.- Dado un vecto A = + (a) su magnitud

Más detalles

Trigonometría. Positivo

Trigonometría. Positivo Seminaio Univesitaio de Ingeso 17 Tigonometía La tigonometía es una de las amas de la matemática, cuyo significado etimológico es la medición de los tiángulos. Se deiva del vocablo giego tigōno: "tiángulo"

Más detalles

Movimiento en dos dimensiones

Movimiento en dos dimensiones Movimiento en dos dimensiones Nivelatoio de Física ESPOL Ing. José David Jiménez Continuación Contenido: Movimiento cicula Movimiento cicula Existen muchos ejemplos de movimiento cicula: Discos de música

Más detalles

Geometría 2/2. Material UA. Material propiedad de sus autores. Ojo tiene errores. Magisterio Infantil - Primaria

Geometría 2/2. Material UA. Material propiedad de sus autores. Ojo tiene errores. Magisterio Infantil - Primaria Geometía 2/2 Mateial U Mateial popiedad de sus autoes. Ojo tiene eoes Magisteio Infantil Pimaia / licante 84 Junto Telepizza 695400027 www.academiaup.es info@academiaup.es Univesidad de licante FIGURS

Más detalles

A B. Teniendo en cuenta que el lado de un pentágono regular es la sección aurea de su diagonal, se tiene la siguiente construcción:

A B. Teniendo en cuenta que el lado de un pentágono regular es la sección aurea de su diagonal, se tiene la siguiente construcción: 1. Dibuja el pentágono egula de diagonal 120 mm. D E O G AF/2 A B F Pate pimea: Dibujo del pentágono. Teniendo en cuenta que el lado de un pentágono egula es la sección auea de su diagonal, se tiene la

Más detalles

6.1. SUPERFICIE PRISMÁTICA Y PRISMA

6.1. SUPERFICIE PRISMÁTICA Y PRISMA 6 6.1. SUPERFICIE PRISMÁTICA Y PRISMA 6.. SUPERFICIE PIRAMIDAL Y PIRÁMIDE 6.. CUERPOS REDONDOS. 6.4. SÓLIDOS DE REVOLUCIÓN Objetivos: Detemina áeas de supeficies. Detemina volúmenes de sólidos. 14 Inicialmente

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

SERIE # 3 CÁLCULO VECTORIAL

SERIE # 3 CÁLCULO VECTORIAL SERIE # 3 ÁLULO VETORIAL ÁLULO VETORIAL Página 1 1) Sea el campo vectoial F (x,y,)=( 3x+ y)i+( x+ y ) j ( x) k. alcula lago de la cuva : 4 5 x = + y y =, del punto A ( 3, 1, 1) al punto B ( 3, 1, -1).

Más detalles

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE UERZA MAGNÉTCA SORE UN CONDUCTOR QUE TRANSPORTA CORRENTE J v d +q J Podemos calcula la fueza magnética sobe un conducto potado de coiente a pati de la fueza qv x sobe una sola caga en movimiento. La velocidad

Más detalles

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.:

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.: Campo eléctico 1. Calcula el valo de la fueza de epulsión ente dos cagas Q 1 = 200 µc y Q 2 = 300 µc cuando se hallan sepaadas po una distancia de a) 1 m. b) 2 m. c) 3 m. Resp.: a) 540 N, b) 135 N, c )

Más detalles

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 )

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 ) COLEGIO ESTRADA DE MARIA AUILIADORA CIENCIA, TRABAJO VALORES: MI PROECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (0 ) Fecha: Nombe del estudiante: N O T A La nivelación es en foma de talle donde

Más detalles

Modelo Pregunta 3A. El campo electrostático creado por una carga puntual q, situada en el

Modelo Pregunta 3A. El campo electrostático creado por una carga puntual q, situada en el Modelo 2014. Pegunta 3A. El campo electostático ceado po una caga puntual q, situada en el 9 1 oigen de coodenadas, viene dado po la expesión: E = u 2 N C, donde se expesa en m y u es un vecto unitaio

Más detalles

3.3.6 Perímetro en la circunferencia y área en el círculo.

3.3.6 Perímetro en la circunferencia y área en el círculo. 3.3.6 Peímeto en a cicunfeencia y áea en e cícuo. Peímeto de a cicunfeencia. Es a ongitud (L de a cicunfeencia, se cacua con as siguientes fómuas. d adio diámeto L = d Peo d =, entonces L = Ecuación paa

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo DIBUJO ÉCNICO BACHILLERAO Láminas esueltas del EMA 4. ANGENCIAS. Depatamento de Ates lásticas y Dibujo 1.- Dibuja 2 cicunfeencias adio 10 mm. que sean ANGENES EXERIORES a la dada y ente ellas. 2.- Dibuja

Más detalles

TEMA10. VECTORES EN EL ESPACIO.

TEMA10. VECTORES EN EL ESPACIO. TEMA0. VECTORES EN EL ESPACIO..- Coodenadas en el espacio: En el espacio tidimensional, un punto P iene deteminado po tes coodenadas P(x, y, z) que epesentan las distancias diigidas desde los planos de

Más detalles

Sector Circular Longitud de Arco. Sector Circular. Und. 1 Introducción a la Trigonometría

Sector Circular Longitud de Arco. Sector Circular. Und. 1 Introducción a la Trigonometría Llamamos desaollo de una supeficie lateal al conjunto de puntos de la supeficie imaginaia que envuelve a un sólido y que es extendida sobe un plano. En pincipio toda supeficie lateal puede epesentase sobe

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FÍSICA GENERAL II GUÍA - Campo eléctico: Ley de Gauss Objetivos de apendizaje Esta guía es una heamienta que usted debe usa paa loga los siguientes objetivos: Defini el concepto de Flujo de Campo Eléctico.

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS Paa los inteeses de la Física, los Campos Vectoiales se clasifican en dos gupos: -CAMPOS VECTORIALES CONSERVATIVOS.CAMPOS VECTORIALES NO CONSERVATIVOS Los de

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

Teorema para Calcular el área de un cuadrilátero

Teorema para Calcular el área de un cuadrilátero Teoema paa alcula el áea de un cuadiláteo ilton Favio onaie eña El siguiente polema pulicado el 1 de Feeo del 2018, en la evista Tiangulos ai 1, nos pemitiá mosta algunos esultados inteesantes. olema 867

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

LINEA: Es una sucesión infinita de puntos. Pueden ser lineas curvas o líneas rectas.

LINEA: Es una sucesión infinita de puntos. Pueden ser lineas curvas o líneas rectas. puntes geometía: Constucciones básicas º ESO LINE: Es una sucesión infinita de puntos. ueden se lineas cuvas o líneas ectas. LINE CUR. Es una sucesión infinita de puntos en difeentes diecciones. LINE RECT.

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

1. (JUN 04) Se consideran la recta y los planos siguientes: 4

1. (JUN 04) Se consideran la recta y los planos siguientes: 4 Matemáticas II Cuso.. (JUN ) Se considean la ecta los planos siguientes ; ;. Se pide (a) Detemina la posición elativa de la ecta con especto a cada uno de los planos. (b) Detemina la posición elativa de

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles

Física y Química 1ºBto. Profesor Félix Muñoz

Física y Química 1ºBto. Profesor Félix Muñoz 1. Tes cagas de + 3 µc, µc y + 1 µc se encuentan en el vacío situadas espectivamente en los puntos A (- 3,0), O (0, 0) y B (3, 0). Halla el potencial eléctico en el punto P (0, ). Las longitudes están

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES. Halla las dimensiones del ectángulo de áea máima que se puede inscibi en una cicunfeencia de adio 5 cm. A máima 5cm Po el teoema de Pitágoas: 0 de donde 0cm 00 La

Más detalles

Iw La energía cinética de Rotación es simplemente una manera conveniente de expresar la energía cinética de un cuerpo que está girando.

Iw La energía cinética de Rotación es simplemente una manera conveniente de expresar la energía cinética de un cuerpo que está girando. DNAMCA ROTACONAL ENERGA CNÉTCA DE ROTACON Y MOMENTO DE NERCA Cada patícula en un cuepo en otación, tiene una cieta cantidad de enegía cinética, una patícula de masa a una distancia V ω Luego: La Enegía

Más detalles

Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 6-. Ejemplo º. Calcula el potencial eléctico ceado po un hilo ectilíneo e infinito, que pesenta

Más detalles

X I OLIMPIADA NACIONAL DE FÍSICA

X I OLIMPIADA NACIONAL DE FÍSICA X I LIMPIADA NACINAL D FÍSICA FAS LCAL - UNIVSIDADS D GALICIA - 18 de Febeo de 2000 APLLIDS...NMB... CNT... PUBA BJTIVA 1) Al medi la masa de una esfea se obtuvieon los siguientes valoes (en gamos): 4,1

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

4.- (1 punto) Como ya sabéis, el campo eléctrico creado por una carga en un punto P, es una magnitud vectorial que viene dada por la expresión E K u

4.- (1 punto) Como ya sabéis, el campo eléctrico creado por una carga en un punto P, es una magnitud vectorial que viene dada por la expresión E K u Nombe: Cuso: º Bachilleato B Examen I Fecha: 5 de febeo de 08 Segunda Evaluación Atención: La no explicación claa y concisa de cada ejecicio implica una penalización del 5% de la nota.- (,5 puntos) Halla

Más detalles

PROBLEMAS RESUELTOS DE MOMENTOS DE INERCIA

PROBLEMAS RESUELTOS DE MOMENTOS DE INERCIA UNVERSDAD NACONAL DEL CALLAO FACULTAD DE NGENERÍA ELÉCTRCA ELECTRÓNCA ESCUELA PROFESONAL DE NGENERÍA ELÉCTRCA CURSO : MECÁNCA DE SÓLDOS PROFESOR : ng. JORGE MONTAÑO PSFL PROBLEMAS RESUELTOS DE MOMENTOS

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 11 Figuas en el espacio Recueda lo fundamental Nombe y apellidos:... Cuso:... Fecha:... FIGURAS EN EL ESPACIO POLIEDROS REGULARES Y SEMIRREGULARES Un poliedo es egula si sus caas son... y en cada vétice

Más detalles

TEMA 2.- Campo gravitatorio

TEMA 2.- Campo gravitatorio ema.- Campo gavitatoio EMA.- Campo gavitatoio CUESIONES.- a) Una masa m se encuenta dento del campo gavitatoio ceado po ota masa M. Si se mueve espontáneamente desde un punto A hasta oto B, cuál de los

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física º Bachaelato DEPARTAMENTO DE FÍSICA E QUÍMICA Ondas y gavitación 14/1/07 Nombe: Poblema 1. Un satélite de 100 kg tada 100 minutos en descibi una óbita cicula alededo de la Tiea. Calcula: a) La enegía

Más detalles

2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z

2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z Poducto escala 060 Halla la ecuación de la ecta que cota a y s pependiculamente. x = 1 x = 6 µ : y = 11+ s: y = + µ z = 1+ z = + µ Hallamos un punto P y un punto Q s de modo que el vecto PQ sea pependicula

Más detalles

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO SSTEMA ÉRCO Paalelismo, pependiculaidad y distancias Vedadeas magnitudes lineales Objetivos y oientaciones metodológicas TEMA 9 Esta unidad temática es fundamental y, a la vez, su explicación se puede

Más detalles

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo.

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo. 12 uepos en el espacio 1. Elementos básicos en el espacio ibuja a mano alzada un punto, una ecta, un omboide y un cubo. P I E N S A Y A L U L A Recta Punto Romboide ubo ané calculista 489,6 : 7,5 = 65,28;

Más detalles

XLIX Olimpiada Matemática Española

XLIX Olimpiada Matemática Española XLIX Olimpiada Matemática Española Fase Local Melilla 1 de eneo de 01 Poblema 1 Escibimos en fila, peo no necesaiamente en oden, los númeos enteos desde el 1 al 01. Calculamos las medias de cada dos númeos

Más detalles

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss Tema 1: Fundamentos Matemáticos 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Flujo, divegencia y teoema de Gauss Concepto

Más detalles

PROBLEMAS MÉTRICOS. 2º Bachillerato ÁNGULOS ENTRE RECTAS Y PLANOS ÁNGULOS ENTRE RECTAS Y PLANOS ÁNGULOS ENTRE RECTAS Y PLANOS. u v. u v.

PROBLEMAS MÉTRICOS. 2º Bachillerato ÁNGULOS ENTRE RECTAS Y PLANOS ÁNGULOS ENTRE RECTAS Y PLANOS ÁNGULOS ENTRE RECTAS Y PLANOS. u v. u v. ÁNGULOS ENTRE RECTAS Y LANOS ROBLEMAS MÉTRICOS EN EL ESACIO 2º Bachilleato Ángulo ente do vectoe. u v = u v co(u, v) u u v α co(u, v) = v u v co α = u v u v ÁNGULOS ENTRE RECTAS Y LANOS Ángulo ente do

Más detalles

Soluciones ejercicios

Soluciones ejercicios Soluciones ejecicios Capítulo 1 adie es pefecto, luego si encuenta eoes, tenga la gentileza de infomanos Ejecicio 1.1 Un cuepo descibe una óbita cicula de adio R =100 m en tono a un punto fijo con apidez

Más detalles

MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores

MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón BLOQUE : GEOMETRÍA DEL ESPCACIO Tema 5: Vectoes MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón Definición de vecto Un sistema de ejes tidimensional se constuye

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio.

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio. CAPÍTUL 7.01 ÁLGEBRA VECTRIAL Sistemas de coodenadas Un sistema de coodenadas es un conjunto de valoes numéicos que deteminan unívocamente la posición de un punto en el espacio euclidiano. Las coodenadas

Más detalles