Estadística para la toma de decisiones

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estadística para la toma de decisiones"

Transcripción

1 Estadística para la toma de decisiones

2 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante diferenciará las distribuciones de probabilidad continuas, a través de la resolución de ejercicios para practicar el cálculo de probabilidad con la distribución normal estándar y resolver problemas del área económica administrativa. Contextualización En esta sesión se estudian las variables aleatorias continuas tipo uniforme, exponencial y normal; así como la distribución de probabilidad normal estándar mayormente utilizada en los procesos estadísticos. Trabajaremos directamente con el cálculo de probabilidades a través de la variable normal estándar y aprenderemos a usar la tabla de probabilidades de esta misma distribución.

3 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 2 Introducción al Tema Cuál es la característica primordial de una variable aleatoria continua? Sabes definir una variable como aleatoria continúa? Cuál es la característica principal de una variable aleatoria normal? Fuente: Una variable aleatoria continua es aquella que puede tomar valores dentro de un rango ininterrumpido.

4 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 3 Explicación Las distribuciones de probabilidad para variables aleatorias continuas son: Distribución uniforme, Distribución exponencial Distribución normal y normal estandarizada. Distribución uniforme Si definimos una variable aleatoria continua x como aquella que está entre a x b cuya función de probabilidad es: f(x) = 1 b a, entonces decimos que x tiene una distribución uniforme continua. Características: Una distribución uniforme en el rango de cero a uno, es la base para generar valores a otras distribuciones de probabilidad. Sirve para estimar el comportamiento de las variables aleatorias cuando se tiene poca información sobre estas, porque se asume que varían aleatoriamente entre dos valores (a, b). Distribución exponencial Esta distribución se usa en fenómenos de líneas de espera para representar los tiempos entre llegadas de clientes a un sistema. Otras aplicaciones son el tiempo para completar una tarea y el tiempo de falla en componentes electrónicos. Su función está dada por: f(x, λ) = λe λx, para 0 < x < Fuente:

5 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 4 Distribución normal La variable aleatoria normal x representa el comportamiento de muchos fenómenos naturales, sociales, económicos, industriales, etc. Por lo que es de bastante uso. La distribución se origina cuando el número de ensayos en una variable aleatoria discreta se vuelve muy grande. Fuente: Características de la curva normal: También es llamada Campana de Gauss, curva de Gauss o curva normal. Es simétrica respecto a su valor central (μ) Su punto máximo coincide con la media(μ) Tiene puntos de inflexión situados a ambos lados de la media (μ) a una distancia (±nσ) de ella. (n = 1,2,3) Su área total bajo la curva es 1 (100%) Esta función no tiene una solución sencilla para calcular valores de probabilidad, por lo que se requiere de una variable especial llamada variable normal estándar (z).

6 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 5 Distribución normal estándar. La distribución de probabilidad normal es una curva simétrica en forma de campana. La curva en su totalidad vale 1, como es simétrica si se divide a la mitad, cada una de ellas vale 0.5, porque = 1.00 que es el área total de esta curva. Observe la Figura 1. Figura 1. Distribución de probabilidad normal Para trabajar con la distribución normal se utiliza la distribución normal estándar, esta distribución se divide a la mitad con la media que vale cero y con desviaciones estándar de valor 1. Observe la Figura 2. Figura 2. Distribución normal estándar 1.00 x = media aritmética s = desviación estándar -3s -2s -1s x 1s 2s 3s Variable transformada en valores de Variable x Recuerde que la desviación estándar es la distancia promedio que hay entre un punto y la media, por ejemplo, la distancia que hay entre x (0) y s (1) es una desviación estándar o la distancia que hay entre x y -3s es tres desviaciones estándar. Observe la Figura 3. No existen distancias negativas, entonces una desviación estándar negativa sólo indica que ésta ubicada a la izquierda de la media y una desviación estándar positiva ésta ubicada a la derecha de la media.

7 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 6 Figura 3. Distancia de la media y una desviación estándar -3s -2s -s x s 2s 3s 1 desviación estándar 3 desviaciones estándar Con la distribución normal se calculan áreas bajo la curva, por ejemplo, el área que hay entre la media y una desviación estándar positiva se presenta en la Figura 4. Esta área tiene un valor que a continuación se explicará como obtenerla. Figura 4. Área entre la media y una desviación estándar positiva x s Área Cuando se presenta un problema a resolver con la distribución normal la variable implicada x se transforma a un valor de z, que son las unidades en términos de desviaciones estándar que utiliza la distribución normal, la fórmula empleada para esta transformación es la siguiente. estándar Valor z: z = x x s donde: z = valor en términos de desviaciones x = media aritmética s = desviación estándar

8 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 7 Para calcular los valores de z se utiliza la Tabla 1 Áreas bajo la curva normal estándar, que se presenta a continuación. Ejemplo 1. Suponga que a varios solicitantes de trabajo se les hace una prueba de aptitud. Los resultados de la prueba forman una distribución normal con media aritmética de 80 y una desviación estándar de 4. a) Qué proporción de resultados obtuvieron entre 80 y 84? b) Qué proporción de resultados se encuentra entre 75 y 83? c) Qué proporción de resultados quedaron entre 75 y 78? d) Qué proporción de resultados es superior a 85? e) Qué proporción de resultados está abajo de 85?

9 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 8 a) Qué proporción de solicitudes obtuvieron entre 80 y 84? x = 80 s = 4 Si x = 80 z = x x = = s 4 4 = 0 como x es la media el valor de z siempre es 0, la media es el centro entonces NO tiene área. x x Si x = 84 z = = = = 1 una desviación estándar, su área es s Variable transformada en valores de z Variable x, resultados de la prueba P(80 x 84) = P(0 z 1) = ó 34.13% Para obtener el área se utiliza la Tabla 1 Áreas bajo la curva normal estándar, al valor de 1, se le agregan dos ceros porque la distribución normal emplea un entero y dos decimales, es decir, 1.00, entonces se busca 1.0 en la columna z y como falta un cero busco en la columna.00, la intersección de estas columnas es la área, es decir, b) Qué proporción de resultados se encuentra entre 75 y 83? x x Si x = 75 z = = = = 1.25 desviaciones estándar, su área es s 4 4 x x Si x = 83 z = = = = su área es s 4 4

10 ESTADÍSTICA PARA LA TOMA DE DECISIONES P(75 x 83) = P( 1.25 z 0.75) = P( 1.25 z 0) + P(0 z 0.75) = = ó 66.78% La Tabla 1 Áreas bajo la curva normal estándar presenta sólo valores positivos, pero, como es simétrica, la área de 1.25 y 1.25 es el misma. Entones para obtener el área de 1.25 se busca 1.2 en la columna z y como falta un cinco busco en la columna.05, la intersección de estas columnas es la área, es decir, Para la área de 0.75 se busca.7 en la columna z y como falta un cinco busco en la columna.05, la área es decir, c) Qué proporción de resultados quedaron entre 75 y 78? x x Si x = 78 z = = = = 0. 5 desviaciones estándar, su área es s

11 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 10 P(75 x 78) = P( 1.25 z 0.5) = P( 1.25 z 0) P( 0.5 z 0) = = ó 20.29% d) Qué proporción de resultados es superior a 85? x = 80 s = 4 Si x = 85 z = x x = = s 4 4 = su área es P(x > 85) = P(z > 1.25) 0.5 = P(z 0) P(0 z 1.25) = = ó 10.56% e) Qué proporción de resultados está abajo de 85?

12 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 11 P(x < 85) = P(z < 1.25) = P(z 0) + P(0 z 1.25) = = ó 89.44%

13 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 12 Conclusión Las distribuciones continuas vistas en esta sesión son las más importantes en el uso de variables continuas. De la distribución normal vimos su descripción, gráfica y características y por qué se utiliza la variable normal estandarizada. La distribución normal estándar es la de uso más extendido dentro de las aplicaciones de probabilidad. Ello debido a que modela prácticamente cualquier fenómeno presente en situaciones de todo tipo.

14 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 13 Para aprender más En este apartado encontrarás más información acerca del tema para enriquecer tu aprendizaje. Puedes ampliar tu conocimiento visitando el siguiente sitio de Internet. Distribuciones de probabilidad para variables aleatorias. Distribución normal. Es de gran utilidad visitar el apoyo correspondiente al tema, porque te permitirá desarrollar los ejercicios con más éxito.

15 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 14 Actividad de Aprendizaje Con lo aprendido en esta sesión acerca de la distribución de probabilidad normal resuelve los siguientes ejercicios: 1. El proceso de empaque de una productora de cereales ha sido ajustado para que cada paquete contenga un promedio de 13 onzas de cereal. A causa de las fuentes aleatorias de variabilidad la desviación estándar del peso neto real es de 0.10 onzas, y se sabe que la distribución de pesos sigue una distribución normal de probabilidad. Determine la probabilidad de que: a) Un paquete aleatoriamente elegido contenga entre 13 y 13.2 onzas. b) El peso del cereal exceda de onzas. c) El peso del cereal se encuentre entre 12.9 y 13.1 onzas. 2. Una persona con una buena historia crediticia tiene una deuda promedio de $ Suponga que la desviación estándar es de $3540 y que los montos de las deudas están distribuidos normalmente. a) Cuál es la probabilidad de que la deuda de una persona con buena historia crediticia sea mayor a $18,000? b) De qué la deuda de una persona con buena historia crediticia sea de menos de $10,000? c) De qué de la deuda de una persona con buena historia crediticia este entre $12,000 y $18,000? d) De qué la deuda de una persona con buena historia crediticia sea mayor a $14,000? 3. De acuerdo con la Sleep Foundation, en promedio se duermen 6.8 horas por noche. Suponga que la desviación estándar es 0.6 horas y que la distribución de probabilidad es normal.

16 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 15 a) Cuál es la probabilidad de que una persona seleccionada al azar duerma más de ocho horas? b) De qué una persona tomada aleatoriamente duerma 6 horas o menos? c) Los médicos aconsejan dormir entre siete y nueve horas por noche. Qué porcentaje de la población duerme esta cantidad? Entregar esta actividad en formato de Práctica de Ejercicios y súbelo a la plataforma. Recuerda que la actividad vale el 5% de la calificación final.

17 ESTADÍSTICA PARA LA TOMA DE DECISIONES. 16 Bibliografía Anderson, D., Sweeney, D., Williams, T. (2008). Estadística para administración y economía. (10ª ed.). México: Editorial Cengage Learning. ISBN: Levine, David M., Krehbiel, Timothy C. y Berenson, Mark L. (2012): Estadística descriptiva. México: Pearson Educación Lind Douglas A., Marchal William G. y Wathen Samuel A. (2008): Estadística aplicada a los negocios y la economía. México: McGraw-Hill. Cibergrafía Ángel, J. Sedano, M. Vila, A. (s.f.). La distribución normal. Recuperado de: Hernández, J. (s.f.). Distribuciones de probabilidad para variables aleatorias. Recuperado de: 20discretas.pdf Lejarza, J. (s.f.). Distribución normal. Recuperado de:

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 3 Nombre: Estadística descriptiva: medidas numéricas. Objetivo Al término de la sesión el estudiante calculará

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 12 Nombre: Números índice para datos económicos y administrativos Objetivo Al término de la sesión el estudiante

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. Sesin No. Nombre: Introduccin a la Probabilidad. Objetivo Al término de la sesin el estudiante distinguirá las reglas de la

Más detalles

Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS

Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS Matemáticas 1 Sesión No. 1 Nombre: Fundamentos del Álgebra Contextualización Esta sesión está diseñada para ofrecer una breve explicación de los principios aritméticos y algebraicos que se requieren para

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 5 Nombre: Desigualdades lineales, cuadráticas y valor absoluto Objetivo de la asignatura: En esta sesión el estudiante conocerá las características y métodos de

Más detalles

Sesión No. 2. Contextualización. Nombre: Polinomios y expresiones racionales MATEMÁTICAS.

Sesión No. 2. Contextualización. Nombre: Polinomios y expresiones racionales MATEMÁTICAS. Matemáticas 1 Sesión No. 2 Nombre: Polinomios y expresiones racionales Contextualización Los polinomios son expresiones algebraicas que son las de mayor uso y aplicación en cualquiera de las áreas de las

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 8 Nombre: Depreciación. Parte I Objetivo Al término de la sesión el estudiante solucionará problemas reales de depreciación a través de la aplicación de los

Más detalles

Programa de estudios por competencias Licenciatura en Administración

Programa de estudios por competencias Licenciatura en Administración Programa de estudios por competencias Licenciatura en Administración 1. IDENTIFICACIÓN DEL CURSO Centro Universitario: CENTRO UNIVERSITARIO DEL NORTE Departamento: FUNDAMENTOS DEL CONOCIMIENTO Academia:

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 3 Nombre: Ecuaciones Lineales Objetivo de la asignatura: En esta sesión el estudiante aplicará las principales propiedades de ecuaciones lineales con la finalidad

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 4 Nombre: Distribuciones de probabilidad para variables Contextualización En la sesión anterior se definió el concepto de variable aleatoria

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 11 Nombre: Funciones exponenciales y logarítmicas. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos relacionados con las funciones

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 1 Nombre: Introducción al algebra Objetivo de la asignatura: El estudiante aplicará los conceptos fundamentales del álgebra como números reales, exponentes, radicales

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Distribuciones de probabilidad discretas

Distribuciones de probabilidad discretas Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin

Más detalles

Distribución normal estándar. Juan José Hernández Ocaña

Distribución normal estándar. Juan José Hernández Ocaña Distribución normal estándar Juan José Hernández Ocaña Tipos de variables jujo386@hotmail.com Tipos de variables Cualitativas Son las variables que expresan distintas cualidades, características o modalidades.

Más detalles

Habilidades Matemáticas. Alejandro Vera

Habilidades Matemáticas. Alejandro Vera Habilidades Matemáticas Alejandro Vera La distribución normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones donde podemos

Más detalles

ESTADÍSTICA SEMANA 3

ESTADÍSTICA SEMANA 3 ESTADÍSTICA SEMANA 3 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO...

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 8 Nombre: Concepto de función, función lineal y su gráfica. Objetivo de la asignatura: En esta sesión el estudiante aplicará los métodos para la obtención de la

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación

Más detalles

La distribución de Probabilidad normal, dada por la ecuación:

La distribución de Probabilidad normal, dada por la ecuación: La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada

Más detalles

Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema Tema 17 Generación de números al azar Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Obtener números aleatorios a partir de un proceso de generación. Validar las características

Más detalles

5. Regresión Lineal Múltiple

5. Regresión Lineal Múltiple 1 5. Regresión Lineal Múltiple Introducción La regresión lineal simple es en base a una variable independiente y una dependiente; en el caso de la regresión línea múltiple, solamente es una variable dependiente

Más detalles

Matemáticas. Sesión #2. Polinomios y expresiones racionales.

Matemáticas. Sesión #2. Polinomios y expresiones racionales. Matemáticas Sesión #2. Polinomios y expresiones racionales. Contextualización Los polinomios son expresiones algebraicas que son las de mayor uso y aplicación en cualquiera de las áreas de las matemáticas,

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Estadística Inferencial. Sesión No. 12 Números índices

Estadística Inferencial. Sesión No. 12 Números índices Estadística Inferencial Sesión No. 12 Números índices Contextualización En esta sesión se definirán los números índices, simples y compuestos así como también se describirán los tipos de índices más comunes,

Más detalles

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 10 Nombre: Amortización Objetivo Al término de la sesión el estudiante solucionaría problemas reales a través de la aplicación del cálculo básico de amortización,

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

Tema 4 Variables Aleatorias

Tema 4 Variables Aleatorias Tema 4 Variables Aleatorias 1 Introducción En Estadística Descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y posteriormente se vimos los fundamentos de la teoría de probabilidades.

Más detalles

DISTRIBUCIÓN NORMAL CAPÍTULO 16

DISTRIBUCIÓN NORMAL CAPÍTULO 16 CAPÍTULO 6 DISTRIBUCIÓN NORMAL Cuando los datos están distribuidos con frecuencias ascendentes-descendentes aproimadamente simétricas, se le llama distribución normal. Cuando se trata de una variable discreta,

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

Z i

Z i Medidas de Variabilidad y Posición. Jesús Eduardo Pulido Guatire, marzo 010 Cuando trabajamos el aspecto denominado Medidas de Tendencia Central se observó que tanto la media como la mediana y la moda

Más detalles

SESION 12 LA DISTRIBUCIÓN BINOMIAL

SESION 12 LA DISTRIBUCIÓN BINOMIAL SESION LA DISTRIBUCIÓN BINOMIAL I. CONTENIDOS:. La distribución omial.. Variables aleatorias en una distribución omial. 3. Descripciones de la distribución omial. 4. Distribución de Poisson. II. OBJETIVOS:

Más detalles

TEOREMA DEL LÍMITE CENTRAL

TEOREMA DEL LÍMITE CENTRAL Material de clase n 2 Domingo 13 Junio TEOREMA DEL LÍMITE CENTRAL A medida que n se vuelve más grande, la distribución de las medias muestrales se aproxima a una distribución normal con una media x = µ

Más detalles

Medidas de Distribución

Medidas de Distribución Medidas de Distribución Trabajo a realizar de este tema: En Excel 2003 hoja 1, prepara un(os) cuadro(s) sinópticos o mapas conceptuales o mapas mentales que sinteticen éste capítulo. En la hoja 2 y en

Más detalles

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 9 Nombre: Depreciación. Parte II Objetivo Al término de la sesión el estudiante solucionará problemas de mayor complejidad sobre depreciación a través de

Más detalles

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth 1 Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I Qué es la Puntuación Z? 2 Los puntajes Z son transformaciones que se pueden hacer a los valores o puntuaciones de una distribución normal, con el propósito

Más detalles

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Objetivos de Lección Conocer características principales de una

Más detalles

UNIVERSIDAD DEL NORTE

UNIVERSIDAD DEL NORTE UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador Pontificia Universidad Católica del Ecuador Facultad de Ciencias Administrativas y Contables 1. DATOS INFORMATIVOS: MATERIA CÓDIGO: CARRERA: NIVEL: PARALELO: No. DE CREDITOS CRÉDITOS DE TEORÍA: SEMESTRE:

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Representación de números enteros: el convenio exceso Z

Representación de números enteros: el convenio exceso Z Representación de números enteros: el convenio exceso Z Apellidos, nombre Martí Campoy, Antonio (amarti@disca.upv.es) Departamento Centro Informàtica de Sistemes i Computadors Escola Tècnica Superior d

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fecha Emisión: 2015/09/30 Revisión No. 2 AC-GA-F-8 Página 1 de 5 ESTADÍSTICA I CÓDIGO 160011 PROGRAMA ECONOMÍA ÁREA DE FORMACIÓN CIENCIAS BÁSICAS SEMESTRE SEGUNDO PRERREQUISITOS

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1 Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

FACULTAD: Facultad de Ciencias de la Educación

FACULTAD: Facultad de Ciencias de la Educación INFORMACIÓN GENERAL FACULTAD: Facultad de Ciencias de la Educación CURSO: ESTADISTICA INFERENCIAL Carrera: LICENCIATURA EN ADMINISTRACIÓN EDUCATIVA Nombre del Curso: ESTADISTICA INFERENCIAL Pre-requisito:

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Tercera clase: Introducción al concepto de probabilidad y Distribuciones de probablidad discretas Programa Técnico en Riesgo, 2014 Agenda 1 Concepto de probabilidad

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fecha Emisión: 2015/09/30 Revisión No. 2 AC-GA-F-8 Página 1 de 5 ESTADÍSTICA II CÓDIGO 160012 PROGRAMA ECONOMÍA ÁREA DE FORMACIÓN CIENCIAS BÁSICAS SEMESTRE TERCERO PRERREQUISITOS

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

TRABAJO DE ESTADÍSTICA II DISTRIBUCIÓN NORMAL

TRABAJO DE ESTADÍSTICA II DISTRIBUCIÓN NORMAL TRABAJO DE ESTADÍSTICA II DISTRIBUCIÓN NORMAL A continuación, se presentan una serie de ejercicios los cuales deberán ser resueltos utilizando las fórmulas y conceptos vistos en clase y además, haciendo

Más detalles

Análisis de Decisiones II. Tema 18 Generación de variables aleatorias discretas, continuas y su aplicación. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Tema 18 Generación de variables aleatorias discretas, continuas y su aplicación. Objetivo de aprendizaje del tema Tema 18 Generación de variables aleatorias discretas, continuas y su aplicación Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Emplear la generación de números aleatorios con distribución

Más detalles

INVESTIGACIÓN DE MERCADOS

INVESTIGACIÓN DE MERCADOS INVESTIGACIÓN DE MERCADOS LIC. EN ADMINISTRACIÓN DE EMPRESAS 1 Sesión No. 10 Nombre: Tamaño de la Muestra Contextualización Continuando el tema de muestreo, revisaremos ahora el cálculo de la muestra y

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

ESTADÍSTICA ADMINISTRACIÓN E INGENIERÍAS INGENIERÍA DE SISTEMAS. Asignatura

ESTADÍSTICA ADMINISTRACIÓN E INGENIERÍAS INGENIERÍA DE SISTEMAS. Asignatura Facultad Programa Asignatura ADMINISTRACIÓN E INGENIERÍAS INGENIERÍA DE SISTEMAS ESTADÍSTICA Problema? Cómo aportar al proceso de formación del ingeniero de sistemas mediante la capacitación conceptual

Más detalles

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. 3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,

Más detalles

Micro y Macroeconomía

Micro y Macroeconomía Micro y Macroeconomía 1 Sesión No. 6 Nombre: Teoría del consumidor Contextualización: La microeconomía como herramienta de análisis nos permite el poder comprender el comportamiento de las personas en

Más detalles

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes Objetivos Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos Epígrafes Introducción a los Gráficos p, np. Interpretación Gráficos c y u. Interpretación 2-1 Gráfico

Más detalles

LICENCIATURA EN ADMINISTRACIÓN PLANIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I

LICENCIATURA EN ADMINISTRACIÓN PLANIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I LICENCIATURA EN ADMINISTRACIÓN PLANIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I EQUIPO DOCENTE: PROFESORA RESPONSABLE: DRA: MARTA PECE PROFESOR ADJUNTO: ING. MARCELO DIAZ J.T.P.: LIC. SONIA SUAREZ AÑO 2007

Más detalles

Estadística Inferencial. Sesión No. 8 Pruebas de hipótesis para varianza.

Estadística Inferencial. Sesión No. 8 Pruebas de hipótesis para varianza. Estadística Inferencial. Sesión No. 8 Pruebas de hipótesis para varianza. Contextualización. En las dos sesiones anteriores se vieron métodos de inferencia estadística para medias y proporciones poblacionales.

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

EJERCICIOS. Curso: Estadística. Profesores: Mauro Gutierrez Martinez Christiam Miguel Gonzales Chávez. Cecilia Milagros Rosas Meneses

EJERCICIOS. Curso: Estadística. Profesores: Mauro Gutierrez Martinez Christiam Miguel Gonzales Chávez. Cecilia Milagros Rosas Meneses EJERCICIOS Curso: Estadística Profesores: Mauro Gutierrez Martinez Christiam Miguel Gonzales Chávez. Cecilia Milagros Rosas Meneses 1. Un fabricante de detergente sostiene que los contenidos de las cajas

Más detalles

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA Descripción de la asignatura Estadística I El objetivo de la asignatura es proporcionar al estudiante conocimiento Departamento de Estadística y comprensión

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

Teléfono:

Teléfono: Apartado postal 17-01-218 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: ESTADISTICA II CÓDIGO: 15017 CARRERA: Economía NIVEL: Cuarto No. CRÉDITOS: SEMESTRE / AÑO ACADÉMICO: III semestre 2011-2012 PROFESOR:

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

2. Análisis de varianza

2. Análisis de varianza 1. Análisis de varianza Introducción La estadística inferencial no solo realiza estudios con una muestra, también es necesario trabajar con más de una muestra; las que pueden ser dos o más. Para cada una

Más detalles

UNIDAD III: APLICACIONES ADICIONALES DE LA DERIVADA

UNIDAD III: APLICACIONES ADICIONALES DE LA DERIVADA UNIDAD III: APLICACIONES ADICIONALES DE LA DERIVADA Estimado estudiante continuando con el estudio, determinaremos el comportamiento de una función en un intervalo, es decir, cuestiones como: Tiene la

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

Estadística Descriptiva. SESIÓN 7 Medidas de centralización

Estadística Descriptiva. SESIÓN 7 Medidas de centralización Estadística Descriptiva SESIÓN 7 Medidas de centralización Contextualización de la sesión 7 A través de las sesiones anteriores has aprendido los conceptos básicos de la Estadística, los tipos de datos

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

Hoja 6: Estadística descriptiva

Hoja 6: Estadística descriptiva Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la

Más detalles

PROGRAMA DE ESTUDIOS

PROGRAMA DE ESTUDIOS PROGRAMA DE ESTUDIOS Nombre: ESTADÍSTICA DESCRIPTIVA Carrera: Ingeniería Ambiental, Ecología y Biología Créditos: 6 Horas Teóricas a la semana: 2 Horas Prácticas a la semana: 2 PRESENTACION La necesidad

Más detalles

ESTADÍSTICA GUÍA PROGRAMÁTICA (EDICIÓN 2016) L ICDA.CL AUDIA J U DIT H MORAL E S L ÓPE Z

ESTADÍSTICA GUÍA PROGRAMÁTICA (EDICIÓN 2016) L ICDA.CL AUDIA J U DIT H MORAL E S L ÓPE Z U N I V E R S I D A D D E S A N C A R L O S D E G U A T E M A L A C E N T R O U N I V E R S I T A R I O D E O R I E N T E C I E N C I A S E C O N Ó M I C A S ESTADÍSTICA GUÍA PROGRAMÁTICA (EDICIÓN 2016)

Más detalles

Matemáticas financieras

Matemáticas financieras Matemáticas financieras MATEMÁTICAS FINANCIERAS 1 Sesión No. 2 Nombre: Fundamentos matemáticos Contextualización Para concluir con la unidad introductoria a las matemáticas financieras, en la que estamos

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

Finanzas Corporativas Avanzadas

Finanzas Corporativas Avanzadas Finanzas Corporativas Avanzadas 1 Sesión No. 4 Nombre: Costo de capital. Primera parte. Objetivo de la sesión: Al finalizar la sesión, el alumno será capaz de identificar qué es y cómo se calcula el costo

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

Modelos de PERT/CPM: Probabilístico

Modelos de PERT/CPM: Probabilístico INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO Modelos de PERT/CPM: Probabilístico M. En C. Eduardo Bustos Farías 1 Existen proyectos con actividades que tienen tiempos inciertos, es decir,

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

PROGRAMA INSTRUCCIONAL ESTADÍSTICA

PROGRAMA INSTRUCCIONAL ESTADÍSTICA UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE RELACIONES INDUSTRIALES ESCUELA DE ADMINISTRACIÓN FACULTAD DE CIENCIAS JURÍDICAS Y POLÍTICAS ESCUELA

Más detalles

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma: TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]

Más detalles

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES. Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

CAPÍTULO 4 TÉCNICA PERT

CAPÍTULO 4 TÉCNICA PERT 54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

OBJETIVOS MÍNIMOS Y CRITERIOS DE CALIFICACIÓN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º DE BACHILLERATO

OBJETIVOS MÍNIMOS Y CRITERIOS DE CALIFICACIÓN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º DE BACHILLERATO OBJETIVOS MÍNIMOS Y CRITERIOS DE CALIFICACIÓN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º DE BACHILLERATO COLEGIO MARAVILLAS Realizada por: D Luis Carlos Romero OBJETIVOS MÍNIMOS QUE EL ALUMNO DEBE

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

MEDIDAS DE VARIABILIDAD

MEDIDAS DE VARIABILIDAD MEDIDAS DE VARIABILIDAD 1 Medidas de variabilidad Qué son las medidas de variabilidad? Las medidas de variabilidad de una serie de datos, muestra o población, permiten identificar que tan dispersos o concentrados

Más detalles

Estadística I. Carrera: ADC

Estadística I. Carrera: ADC 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: (Créditos) SATCA 1 Estadística I Ingeniería en Administración ADC-1020 2 2-4 2.- PRESENTACIÓN Caracterización de la

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS

INTRODUCCIÓN AL ANÁLISIS DE DATOS INTRODUCCIÓN AL ANÁLISIS DE DATOS HORARIOS: Lunes, 12:00-13:30 Martes, 8:15-9:45 Jueves, 8:15-9:45 Tema 1. Introducción. El análisis de datos dentro de la estadística. Características de los datos socioeconómicos.

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS. ASIGNATURA: MATEMATICAS. NOTA DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION

Más detalles