ESTALMAT-Andalucía Actividades 06/07 Sesión: 19 Fecha: 14/04/07 Título: Aritmética modular Segundo Curso. Aritmética modular

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTALMAT-Andalucía Actividades 06/07 Sesión: 19 Fecha: 14/04/07 Título: Aritmética modular Segundo Curso. Aritmética modular"

Transcripción

1 Recordando... Aritmética modular División entera (o euclídea). División exacta Definición.- Dados dos numeros naturales a (dividendo) y b 0 (divisor), llamamos división entera entre ellos a la operación que consiste en encontrar otros dos números q (cociente) y r (resto) tales que se cumpla: a = b q + r siendo 0 r < b Se demuestra que q y r existen siempre y son únicos. Cuando el resto es nulo, r = 0, diremos que la división es exacta. Máximo común divisor Definición.- El máximo común divisor de dos números naturales a, b es otro número natural d tal que : 1. d a y d b. 2. Si e N, e a y e b, entonces e d. 3. Se escribe d = m c d (a, b). Esto es lo mismo que decir que el máximo común divisor de dos números es el mayor de sus divisores comunes. Lo calculamos tomando, en la descomposición en factores primos de ambos, los factores primos comunes a a y b elevados a los menores exponentes. Mínimo común múltiplo Definición.-El mínimo común múltiplo de dos números naturales a y b es otro número natural M tal que: 1. a M y b M. 2. Si p N, a p y b p, entonces M p. 3. Se escribe M = m c m (a, b). Esto es lo mismo que decir que el mínimo común múltiplo de dos números es el menor de sus múltiplos comunes. Se calcula tomando, en la descomposición en factores primos de ambos números, los factores primos comunes y no comunes elevados a los mayores exponentes. Antonio Aranda, José M Chacón, Antonio Pozo 1

2 Actividad Descomponer en producto de factores primos los números a = 36 y b = Hallar el m c d (a, b) y el m c m (a, b). 3. Si llamamos d = m c d (a, b) y M = m c m (a, b), comprueba que se verifica la igualdad a b = d M (El producto de dos números coincide con el producto de su m c d por su m c m). 4. Intenta demostrar esta propiedad para cualesquiera números a y b naturales. Algoritmo de Euclides Este algoritmo sirve para hallar el m c d de dos números y se basa en los siguientes hechos: 1. Si r es el resto de la división de a entre b, entonces m c d (a, b) = m c d (b, r). 2. Si a es múltiplo de b, entonces m c d (a, b) = b. 3. Se dividen los dos números iniciales colocando el cociente encima del divisor y el resto debajo del dividendo. Luego el resto pasa a hacer el papel de divisor. Y así, repitiendo la división, llegamos necesariamente a un resto 0. Entonces, el último resto distinto de 0 es el máximo común divisor buscado. Ejemplo: En la práctica hacemos el siguiente esquema, que aplicamos aquí para el caso concreto de hallar el máximo común divisor de 32 y 20 Por tanto, m c d (32, 20) = 4 Actividad Por qué en el algoritmo anterior se llega necesariamente a un resto 0? 2. Aplicar el Algoritmo de Euclides a 33 y 10 para calcular su máximo común divisor. 3. Repetir el algoritmo para 456 y 108. Antonio Aranda, José M Chacón, Antonio Pozo 2

3 Identidad de Bézout Dados dos números naturales a, b, sea d = m c d (a, b). Entonces existen números enteros x, y tales que d = a x + b y El cálculo de los enteros x, y que aparecen en la identidad de Bézout se basa en el algoritmo de Euclides para hallar el máximo común divisor de dos números, debiendo tener presente que los enteros que se obtienen no son únicos. Ejemplo: Hacemos el caso particular a = 33 y b = 10. El máximo común divisor de 33 y 10 es 1: Entonces: esto es, 1 = = 10 3 ( ) = = ( 3) de donde x = 10 e y = 3. 1 = ( 3) Actividad Encontrar una solución a la identidad de Bézout para 456 y Aplicar el caso particular anterior para resolver el siguiente problema de medir el tiempo con relojes de arena: qué puedes hacer para medir un período de 1 minuto si tienes un reloj de 33 minutos y otro de 10 minutos? Antonio Aranda, José M Chacón, Antonio Pozo 3

4 Congruencias Definición.- Fijemos un entero positivo n y sean a, b Z. Se dice que a es congruente con b (módulo n) si a y b dan el mismo resto al dividirlos por n. Ejemplo: (mod 6) porque al dividir 82 entre 6 da resto 4 y al dividir 34 entre 6 da resto 4. Observa que la diferencia = 48 es múltiplo de 6. Actividad 4. Decir que a y b dan el mismo resto al dividirlos entre n es equivalente a decir que a b es múltiplo de n. En notación simbólica: a b (mod n) a b Zn (Zn representa el conjunto de los múltiplos de n) Trata de demostrar esta equivalencia. Recuerda que hay que hacerlo en los dos sentidos. Propiedades: 1. a) Reflexiva a a (mod n), a Z. b) Simétrica Si a b (mod n), entonces b a (mod n). c) Transitiva Si a b (mod n) y b c (mod n), entonces a c (mod n). 2. Si a a (mod n) y b b (mod n), entonces a + b a + b (mod n) y ab a b (mod n). Actividad 5. Las demostraciones de estas propiedades son muy sencillas. Intenta hacer alguna de ellas. Puedes utilizar el resultado de la Actividad 4. Actividad 6. Probar las siguientes afirmaciones. 1. Los números pares son congruentes dos a dos, módulo Los números impares son congruentes dos a dos, módulo Los múltiplos de n son congruentes con 0, módulo n. 4. Todo número es congruente, módulo n, con el resto de su división por n. Antonio Aranda, José M Chacón, Antonio Pozo 4

5 Criterios de divisibilidad Divisibilidad entre 3 Vamos a ver, utilizando congruencias, que un número es divisible entre 3 si la suma de sus cifras es divisible entre 3. Consideremos, por ejemplo, el número Sabemos que su representación en base decimal es: 7542 = Calculemos los restos, módulo 3, de las sucesivas potencias de 10 (restos potenciales): (mod 3) (mod 3) (mod 3) (mod 3) Multiplicando la primera congruencia por 2, la segunda por 4, la tercera por 5 y la última por 7, resulta: (mod 3) de donde 7542 será divisible por 3, si es divisible por 3. Como = 18 es divisible por 3, entonces 7542 es divisible por 3. En general, si a = a a a k 10 k se tiene (mod 3) (mod 3) (mod 3) k 1 (mod 3) Por tanto, a a 0 + a a k (mod 3), de donde: Un número es divisible por tres si la suma de sus cifras es divisible por tres. Actividad 7. Halla, utilizando congruencias, los criterios de divisibilidad para: 9, 2, 5, 11 y 7. Antonio Aranda, José M Chacón, Antonio Pozo 5

6 Actividad 8. Un enigma: emulando a Sherlock Holmes. La escena transcurre en Granada en junio de Hace poco he tenido que ir a renovarme el carnet de identidad, que llevaba ya un par de meses caducado. Es una de esas cosas que tiene uno que hacer tarde o temprano, así que el otro día iba yo todo dispuesto a plantar allí la huella de mi pulgar y marcharme, hasta que me encontré en la comisaría con una cola de unas quince personas, todas ellas esperando a renovar su carnet o hacerse el pasaporte. Una verdadera pesadez. En fin, paciencia. Delante de mí iba una mujer con un bolso naranja que aparentemente se aburría tanto o más que yo, así que empezamos a quejarnos por pasar el rato: Yo no sé por qué no pueden poner a más gente, si ven que ahora, antes de las vacaciones, todo el mundo quiere renovarse el carnet. Hacernos esperar aquí, con este calor..., decía ella. Desde luego, desde luego, contesté, porque yo me tengo que ir y podían darse un poco de prisa. Claro que hay que entenderlos, todo el día rellenando lo mismo... Dije eso porque tampoco me gusta meterles mucha prisa a los pobres. Pues por eso mismo. Si llevan todo el día así, podían tener ya un poco más de práctica, no? Que yo me tengo que ir esta tarde a Chiclana con mi hermana y todavía no tengo ni las maletas hechas, sabes? Al decirlo, me fijé en que tenía acento de Cádiz y le pregunté por eso. Sí, en mi familia somos todos de Cádiz! Yo estuve allí hasta los catorce años y luego me vine a Granada, y mi hermana se fue a Málaga. Desde entonces alternamos las visitas cada tres años: uno me voy yo a Málaga, otro la invito yo aquí a mi casa, y el tercero nos vamos las dos a Chiclana a ver a mis padres. Hemos hecho eso desde que nos fuimos de Cádiz; recuerdo el verano que pasamos con mis padres cuando yo tenía diecisiete años... Me encanta esa playa... En ese momento pareció acordarse de la cola, y dijo A ver si terminan ya y puedo irme de una vez! Sólo quedaban tres personas delante de nosotros; tres o cuatro minutos más. Sabes? Cuando tenía dieciocho años me hice el carnet de identidad. Desde entonces lo he renovado puntualmente cada cinco años, como debe ser, y nunca he tenido que esperar tanto. Hoy todo el mundo se ha puesto de acuerdo para venir eh? Sí, eso parece. Estuvimos esperando un poco más y cuando sólo quedaba una persona delante de nosotros nos dieron el impreso para poner nuestros datos ( rellenen esto, y firmen aquí, aquí y aquí ).. Mientras escribíamos, vi casualmente que la mujer con la que había estado hablando se llamaba Amparo y que había nacido un 29 de febrero. Vaya, curioso día, pensé. Terminamos, entregamos los impresos y las fotos, pusimos la huella donde correspondía y nos limpiamos con la toallita que nos dieron. Le dije a la mujer que hasta luego, le deseé que se lo pasara bien en la playa con su hermana y me quedé pensando mientras me iba a casa que, verdaderamente, Amparo parecía mucho más joven de lo que en realidad era. Cuántos años tenía Amparo? Intenta resolver lógicamente el enigma. Antonio Aranda, José M Chacón, Antonio Pozo 6

7 Actividad 9. Comprueba que la solución del enigma se halla resolviendo el siguiente sistema de ecuaciones modulares, donde x es la edad de Amparo: x 17 (mod 3) x 18 (mod 5) 2005 x 0 (mod 4) o, equivalentemente, Vamos a ver cómo se resuelve: (S) x 2 (mod 3) x 3 (mod 5) x 1 (mod 4) 1. Intenta resolver primero el siguiente sistema modular: a 1 (mod 3) (S 1 ) a 0 (mod 5) a 0 (mod 4) Solución.- Como m.c.d. (3, 20) = 1, por la identidad de Bézout, tenemos que = 1. Esto es, 20 = 3 ( 7) + 1, lo que nos dice que 20 (que da resto 0 al dividirlo entre 20) da resto 1 al dividirlo entre 3. Así, tenemos una solución: 2. Haz lo mismo con: Indicación: Utiliza Bézout con 5 y Haz lo mismo con: Indicación: Utiliza Bézout con 4 y 15. (S 2 ) (S 3 ) 20 1 (mod 3) 20 0 (mod 5) 20 0 (mod 4) b 0 (mod 3) b 1 (mod 5) b 0 (mod 4) c 0 (mod 3) c 0 (mod 5) c 1 (mod 4) 4. Comprueba que x = 2a + 3b + c = 127 es una solución del sistema (S). 5. Demuestra que, sumando múltiplos enteros de 60 = 3 5 4, se obtienen otras soluciones, entre ellas las del enigma inicial. Antonio Aranda, José M Chacón, Antonio Pozo 7

ESTALMAT-Andalucía Actividades 2012/2013 Sesión: 19 Fecha: 04/05/2013 Título: Aritmética modular Segundo Curso. Aritmética modular

ESTALMAT-Andalucía Actividades 2012/2013 Sesión: 19 Fecha: 04/05/2013 Título: Aritmética modular Segundo Curso. Aritmética modular Recordando... Aritmética modular División entera (o euclídea). División exacta La división con resto o, como se denomina en matemáticas avanzadas división euclídea es un procedimiento que conocéis desde

Más detalles

Tema 2 Aritmética modular

Tema 2 Aritmética modular 1 Tema 2 Aritmética modular 2.1 Relaciones de equivalencia Definición 2.1 Una relación que verifique las propiedades reflexiva, simétrica y transitiva se denomina relación de equivalencia. Dos elementos

Más detalles

Aritmética modular. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16

Aritmética modular. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16 Aritmética modular AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16 Objetivos Al finalizar este tema tendréis que: Saber qué es Z n. Saber operar en

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E Relaciones de orden Diremos que una relación R es de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Generalmente usaremos la notación en lugar de R para expresar relaciones de

Más detalles

Teoría de Números. Orlando Ochoa Castillo 25 de septiembre de 2011

Teoría de Números. Orlando Ochoa Castillo 25 de septiembre de 2011 Teoría de Números Orlando Ochoa Castillo 25 de septiembre de 2011 1. Divisibilidad La Teoría de Números es un tema muy importante en las Olimpiadas de Matemáticas, esta área estudia el comportamiento de

Más detalles

Aritmética Entera y Modular.

Aritmética Entera y Modular. Tema 5 Aritmética Entera y Modular. 5.1 Divisibilidad en Z. Definición 1. Si a, b Z, a 0, se dice que a divide a b, y se indica por a b, si existe k Z, tal que b = ak. También se dice que a es un divisor

Más detalles

Gu ıa Departamento. Matem aticas U.V.

Gu ıa Departamento. Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas 1. Determinar el cociente y el residuo de 541 y de -541al dividir por 17 391 y -391 al dividir por 17 Guía de Teoría de Números 2. Sea a Z,n N comparar

Más detalles

UNIDAD 2. MÚLTIPLOS Y DIVISORES

UNIDAD 2. MÚLTIPLOS Y DIVISORES UNIDAD. MÚLTIPLOS Y DIVISORES. MÚLTIPLOS DE UN NÚMERO.. DIVISORES DE UN NÚMERO. 3. NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS. 4. CRITERIOS DE DIVISIBILIDAD. 5. MÍNIMO COMÚN MÚLTIPLO. 6. MÁXIMO COMÚN DIVISOR..

Más detalles

Unidad didáctica 1. Operaciones básicas con números enteros

Unidad didáctica 1. Operaciones básicas con números enteros Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros. Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una

Más detalles

DIVISIBILIDAD: Resultados

DIVISIBILIDAD: Resultados DIVISIBILIDAD: Resultados Página 1 de 9 Se enumeran a continuación, como referencia, ciertos resultados sobre divisibilidad. 1.1 Definición. Dados los enteros a y b, se dice que a divide a b (Notación:

Más detalles

Ejercicios del tema 7

Ejercicios del tema 7 U N I V E R S I D A D D E M U R C I A Ejercicios del tema 7 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2013/2014. Ejercicios de aritmética y congruencias 1. Un amigo le pregunta a otro: Cuántos hijos

Más detalles

ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de Números enteros

ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de Números enteros ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de 2002 Números enteros Ejercicio. Dados a, b y c números enteros, decidir cuáles de las siguientes afirmaciones son verdaderas y cuáles son

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó

Más detalles

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02 PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez pies3coma14@hotmail.com 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que

Más detalles

Clase 4: Congruencias

Clase 4: Congruencias Clase 4: Congruencias Dr. Daniel A. Jaume * 20 de agosto de 2011 1. Congruencias módulo m En 1801 Gauss, en su libro Disquisitiones Arithmeticae introdujo una notación relacionada con la noción de divisibilidad

Más detalles

NÚMEROS REALES---AGUERRERO

NÚMEROS REALES---AGUERRERO Contenido NÚMEROS REALES... 2 IGUALDAD Y SUS PROPIEDADES... 4 NÚMEROS MÚLTIPLOS, COMPUESTOS Y PRIMOS... 4 NÚMEROS PRIMOS... 5 DESCOMPOSICIÓN DE UN NÚMERO EN SUS FACTORES PRIMOS... 7 MÁXIMO COMÚN DIVISOR...

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) Divisibilidad Álgebra I Práctica 3 - Números enteros (Parte 1 1. Decidir cuáles de las siguientes afirmaciones son verdaderas para todo a, b, c Z i a b c a c y b c, ii 4 a a, iii a b a ó b, iv 9 a b 9

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 2 Aritmética entera y modular 1. Los números enteros Dado un entero

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Modular Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 39 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

Preparación para la XLIX Olimpiada Matemática Española (III) - Teoría

Preparación para la XLIX Olimpiada Matemática Española (III) - Teoría Preparación para la XLIX Olimpiada Matemática Española (III) - Teoría Abel Naya Forcano y Adrián Franco Rubio 1. El Principio del Palomar El Principio del Palomar es uno de los principios más sencillos

Más detalles

DIVISIBILIDAD. El cero es múltiplo de cualquier número. El producto de cualquier número por 0 es igual a 0

DIVISIBILIDAD. El cero es múltiplo de cualquier número. El producto de cualquier número por 0 es igual a 0 DIVISIBILIDAD MÚLTIPLOS DE UN NÚMERO Definición: Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el segundo es exacta. 10 es múltiplo

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

4.1 Anillo de polinomios con coeficientes en un cuerpo

4.1 Anillo de polinomios con coeficientes en un cuerpo Tema 4 Polinomios 4.1 Anillo de polinomios con coeficientes en un cuerpo Aunque se puede definir el conjunto de los polinomios con coeficientes en un anillo, nuestro estudio se va a centrar en el conjunto

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Polinomios y Fracciones Algebraicas UNIDAD DIDÁCTICA 2 1 o de Bachillerato CCSS Diana Barredo Blanco 1 1 Profesora de Matemáticas 1 o Bachiller (CCSS) 1. POLINOMIOS 1. POLINOMIOS Polinomio: Un polinomio

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Tema Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2016 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Plan de Animación para la enseñanza de las Matemáticas

Plan de Animación para la enseñanza de las Matemáticas DIVISIBILIDAD NUMERICA Criterios de divisibilidad por 2, 3 y 5 (5 y 6 grado de primaria y educación media general) Los criterios o caracteres de divisibilidad son ciertas señales de los números que nos

Más detalles

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero.

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. MULTIPLOS Y DIVISORES DIVISIBILIDAD. NÚMEROS ENTEROS. º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. 8 es múltiplo de porque 8 = 9 75 es múltiplo

Más detalles

3 Divisibilidad. 1. Múltiplos y divisores de un número Criterios de divisibilidad Descomposición de un número en factores primos 18

3 Divisibilidad. 1. Múltiplos y divisores de un número Criterios de divisibilidad Descomposición de un número en factores primos 18 Divisibilidad 1. Múltiplos y divisores de un número 16 2. Criterios de divisibilidad 17 3. Descomposición de un número en factores primos 18 4. Mínimo común múltiplo y máximo común divisor 19 5. Evaluación

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS 2º DE ESO LOE TEMA I: NÚMEROS ENTEROS (parte 3/3) Los divisores de un número entero. Descomposición factorial de un número entero. Máximo común divisor (m.c.d.) de dos o más números enteros.

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2017 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Ampliación Tema 3: Múltiplo y divisores

Ampliación Tema 3: Múltiplo y divisores - Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)

Más detalles

5 REPASO Y APOYO OBJETIVO 1

5 REPASO Y APOYO OBJETIVO 1 5 REPASO Y APOYO OBJETIVO 1 RECONOCER EL GRADO, LOS TÉRMINOS Y EL TÉRMINO INDEPENDIENTE DE UN POLINOMIO Nombre: Curso: echa: Un monomio es una expresión algebraica formada por el producto de un número,

Más detalles

Criterios de divisibilidad y Congruencias

Criterios de divisibilidad y Congruencias Criterios de divisibilidad y Congruencias Rafael F. Isaacs G. * Fecha: 9 de marzo de 2007 Cuando tenemos un número muy grande escrito en base 10 y deseamos saber si es múltiplo por ejemplo de 9 no necesitamos

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r AMPLIACIÓN DE MATEMÁTICAS CONGRUENCIAS DE ENTEROS. Dado un número natural m N\{0} sabemos (por el Teorema del Resto) que para cualquier entero a Z existe un único resto r de modo que con a = qm + r r {0,

Más detalles

13 ESO. «El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» Morgan. Profesor

13 ESO. «El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» Morgan. Profesor «El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» 13 ESO Morgan. Profesor N N ÍNDICE: EL NIF DIA DEL MEDIO AMBIENTE 1. NÚMEROS NATURALES 2. MÚLTIPLOS

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Veamos que la operación multiplicación heredada de Z m es interna:

Veamos que la operación multiplicación heredada de Z m es interna: Tema 3 El cuerpo (, +,.) (p número primo) 3.1 El grupo multiplicativo En el tema anterior se vio que (Z m, +,.) es un anillo conmutativo con elementos identidad. No preguntamos ahora para qué elementos

Más detalles

Propiedades de números enteros (lista de problemas para examen)

Propiedades de números enteros (lista de problemas para examen) Propiedades de números enteros (lista de problemas para examen) Denotamos por Z al conjunto de los números enteros y por N al conjunto de los números enteros positivos: N = 1, 2, 3,...}. Valor absoluto

Más detalles

Ejercicios de Álgebra Básica. Curso 2015/16

Ejercicios de Álgebra Básica. Curso 2015/16 Ejercicios de Álgebra Básica. Curso 2015/16 Tema 3: El anillo de los números enteros Divisibilidad en Z Ejercicio 1. Probar que para todo número n, n y n + 1 son primos entre sí. Ejercicio 2. Probar que

Más detalles

FICHAS DE TRABAJO REFUERZO

FICHAS DE TRABAJO REFUERZO FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias

Más detalles

Tema 4: Múltiplos y Divisores

Tema 4: Múltiplos y Divisores Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad.

Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad. Números primos NÚMEROS PRIMOS Un número natural distinto de es un número primo si sólo tiene dos divisores, él mismo y la unidad. Un número natural es un número compuesto si tiene otros divisores además

Más detalles

Teoria de Números. 1. Introducción. Residuos. Olimpiada de Matemáticas en Tamaulipas

Teoria de Números. 1. Introducción. Residuos. Olimpiada de Matemáticas en Tamaulipas Teoria de Números Residuos Olimpiada de Matemáticas en Tamaulipas 1. Introducción Hasta ahora, al trabajar con números enteros siempre nos hemos estado preguntando divide el número a al número b? Al mantenernos

Más detalles

MINISTERIO DE EDUCACION INSTITUTO PROFESIONAL Y TECNICO NOCTURNO DE COLÓN MATEMATICAS SEPTIMO

MINISTERIO DE EDUCACION INSTITUTO PROFESIONAL Y TECNICO NOCTURNO DE COLÓN MATEMATICAS SEPTIMO El 1 queda excluido del conjunto de los números primo. HAZLO TU Y COMPRUEBA LO APRENDIDO. Escribe en cada celda con la información solicitada, en el caso de los divisores escriba en el orden natural. Numeral

Más detalles

DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD

DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD Un número es divisible por 2 si acaba en cero o cifra par. Ejemplos: 38, porque acaba en 8. 20, porque acaba en 0. Un número es divisible por 3 si la suma de sus

Más detalles

Teoría de Números. Taller 4

Teoría de Números. Taller 4 Teoría de Números. Taller 4 14 de Abril 2018 DEFINICIONES Y PROPIEDADES DE DIVISIBILIDAD Si aprendiste a dividir igual que nosotros, cuando divides 2013 entre 4 haces una casita donde metes al 2013 y dejas

Más detalles

Entrenamiento ONMAPS Guanajuato. Primaria (Teoría de Números)

Entrenamiento ONMAPS Guanajuato. Primaria (Teoría de Números) Entrenamiento ONMAPS Guanajuato Primaria (Teoría de Números) Un concepto que se usa de manera muy frecuentemente en los problemas de Olimpiada de Matemáticas es el de divisibilidad. Esto no se tratará

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Tutor: Antonio Rivero Cuesta 2.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.

Más detalles

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural.

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural. DIVISIBILIDAD I. Múltiplos y Divisores 1. MULTIPLOS Los múltiplos de 2 son = 2 2 1 = 4 2 2 = 6 2 3 = 8 2 4 etc Es decir, el resultado de multiplicar 2 por cualquier número natural. Múltiplo de un número

Más detalles

Tema 1 Aritmética entera

Tema 1 Aritmética entera Tema 1 Aritmética entera Tema 1 Aritmética entera 1.1 Los números enteros 1.1.1 Relaciones de orden Una relación en un conjunto A es un subconjunto R del producto cartesiano AxA. Se dice que dos elementos

Más detalles

Introducción a la Matemática Discreta. Grado en Ingeniería Informática. Informática de Computadores. 22 de Diciembre de Grupo 3.

Introducción a la Matemática Discreta. Grado en Ingeniería Informática. Informática de Computadores. 22 de Diciembre de Grupo 3. Introducción a la Matemática Discreta. Grado en Ingeniería Informática. Informática de Computadores. 22 de Diciembre de 2014. Grupo 3. Nombre: Ejercicio 1 (1.5 puntos) a) Hallar una fórmula explícita para

Más detalles

Divisibilidad CLAVES PARA EMPEZAR VIDA COTIDIANA RESUELVE EL RETO. a) Exacta. c) Exacta b) No exacta. d) No exacta.

Divisibilidad CLAVES PARA EMPEZAR VIDA COTIDIANA RESUELVE EL RETO. a) Exacta. c) Exacta b) No exacta. d) No exacta. CLAVES PARA EMPEZAR a) Exacta. c) Exacta. 54 6 81 9 0 9 0 9 b) No exacta. d) No exacta. 45 4 7 7 05 11 0 10 1 a) 6 9 54 c) 9 9 81 b) 4 11 1 44 1 45 d) 7 10 70 7 a) 18 3 5 54 5 59. La división está bien

Más detalles

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre Teoría de números Herbert Kanarek Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía The theory of numbers Ivan Nivan H. Zuckerman H. Montgomery Temario I. Divisibilidad

Más detalles

Múltiplos y divisores

Múltiplos y divisores Múltiplos y divisores 3 1. MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 12 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de

Más detalles

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 19 4. EJERCICIOS DE AMPLIACIÓN Página 21 5. EJERCICIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN

Más detalles

MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema 2 y parte del Tema 3)

MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema 2 y parte del Tema 3) . Múltiplos de un número MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema y parte del Tema ) Un número es múltiplo de otro número cuando es el resultado de multiplicar el segundo por cualquier número natural

Más detalles

Blog de matemáticas realizado por José Mª Moya Medina ( MATEMATICASIESPTH.BLOGSPOT.COM )

Blog de matemáticas realizado por José Mª Moya Medina ( MATEMATICASIESPTH.BLOGSPOT.COM ) RESUMEN DEL TEMA 1- MÚLTIPLO Y DIVISOR Canción Definición Ejemplo Trucos PROPIEDADES Un nº a es divisor de 5 es divisor de 15? Para que un nº sea divisor otro nº b, si la división Sí porque la división

Más detalles

Números Enteros. Introducción

Números Enteros. Introducción Números Enteros Introducción Todos los conjuntos de números fueron de alguna manera "descubiertos" o sugeridos en conexión con problemas planteados en problemas físicos o en el seno de la matemática elemental

Más detalles

Las demostraciones de las propiedades (1) y (2) quedan a cargo del estudiante.

Las demostraciones de las propiedades (1) y (2) quedan a cargo del estudiante. Sección II CONCEPTOS PREVIOS.. Definición.. Se dice que un número entero! es divisible por otro entero! (distinto de cero) si existe un tercer entero! tal que! =!!. Se expresa como!!, que se lee! es divisible

Más detalles

Comprueba que 5 2 es una raíz del polinomio 2x3 9x x 5. EJERCICIO RESUELTO. Entonces: x 3 + 2x x + 3 = ( x + 1) ( x 2 + x + 3)

Comprueba que 5 2 es una raíz del polinomio 2x3 9x x 5. EJERCICIO RESUELTO. Entonces: x 3 + 2x x + 3 = ( x + 1) ( x 2 + x + 3) Polinomios 7. Teorema del resto. Factorización Polinomios Actividades Aprenderás a Identificar el resto de la división de un polinomio por un binomio de la forma a como el valor numérico para = a. Aplicar

Más detalles

open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl

open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo.cl 1. Múltiplos y divisibilidad Se dice que un número a es divisible por otro b si al dividir a con b, el residuo o resto es cero, dicho

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural c, único, tal que a = b.c El número c se dice que es el cociente

Más detalles

1. NÚMEROS PRIMOS Y COMPUESTOS.

1. NÚMEROS PRIMOS Y COMPUESTOS. . NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene

Más detalles

TEORÍA DE DIVISIBILIDAD

TEORÍA DE DIVISIBILIDAD TEORÍA DE DIVISIBILIDAD MÚLTIPLOS Y DIVISORES.- Dados dos números naturales a y b, con a b, se dice que a es divisible por b o que a es múltiplo de b o que b es divisor de a, si la división de a : b es

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

TEMA 2: DIVISIBILIDAD. Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. 28 es divisible entre 4

TEMA 2: DIVISIBILIDAD. Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. 28 es divisible entre 4 Alonso Fernández Galián TEMA : DIVISIBILIDAD Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. LA RELACIÓN DE DIVISIBILIDAD. MÚLTIPLOS Y DIVISORES La divisibilidad

Más detalles

ARITMÉTICA II. Adolfo Quirós. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso

ARITMÉTICA II. Adolfo Quirós. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso ARITMÉTICA II COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 LA ÚLTIMA PREGUNTA DEL OTRO DÍA: CUÁNTOS NÚMEROS PRIMOS HAY? Si nos referimos al cardinal del conjunto P de primos,

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números

Más detalles

CUADERNO Nº 4 NOMBRE: FECHA: / / Polinomios

CUADERNO Nº 4 NOMBRE: FECHA: / / Polinomios Polinomios Contenidos 1. Expresiones algebraicas De expresiones a ecuaciones Valor numérico Expresión en coeficientes. División de polinomios División División con coeficientes Regla de Ruffini Teorema

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.

Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2

Más detalles

Tema 3 División entera. Factorización 1

Tema 3 División entera. Factorización 1 Tema División entera. Factorización Factoriza los siguientes números: a) 70 b) c) 000 d) 999 70 luego 70 luego 9 000 luego 000 60 9 9 000 80 000 90 00 0 999 luego 999 7. 7 7 Halla los divisores comunes

Más detalles

TEMA 1. Los números enteros. Matemáticas

TEMA 1. Los números enteros. Matemáticas 1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos

Más detalles

EJERCICIOS MATEMÁTICAS 1º F.P.B.

EJERCICIOS MATEMÁTICAS 1º F.P.B. EJERCICIOS MATEMÁTICAS 1º F.P.B. U3 DIVISIBILIDAD 1. MÚLTIPLOS Y DIVISORES Decimos que un número es múltiplo de otro si lo contiene un número entero de veces. El número 0 solamente tiene un múltiplo, que

Más detalles

DIVISIBILIDAD CIENTÍFICO, MAT. 2

DIVISIBILIDAD CIENTÍFICO, MAT. 2 DIVISIBILIDAD CIENTÍFICO, MAT. 2 DIVISIÓN ENTERA Dados an, bn, b 0, existen y son únicos los números naturales q y r tales 1) q + r que: 2) r b a = dividendo b = divisor q = cociente r = resto Ejercicio

Más detalles

Unidad didáctica 1. Operaciones básicas con números enteros

Unidad didáctica 1. Operaciones básicas con números enteros Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una

Más detalles

Matemáticas Orientadas a las Enseñanzas Aplicadas IES

Matemáticas Orientadas a las Enseñanzas Aplicadas IES Matemáticas Orientadas a las Enseñanzas Aplicadas IES Los números enteros y racionales. Contenidos 1. Números enteros. Representación y orden. Operaciones. Problemas. 2. Fracciones y decimales. Fracciones

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

4.- Raíces cuadradas.

4.- Raíces cuadradas. 4.- Raíces cuadradas. DEFINICIÓN La raíz cuadrada exacta de un número entero es otro número entero cuyo cuadrado coincide con el primer número, es decir: 2 a = b b = a No todos los enteros tienen raíz

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

Departamento de Matemática Aplicada a las TIC Curso 15-16

Departamento de Matemática Aplicada a las TIC Curso 15-16 Departamento de Matemática Aplicada a las TIC Curso 15-16 ETSIInf, UPM Matemática Discreta I (MI) Control 1 22-10-15 Alumno Apellidos. Nombre.. Tiempo total para la prueba: 120 minutos Antes de empezar

Más detalles

Objetivos. Antes de empezar

Objetivos. Antes de empezar Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números primos. Descomponer un

Más detalles

2. Determine los números enteros n que satisfacen la relación planteada:

2. Determine los números enteros n que satisfacen la relación planteada: ÍÒ Ú Ö Æ ÓÒ Ð Ä Å Ø ÒÞ Ä Ò ØÙÖ Ò Å Ø Ñ Ø ÔÐ Ì ÓÖ Æ Ñ ÖÓ ÈÖÓ ÓÖ ÊÓ ÖØÓ ÇÚ Ó Å ÖØ Ò Ê ÑÓ 1 1. Divisibilidad. 1. a) ( ) El producto de dos números naturales m y n aumenta en 132 si cada uno de ellos aumenta

Más detalles

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd) TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que

Más detalles

Sección III CRITERIOS DE DIVISIBILIDAD I (Criterios Habituales)

Sección III CRITERIOS DE DIVISIBILIDAD I (Criterios Habituales) Sección III CRITERIOS DE I (Criterios Habituales) Las reglas de divisibilidad son criterios que sirven para saber si un número es divisible por otro sin necesidad de realizar la división. Llamaremos criterio

Más detalles

Álgebra Básica Primera parte

Álgebra Básica Primera parte Álgebra Básica Primera parte 21-1-2016 apellidos nombre Observaciones: -) Todos los ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global, según se

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Monomios. Monomios 75. 9x 4. 5x 2. x 11. a) x 8 c)

Monomios. Monomios 75. 9x 4. 5x 2. x 11. a) x 8 c) Polinomios Qué tienes que saber? 58 QUÉ tienes que saber? Ten en cuenta Un monomio es una epresión algebraica formada por el producto de un número, llamado coeficiente, y una o más variables con eponente

Más detalles

NOTA IMPORTANTE. La segunda mitad de las páginas corresponden a las soluciones de la primera mitad.

NOTA IMPORTANTE. La segunda mitad de las páginas corresponden a las soluciones de la primera mitad. NOTA IMPORTANTE La segunda mitad de las páginas corresponden a las soluciones de la primera mitad. DIVISIBILIDAD RELACIÓN DE DIVISIBILIDAD Fíjate en las siguientes divisiones: 18 2 13 2 0 9 1 6 como la

Más detalles