R 1º) La conexión de los R N 2. En los dos casos las S. T Para calcular el flujo máximo se utilizará la expresión: U1ef

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "R 1º) La conexión de los R N 2. En los dos casos las S. T Para calcular el flujo máximo se utilizará la expresión: U1ef"

Transcripción

1 Máquias Eléctricas 5º Curs Mecáics Máquias iversidad de Ovied Dpt. de geiería Eléctrica EJERCCO Nº 4 TEMA V: Trasfrmadres trifásics OBJETVOS: Circuit equivalete del trasfrmadr trifásic valració de pérdidas y redimiet variació del redimiet c el ídice de carga y el factr de ptecia. ENNCADO: trasfrmadr trifásic de. kva 5 Hz /66 kv y cexió Dy di e ls esays de vací y crtcircuit ls siguietes resultads: Esay de vací lad de BT: 66 kv 4 A 5 kw Esay de crtcircuit lad de AT: 55 V A kw DETERMNAR:. Fluj máxim (φ m ) sabied que el úmer de espiras del primari (N ) es de 45.. arámetrs del circuit equivalete referid al primari (R fe Xµ R y X ).. Tesió e bres del secudari cuad el trasfrmadr alimeta a ua carga trifásica equilibrada cectada e estrella de valr 4+j pr fase. 4. Redimiet e el cas aterir. 5. Ídice de carga c el que se btiee el redimiet máxim. SOLCÓN: reviamete a la reslució del prblema y puest que la cexió de ls devaads del trasfrmadr preseta el primari e triágul se plateará uas breves csideracies sbre la frma e que est afecta al cálcul del circuit equivalete: E ls trasfrmadres trifásics debid a la existecia de diferetes frmas de cexió es psible que e algu de ls ds devaads el eutr esté aesible al estar cectad e estrella (este el cas e la cexió Dy e la que el primari está e triágul). A pesar de ell cuad se utilice el circuit equivalete se empleará siempre u equivalete fase eutr e el que las tesies que se aplique será las tesies fase eutr del trasfrmadr y las crrietes que circule será las de líea. E el cas del devaad que esté cectad realmete e estrella las tesies será las reales de ls devaads. ara el devaad cectad e triágul las tesies de fase que se utilice será ficticias y crrespderá a la csideració de u eutr tambié fictici. Si embarg será psible calcular las tesies de líea reales del devaad e triágul c sól multiplicar pr. Además cm el trasfrmadr y la carga será u sistema equilibrad bastará c estudiar l que curre e ua de las fases para determiar las tesies y crrietes de las tras ds. R º) La cexió de ls R devaads Dy implica el primari cectad e N triágul a kv y el kv N secudari e estrella a N 66 kv N 66 kv. N E ls ds cass las S N S tesies referidas s T las de líea. T ara calcular el fluj máxim se utilizará la expresió: ef 4 44 f N φm a partir de la cual es psible determiar directamete el valr del fluj máxim: φ m ef Wb 4 44 f N

2 X d R X d R Circuit equivalete pr fase referid al secudari R Fe Fe µ X µ Tesió de fase Máquias Eléctricas 5º Curs Mecáics Máquias iversidad de Ovied Dpt. de geiería Eléctrica º) Ls esays de vací y crtcircuit puede realizarse idistitamete pr el lad de baja tesió pr el de alta. Ls resultads debe ser idétics e la medida de las pérdidas mietras que diferirá e ls valres de las crrietes y tesies ya que estará afectadas pr la relació de trasfrmació del trasfrmadr. E este setid es muy habitual que el esay de vací se realice pr el lad de baja tesió y el de crtcircuit pr el de alta. Esta frma de llevar a cab ls esays es la más simple y ecómica ya que e el de vací al utilizar el lad de baja es ecesari aplicar mes tesió y la crriete es muy reducida. E el de crtcircuit al hacerl pr el lad de alta es ecesari aprtar mes crriete ya que la crriete mial pr este lad es más baja que pr el de baja tesió y la tesió e este cas es prblema ya que durate el esay sól se aplica u pequeñ prcetaje de la tesió mial. La diferecia etre realizar el esay pr el lad de alta y hacerl pr el de baja estriba e la estimació de ls parámetrs del circuit equivalete que se haga a partir de ls resultads de ls esays. Si cm es habitual se pretede determiar el circuit equivalete del trasfrmadr referid al primari ls esays debería realizarse pr dich devaad. Si e cambi se hubiese realizad pr el secudari las impedacias calculadas a partir de ls resultads del esay debería ser referidas al primari multiplicad pr la relació de trasfrmació al cuadrad. De hech esa es la situació que se da e este prblema: El esay de vací está realizad pr el secudari pr tat: 66 Rfe 87 Ω. Rfe 5 La resistecia de pérdidas e el hierr bteida de este md estará referida al secudari. Cm se pretede bteer el circuit equivalete reducid al primari es ecesari multiplicar pr r t : R R r Ω. fe r tr lad: Etces: fe t 5 9 A Csϕ Csϕ fe Cs ϕ µ Se A 98 A ϕ a vez que se cce las ds cmpetes de la crriete de vací es psible determiar el valr de la reactacia magetizate de ua frma casi directa: ϕ CORRENTE DE VACÍO DEL SECNDARO µ fe Este esquema muestra el circuit equivalete del trasfrmadr durate el esay de vací realizad pr el secudari. uest que se trata de u equivalete etre fase y eutr la tesió que l alimeta será la de fase es decir habrá que dividir la tesió mial pr. Obsérvese que se ha marcad c las variables del primari ya que e esta casió el esay se realizó pr el secudari y pr este mtiv las variables que se deduzca de él estará reducidas a este devaad. Si e el circuit aterir dad que sól circula la crriete de vací se supe que la tesió cicide c la de alimetació del trasfrmadr la reactacia de magetizació se puede 66 bteer directamete: X µ 9574Ω. µ 98 Esta reactacia está referida al secudari para referirla al primari hay que multiplicarla pr r t : X X Ω. µ µ r t

3 Máquias Eléctricas 5º Curs Mecáics Máquias iversidad de Ovied Dpt. de geiería Eléctrica Ahra se calculará la resistecia R y la reactacia X. E este cas se utilizará el esay de crtcircuit el cual al haber sid realizad pr el primari permitirá determiar directamete ls parámetrs referids al dich devaad. X R E el cálcul se despreciará la rama e paralel al csiderar que durate el esay de crtcircuit la crriete que circula A pr esta rama es muy baja (la tesió es muy reducida pr tat el fluj será baj y la crriete de magetizació tambié). Cs 4. ϕ Csϕ Csϕ r tr lad la ptecia tambié pude calcularse cm: R R 66 Ω. La reactacia se pdrá bteer cm: X R Tgϕ 4Ω. Tégase e cueta que auque el trasfrmadr tiee el primari e triágul se ha aplicad cm tesió 55/ es decir ua tesió ficticia fase eutr ya que se utiliza el circuit equivalete. º) ara calcular la tesió del secudari del trasfrmadr se utilizará el circuit equivalete simplificad. La carga que alimetará el trasfrmadr es ua carga que e frma cmpleja vale: 4+j y pr tat tiee u módul de 447Ω. uest que la tesió del secudari es de 66 kv y la carga está e estrella la crriete pr el 66 secudari del trasfrmadr c esta carga se pdrá bteer cm: 447 La crriete mial del secudari se puede calcular de la siguiete frma: S 55 Trasfrmadr durate esay de crtcircuit S 87 5 A A. Csiderad que c la carga que se platea el prblema el trasfrmadr está prácticamete e cdicies de carga mial para realizar tds ls cálculs se despreciará la crriete de vací y pr l tat e el circuit equivalete se elimiará la rama e paralel. Debe teerse e cueta tambié que al usar el circuit equivalete referid al primari la carga se debe cectar a él tambié referida al primari. uest que se pretede determiar la caída de tesió del trasfrmadr se utilizará el circuit equivalete para calcular la crriete y a partir de ella se btedrá la tesió e el secudari e carga: + La impedacia de carga se referirá al primari: Z r [ + j] j Z ' t El circuit equivalete e carga quedará pr tat de la siguiete frma: X 4 Ω R 66 Ω E el circuit se cumple: / ' 4 64 A. ( ) + ( 8 + 4) c Z r tat: Trasfrmadr e carga ' Z ' ' V c La tesió que se acaba de bteer es la tesió de fase del secudari e carga referida al primari. ara bteer la tesió real del secudari hay que multiplicar pr para

4 Máquias Eléctricas 5º Curs Mecáics Máquias iversidad de Ovied Dpt. de geiería Eléctrica cvertirla e tesió de líea y dividir pr la relació de trasfrmació para referirla al secudari: líea ' c líea' c c ' 59 V y c líea 669 V. rt Se ha bteid pr tat ua tesió de 6.96 V e el secudari cuad trabaja c la carga que se idicó e el euciad. a vez más e la reslució de este apartad se ha aplicad al circuit equivalete del trasfrmadr ua tesió de / es decir ua tesió ficticia fase eutr ya que se utiliza el circuit equivalete. Otra frma de reslver este apartad más larga y cmplicada que la aterir per que permite bservar el grad de imprecisió de las expresies matemáticas utilizadas e el cálcul de las caídas de tesió csiste e determiar el ídice de carga del trasfrmadr a partir del valr de a ctiuació se calcula la tesies de crtcircuit relativas RCC y XCC ccids ests ds parámetrs y puest que la carga es u dat se determiará el valr de la caída de tesió C y a partir de ella la tesió e el secudari del trasfrmadr. Seguidamete se reslverá de este md: S ' 4 64 S 4 8 A C R R R / X X X / 8 La carga es 4+j pr l tat se cumple que: Tg ϕ 5 Csϕ 89; Seϕ 45 [ Csϕ + Seϕ] 9 [ ] 44 c (%) C RCC XCC [ ] 66 [ 44] 696 V c c Tal y cm se desprede de ls resultads existe mediate este prcedimiet ua diferecia del pr mil aprximadamete c respect al cálcul realizad sbre el circuit equivalete. Esta pequeña discrepacia es csecuecia de que las expresies para el cálcul de las caídas de tesió s aprximadas si embarg prduce errres despreciables. 4º) ara el cálcul del redimiet utilizarems la expresió que icluye el ídice de carga y el C [ c ] S Csϕ factr de ptecia ya que ambs dats s ccids: η C S Csϕ + + C [ ] Al aplicar la expresió aterir hay que teer e cueta que la crriete mial del primari del trasfrmadr es de 48 A. Si se bserva ls resultads del esay de crtcircuit se puede apreciar que e dich esay se llegó hasta la crriete mial si hasta A. r tat las pérdidas bteidas e este esay s las miales. Es ecesari crregir el valr de las pérdidas para bteer la que aparece e la expresió del redimiet. ara ell se plateará que: R R. Cm teems la ptecia crrespdiete al esay c A y la crriete mial (48 A) a la que querems calcular la mial basta platear que el cciete etre ptecia y Nmial crriete debe mateerse cstate: 8586W. 4 8 Se pdría haber llegad a este resultad directamete platead que las pérdidas medidas durate el esay de crtcircuit realizad para u ciert ídice de carga C ( ) s: ' C. Nmial c 4

5 Máquias Eléctricas 5º Curs Mecáics Máquias iversidad de Ovied Dpt. de geiería Eléctrica El ídice de carga c el que se realizó el esay es: C 5 pr tat las pérdidas 4 8 ' e cdicies de carga mial será: Nmial 8586 W C A partir de este dat ya es psible calcular el redimiet ya que la caída de tesió C se calculó e u apartad aterir: C [ c ] [ ] S 9 [ 44] [ 44] S Csϕ 89 η 978. C c Csϕ + + C Si se hubiese despreciad la caída de tesió el resultad bteid habría sid prácticamete el mism: η Csϕ Csϕ + + C º) ara el cálcul del ídice de carga c el que se btiee el redimiet máxim basta c 5 aplicar directamete la expresió: C ηmax RESMEN Ccepts utilizads para la reslució del prblema Frmas de cexió devaads e trasfrmadres trifásics. Relació etre fluj máxim y tesió. Frmas de realizació esays vací y crtcircuit: diferecias etre realizarls pr el primari y pr el secudari. Cmpetes de la crriete de vací tilizació del circuit equivalete para el cálcul de tesies y crrietes. Magitudes de fase y de líea. Ídice de carga. Caída de tesió itera. Tesies de crtcircuit relativas. Variació del redimiet c el factr de ptecia y el ídice de carga. Ídice de carga de redimiet máxim. Expresies matemáticas utilizadas e la reslució del prblema ef 4 44 f N φm fe Csϕ µ Seϕ Csϕ R R X R Z ' Z rt Tgϕ Csϕ Csϕ C líea C líea 5

6 Máquias Eléctricas 5º Curs Mecáics Máquias iversidad de Ovied Dpt. de geiería Eléctrica C C C C líea líea Csϕ S líea líea ' C R R X C [ Csϕ + Seϕ] c (%) RCC XCC C C ' X R R c (%) c [ c ] X η C X X X C [ c ] S Csϕ [ ] S Csϕ + + C Csϕ η Csϕ + C η max c + C X R 6

SOLUCIÓN: DETERMINAR: 38 kv 3

SOLUCIÓN: DETERMINAR: 38 kv 3 Máquinas Eléctricas 5º Curs Mecánics Máquinas niversidad de Ovied Dpt de ngeniería Eléctrica EJECCO Nº 6 TEMA V: Bancs trifásics de transfrmadres mnfásics OBJETVOS: Analizar el funcinamient de un banc

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N GUIA DE TRABAJO PRACTICO Nº PAGINA Nº 69 GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N 4 OBJETIVOS: Lgrar que el Alum: Iterprete el ccept de Dierecial Resuelva ejercicis y prblemas de aplicació. CONTENIDOS:

Más detalles

Sobrantes de 2004 (Modelo 6) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Modelo 6) Soluciones Germán-Jesús Rubio Luna OPCIÓN A IES Fc Ayala de Graada Sbrates de 004 (Mdel 6) Slucies Germá-Jesús Rubi Lua OPCIÓN A EJERCICIO 1_A (1 put) Dibuje la regió del pla defiida pr las siguietes iecuacies: x 3y -13; x + 3y 17, x + y 11; y 0.

Más detalles

LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Aterirmete se ha ich que la itegral efiia equivale a ectrar el valr el área cmpreia etre la gráfica e ua fució y el eje, la cual puee ser calculaa pr mei el

Más detalles

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz 3. AMPIFICADORES Y MEZCADORES 1. E el circuito de la figura: a) Determiar el puto de trabajo de ambos BJT. b) Represetar el circuito e pequeña señal idicado los valores de cada elemeto. c) Hallar la gaacia

Más detalles

Analisis y modelos a pequeña señal del transistor

Analisis y modelos a pequeña señal del transistor Aalisis y mdels a pequeña señal del trasistr. arrill, J.I. Huirca Abstract Ls BJT y FET s mdelads usad redes de ds puertasa a través de parámetrs h ó Y respectivamete. Para cada el BJT e base cmú, clectr

Más detalles

Rectificador de media onda

Rectificador de media onda Electróica y microelectróica ara cietíficos ectificador de media oda Como u diodo ideal uede mateer el flujo de corriete e ua sola direcció, se uede utilizar ara cambiar ua señal de ca a ua de cd. E la

Más detalles

Propiedades molares parciales. Volumen molar parcial. En este capítulo veremos las propiedades de mezclas binarias no reactivas.

Propiedades molares parciales. Volumen molar parcial. En este capítulo veremos las propiedades de mezclas binarias no reactivas. Priedades mlares arciales E este caítul verems las riedades de clas biarias reactivas. UNIDD 4: Mezclas simles Vlume mlar arcial Etal y agua s erfectamete miscibles etre sí. Si embarg al clar estas sustacias

Más detalles

SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES

SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES TR_1 Del circuito equivalente de un transformador se conocen todos los parámetros que lo forman. Determínense todas las magnitudes eléctricas que aparecen

Más detalles

Símbolo del inversor autónomo.

Símbolo del inversor autónomo. CAPITULO II TORIA D LOS INRSORS D TNSION Itroducció Los iversores de tesió so coversores estáticos, destiados a cotrolar el flujo de eergía eléctrica etre ua fuete de tesió cotiua y ua fuete de corriete

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

TEMA 4: ARRANQUE DE LOS MOTORES DE CORRIENTE ALTERNA

TEMA 4: ARRANQUE DE LOS MOTORES DE CORRIENTE ALTERNA TEA 4: ARRANQUE DE LOS OTORES DE CORRENTE ALTERNA ARRANQUE DE LOS OTORES DE C.A. El Reglameto Electrotécico de BT establece límites para la corriete absorbida e el arraque. Para los motores de corriete

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora): EJERCICIOS de RADICALES º ESO académicas FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la

Más detalles

TEMA 5.- SISTEMAS TRIFÁSICOS

TEMA 5.- SISTEMAS TRIFÁSICOS DPTO. INGENIERIA EECTRICA ESCUEA DE INGENIERÍAS INDUSTRIAES EECTROTECNIA TEMA 5.- SISTEMAS TRIFÁSICOS 5.1.- En la red trifásica de la figura 5.1, la tensión cmpuesta al final de la línea es de 380V. a

Más detalles

ESTUDIO DEL TRANSFORMADOR

ESTUDIO DEL TRANSFORMADOR ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIERSIDAD DE NAARRA Práctica º 1: Sistemas Eléctricos ESTUDIO DEL TRANSFORMADOR Sistemas Eléctricos 009-010. El Trasformador 3 ÍNDICE 1 Objetivo

Más detalles

Problemas de Circuitos Magnéticos

Problemas de Circuitos Magnéticos Problemas Circuitos Magnéticos Página 1 de 6 Problemas de Circuitos Magnéticos 1-1. Determinar la intensidad en corriente continua que debe circular por la bobina de la Fig. 1-35 para que en la rama central

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS Ctraste de hipótesis I.E.. A uqueira I pag 1 Itrducció CONTRATE DE HIPÓTEI Hasta ahra hems vist ds frmas de efectuar ua estimació de u parámetr de la pblació a partir de ua muestra de tamañ : la estimació

Más detalles

1.1 Teorema de Ampere I

1.1 Teorema de Ampere I iversidad de Oviedo Tema : Leyes fudametales del electromagetismo Dpto. Dpto. de de geiería geiería Eléctrica, Eléctrica, Electróica Electróica de de Computadores Computadores yy Sistemas Sistemas . Teorema

Más detalles

Diagrama Tensión deformación de la mampostería

Diagrama Tensión deformación de la mampostería Diagrama Tesió deformació de la mampostería EFECTO DEL TIPO DE EN LA DEL PRISMA RELACIÓN DE DEL : PROPIEDADES TIPO PRISMA A 1 : 1/4 : 3,00 1,06 B 1 : 1/ : 4y1/ 1,00 1,00 C 1 : 1 : 6 0,50 0,85 D 1 : : 9

Más detalles

EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES)

EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES) EJERCICIO Nº1 EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES) Un transformador monofásico de 10KVA, relación 500/100V, tiene las siguientes impedancias de los devanados: Ω y Ω. Al

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2)

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2) EJERCICIOS de POTENCIAS º ESO opc. B RECORDAR a m a a m m ( a ) a b a a (a b) a m a a b m a m+ b a a - a b a - b a Tambié es importate saber que algo ( base egativa) par (- ) ( base egativa) impar (- )

Más detalles

Mó duló 21: Sumatória

Mó duló 21: Sumatória INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades

Más detalles

Tema 4B. Inecuaciones

Tema 4B. Inecuaciones 1 Tema 4B. Inecuacines 1. Intrducción Una inecuación es una desigualdad en la que aparecen númers y letras ligads mediante las peracines algebraicas. Ls signs de desigualdad sn: , Las inecuacines

Más detalles

PILAS. 1. Dada la siguiente tabla de potenciales normales expresados en voltios: Par Red Ox Eº(v) 1 35 SO

PILAS. 1. Dada la siguiente tabla de potenciales normales expresados en voltios: Par Red Ox Eº(v) 1 35 SO PILAS 1. Dada la siguiete tabla de pteciales rmales expresads e vltis: Par RedOx Eº(v) Cl / Cl 1 35 4 / ClO 3 3 / ClO 0 ClO 1 19 ClO 1 16 / 0 35 SO / 0 3 3 S 4 / S 4 SO 0 15 S / S 0 15 0 S / S 0 14 a)

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5 Ezimología Efecto cooperatio 1 EFECTO COOPERATIVO El efecto cooperatio ocurre e ezimas oligoméricas que posee arios sitios para la uió de sustrato y es el feómeo por el cual la uió de u ligado a ua ezima

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

Números complejos. .a C ib/ C.c C id/ D a C c C i.b C d/.a C ib/.c C id/ D ac bd C i.ad C bc/

Números complejos. .a C ib/ C.c C id/ D a C c C i.b C d/.a C ib/.c C id/ D ac bd C i.ad C bc/ Númers cmplejs El cjut frmad pr tds ls úmers de la frma acib, dde a y b s úmers reales, c las peracies de adició y prduct defiidas pr: 1/100.a C ib/ C.c C id/ D a C c C i.b C d/.a C ib/.c C id/ D ac bd

Más detalles

OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS

OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS Ley de Sell 1-1 U haz lumioso icide sobre ua lámia de vidrio bajo u águlo de 60, siedo e parte reflejado y e parte refractado. Se observa

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Ejemplo: En este ejemplo veremos cómo podemos utilizar un coaxial slotted line para calcular la impedancia de carga Z L.

Ejemplo: En este ejemplo veremos cómo podemos utilizar un coaxial slotted line para calcular la impedancia de carga Z L. 91 Ejempl: En este ejempl verems cóm pdems utilizar un caxial sltted line para calcular la impedancia de carga. Un caxial sltted line tiene una pequeña abertura lngitudinal (i.e. slit) en su cnductr exterir.

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

TEMA 7 Trenes de Engranajes

TEMA 7 Trenes de Engranajes Igeiería Idustrial. Teoría Máquias TEMA 7 Trees de Egraajes Haga clic para modificar el estilo de subtítulo del patró Objetivos: Itroducir el mudo de los trees de egraajes, aalizado los diversos tipos

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

UNIVERSIDAD SIMON BOLIVAR

UNIVERSIDAD SIMON BOLIVAR NVESDD SMON BOLV COMPOMENO DE L MQN CON Hoja Nº -63 EXCCÓN EN DEVCON 1. La máquia e derivació coectada a ua red de tesió costate. La ecuació para la tesió es (cosiderado circuito pasivo): + ). + E ( (

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Práctica 4 CONTRASTE DE HIPÓTESIS AMPLIACIÓN DE ESTADÍSTICA

Práctica 4 CONTRASTE DE HIPÓTESIS AMPLIACIÓN DE ESTADÍSTICA . Objetivs: a) Calcular ls parámetrs de la distribución de medias prprcines muestrales de tamañ n, extraídas de una pblación de media y varianza cncidas. b) Calcular el interval de cnfianza para la media

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 8-9 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 1. Itroducció al cálculo de

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

b. La primera parte del apartado es igual al apartado a, con la diferencia de que el segundo medio es agua.

b. La primera parte del apartado es igual al apartado a, con la diferencia de que el segundo medio es agua. Septiembre 0. Preguta B.- Se tiee u prisma rectagular de vidrio de ídice de refracció,4. Del cetro de su cara A se emite u rayo que forma u águlo a co el eje vertical del prisma, como muestra la figura.

Más detalles

Fluidos no newtonianos

Fluidos no newtonianos Fluidos o etoiaos Desde el puto de vista de la reología, los fluidos más secillos so los etoiaos, llamados así porque su comportamieto sigue la ley de Neto: El esfueo de corte es proporcioal al gradiete

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD MCAL103/03 LIBRO: PARTE: TÍTULO: CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD 1. CONTROL DE CALIDAD 03. Aálisis Estadísticos de Cotrol de Calidad A. CONTENIDO Este Maual cotiee los procedimietos para aalizar,

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Teorías de falla bajo cargas estáticas

Teorías de falla bajo cargas estáticas Teorías de falla bajo cargas estáticas Carlos Armado De Castro P. Coteido: - Itroducció - Falla de materiales dúctiles - Falla de materiales frágiles. Itroducció La falla es la pérdida de fució de u elemeto

Más detalles

PROBLEMAS DE TRANSFORMADORES

PROBLEMAS DE TRANSFORMADORES PROBLEMAS DE TRANSFORMADORES Problema 1: Problemas de transformadores Un transformador tiene N 1 40 espiras en el arrollamiento primario y N 2 100 espiras en el arrollamiento secundario. Calcular: a. La

Más detalles

EXAMENES ELECTROTECNIA TEORIA

EXAMENES ELECTROTECNIA TEORIA EXAMENES En este archivo presento el tipo de exámenes propuesto en la asignatura de Electrotecnia en la fecha indicada, con las puntuaciones indicadas sobre un total de diez puntos. Según la guía académica

Más detalles

ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse.

ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse. ANEXO 1. MUESTREO Y TOLERANCIAS DE PRODUCTOS PREMEDIDOS 2. APLICACIÓN El presete reglameto se aplicará para la verificació de los coteidos etos de los productos promedios, etiquetados, co coteido omial

Más detalles

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.2.

Más detalles

Método Lúmen. Procedimiento:

Método Lúmen. Procedimiento: Métd Lúmen La finalidad de este métd es calcular el valr medi en servici de la iluminancia en un lcal iluminad cn alumbrad general. Es muy práctic y fácil de usar, y pr ell se utiliza much en la iluminación

Más detalles

TRABAJO PRACTICO Nº 1

TRABAJO PRACTICO Nº 1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

Imposiciones y Sistemas de Amortización

Imposiciones y Sistemas de Amortización Imposicioes y Sistemas de Amortizació La Imposició u caso particular de reta e el cual cada térmio devega iterés (simple o compuesto) desde la fecha de su aboo hasta la fecha fial. Imposicioes Vecidas

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Web Biblioteca Complutense 2006: Manual del Gestor de Contenidos. Versión 1.1. Mayo 2006

Web Biblioteca Complutense 2006: Manual del Gestor de Contenidos. Versión 1.1. Mayo 2006 Plantilla de menú de blques Esta plantilla prprcina una herramienta sencilla para realizar una página cuy aspect final sería una lista de enlaces a diferentes páginas, sean éstas páginas prpias, del rest

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

= 80, luego el modelo matemático quedará: f

= 80, luego el modelo matemático quedará: f PROBLEMAS RESUELTOS DE CIRCUITOS ELÉCTRICOS EN CA PRIMERA PARTE: Prblemas sbre determinación de las características de la nda senidal y fasres. CARACTERÍSTICAS DE LA ONDA SENOIDAL 1º. (Prblema 13.3-16

Más detalles

Electrónica de Potencia (Especialidad de Electricidad)

Electrónica de Potencia (Especialidad de Electricidad) Electróica de Potecia (Especialidad de Electricidad). Itroducció PRÁCICA DEERMINACIÓN DE LA HD Y EL FACOR DE POENCIA MEDIANE PSPICE Y SIMPOWERSYSEM oda fució periódica que cumple ciertas propiedades puede

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

CONTROL DE TEMPERATURA POR HISTERESIS USANDO UN TRIAC Y UN DETECTOR DE CRUCE POR CERO

CONTROL DE TEMPERATURA POR HISTERESIS USANDO UN TRIAC Y UN DETECTOR DE CRUCE POR CERO CONTROL DE TEMPERATURA POR HISTERESIS USANDO UN TRIAC Y UN DETECTOR DE CRUCE POR CERO OBJETIOS: Se pretede cotrolar la temperatura de u ambiete reducido (e este caso la cabia de ua icubadora para eoatos),

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

INFORME DE PARAMETROS ELECTRICOS

INFORME DE PARAMETROS ELECTRICOS INFORME DE PARAMETROS ELECTRICOS Apartad 1: INSTALACIÓN DE ANALIZADOR DE REDES ELECTRICAS: Descripción de instalación realizada Página 2 de 13 Instalación de analizadr de redes: Se ha realizad la instalación

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS "Toda cosa grade, majestuosa y bella e este mudo, ace y se forja e el iterior del hombre". Gibrá Jalil Gibrá. Uidad : PROCESOS INFINITOS Y LA NOCIÓN

Más detalles

Máquinas Eléctricas I - G862

Máquinas Eléctricas I - G862 Máquia Eléctrica I - G86 Tema 3. Máquia Aícroa o de Iducció. Problema reuelto Miguel Ágel Rodríguez Pozueta Departameto de Igeiería Eléctrica y Eergé5ca Ete tema e publica bajo Licecia: Crea5ve Commo BY-

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Apellidos y nombre: Número de matrícula: DNI:

Apellidos y nombre: Número de matrícula: DNI: EXAMEN ESCRITO I Apellidos y nombre: Número de matrícula: DNI: ARTE : REGUNTAS DE TEST (5% del total del examen) Cada respuestas incorrectas descuentan una correcta º) ara un material rromagnético dado

Más detalles

COMPENSACIÓN DE ENERGÍA REACTIVA. 3. Ventajas de la compensación de la energía reactiva. 9. Efectos de los armónicos sobre los condensadores

COMPENSACIÓN DE ENERGÍA REACTIVA. 3. Ventajas de la compensación de la energía reactiva. 9. Efectos de los armónicos sobre los condensadores COMPENSACIÓN DE ENERGÍA REACTIVA. Naturaleza de la eergía reactiva. Factor de potecia 3. Vetajas de la compesació de la eergía reactiva 4. Métodos de compesació del factor de potecia 5. Ubicació de los

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

UNIDAD DIDACTICA. Conceptos en trifásica. Sumario

UNIDAD DIDACTICA. Conceptos en trifásica. Sumario UDAD DDACTCA 7 1 3 x 400/230 V 2 3 1 2 3 4 Conceptos en trifásica. Sumario 1. ntensidades y potencias en trifásica. 2. La caída de tensión en trifásica. Ejercicios y actividades. Al término de esta Unidad

Más detalles

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández Tema III: La Elecció de Iversioes Ecoomía de la Empresa: Fiaciació Prof. Fracisco Pérez Herádez La Elecció de Iversioes Para ayudar a la elecció de distitas operativas de iversió, se puede seguir distitos

Más detalles

Selección de inversiones II

Selección de inversiones II Problemas de Ecoomía y Orgaizació de Empresas (º de Bachillerato) Euciado Selecció de iversioes II Problema 6 U fabricate de evases de arcilla para la alimetació está aalizado la posibilidad de istalar

Más detalles

PLANIFICACIÓN DE ASIGNATURAS

PLANIFICACIÓN DE ASIGNATURAS FACULTAD DE CIENCIAS JURÍDICAS, POLÍTICAS Y SOCIALES PLANIFICACIÓN DE ASIGNATURAS A. IDENTIFICACIÓN Nmbre de la Asigatura: Práctica Itegral de Televisió III Nmbre del Área: Cmuicació Scial Carreras para

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

Equipos de respaldo de energía eléctrica UPS, SPS

Equipos de respaldo de energía eléctrica UPS, SPS Equips de respald de energía eléctrica UPS, SPS Intrducción Pág. 1 Sistema UPS Pág. 2 Funcinamient Pág. 2 Sistema SPS Pág. 2 Funcinamient Pág. 3 Diferencias Técnicas Principales Pág. 3 Cnclusión Pág. 4

Más detalles