NÚMEROS RACIONALES ABSOLUTOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "NÚMEROS RACIONALES ABSOLUTOS"

Transcripción

1 NÚMEROS RACIONALES ABSOLUTOS Frcción: es un pr ordendo de números nturles con l segund componente distint de cero. (, ) pr ordendo frcción es un frcción N N EQUIVALENCIA DE FRACCIONES * Frcciones diferentes, por ejemplo, 2/3 y 4/6, producen el mismo resultdo. En efecto, en ls dos siguientes situciones: De los 18 lumnos de l clse, los 2/3 son chics. De los 18 lumnos de l clse los 4/6 son chics, el número de chics es el mismo, 12. En relidd, disponemos de infinits frcciones pr comprr el número de chics 12 con el totl de l clse 18: 2/3, 4/6, 6/9, 8/12, etc. Decimos que ests frcciones son equivlentes entre sí. Est situción se suele ilustrr en l escuel primri medinte gráficos como el siguiente: 4/6 de 18 chics = 12 chics 2/3 de 18 chics = 12 chics Frcciones equivlentes. Crcterizción: Dos frcciones /, c/d son equivlentes si se cumple l iguldd de los productos cruzdos, o se:.d =.c c d equivlente d = c Est relción cumple ls tres condiciones exigids ls llmds relciones de equivlenci, o se: Reflexiv: tod frcción es equivlente sí mism; Simétric: si un frcción x es equivlente otr frcción y e y es equivlente x, entonces x e y son l mism frcción; Trnsitiv: si un frcción x es equivlente otr frcción y e y es equivlente otr frcción z, entonces x y z son equivlentes. Reflexiv, = esto se cumple por propiedd conmuttiv del producto de nturles Prof. Crolin Colmn Págin 1

2 Simétric c c c, si d d d c c si d = c d = c c = d d prop conmuttiv prop simétric de d del prod de nturles Trnsitiv c e c c e e,, si d f d d f f Hipótesis Tesis Demostrción : c d c e = = d f l iguldd de nt. d = c d f = c f * d f = d e prop. trnsiitiv prop socitiv y c f d e c f d e de l iguldd conmuttiv del prod de nt. * f d = e d f d = e d e f = e Además d 0 f prop cnceltiv del prod de nt. * 1 Es importnte destcr que en l myor prte de ls situciones, ls frcciones equivlentes se usn indistintmente. Intuitivmente vemos que dos frcciones equivlentes, tles como 2/3 y 4/6 se refieren un mism cntidd si se trt de un mgnitud o un mism rzón si se trt de un comprción. Lo mismo ocurre con tods ls frcciones equivlentes l dd: 3/9, 20/30, 200/300, etc. Est ide intuitiv se formliz introduciendo los números rcionles. 1 Si en un iguldd multiplico mos miemros por un mismo número l iguldd se mntiene Prof. Crolin Colmn Págin 2

3 Número rcionl El conjunto de ls frcciones qued dividido en clses de equivlenci, cd un de ells formd por tods ls frcciones equivlentes entre sí. Cd un de ls clses se dice que es un número rcionl; y el conjunto de tods ls clses, el conjunto de los números rcionles solutos Q. Est descripción strct se puede interpretr desde un punto de vist más intuitivo: El número rcionl [2/3] = {2/3, 4/6,...} lo identificmos con l frcción 2/3 cundo es usd como representnte de culquier otro miemro de l clse de frcciones equivlentes 2/3. Ls distints frcciones de un mism clse de frcciones equivlentes son tods ells diferentes uns de otrs. Cundo se escrie: 3 = 6 = ests tres frcciones, en tnto que tles frcciones, no son igules entre sí, sino equivlentes (se puede sustituir un por otr). Pero tods ests frcciones representn l mism clse de equivlenci, el mismo número rcionl. Por ello usmos el símolo de iguldd Si se multiplicn ms componentes de un frcción (numerdor y denomindor) por un mismo número nturl distinto de cero se otiene un frcción equivlente. Ejemplo: Dd l frcción 3 4 oservr que , multiplico numerdor y denomindor por 3 y otengo l frcción 9 12, podemos Si se dividen ms componentes de un frcción por un mismo número nturl divisor de ms se otiene un frcción equivlente. Prof. Crolin Colmn Págin 3

4 Hipótesis : es un frcción * n N n Tesis : n Demostrción : n n por definición ( ) ( ) n = n est iguldd se cumple por propiedd conmuttiv y socitiv del producto de números nturles Ejemplo: Dd l frcción 15, divido numerdor y denomindor entre 5 que es divisor de 15 y de 10 y otengo 10 l frcción , podemos oservr que 10 2 Demostrción nálog l nterior. L equivlenci de frcciones y rzones es l propiedd que justific vris técnics importntes de mnipulción de rcionles. Un de ells es l técnic de 'simplificción de frcciones' que nos permite psr de un frcción l frcción irreducile 2 equivlente ell y que consiste en dividir numerdor y denomindor por el máximo común divisor de mos números. Otr técnic es l de 'reducir común denomindor' o 'reducir común numerdor' vris frcciones, técnic consistente en elegir frcciones equivlentes ls dds, tods ells con el mismo denomindor o con el mismo numerdor, pr lo cul hy que uscr el mínimo común múltiplo de los denomindores o numerdores. Frcciones irreduciles: Cundo trjmos con un número rcionl, conviene designrle por l frcción más simple posile, como por ejemplo, 3/5 en el ejemplo nterior. Ests frcciones que no se pueden simplificr (dividiendo numerdor y denomindor por el mismo número) se llmn frcciones irreduciles. Números rcionles prticulres Todo número entero es un rcionl, pues culquier entero se puede escriir en l form de frcción: - 0 = 0/1 = 0/2 =... 2 Se llm frcción irreducile un frcción en l que numerdor y denomindor son primos entre sí, es decir, no tienen ningún fctor primo común. Prof. Crolin Colmn Págin 4

5 - 1 = 1/1 = 2/2 = = 4/2 = 6/3 =... Todo número deciml es un rcionl, pues todo número deciml se puede escriir jo l form de un frcción cuyo denomindor es un potenci de diez. 1,2 = 12/10 (= 6/5) 34,56 = 3456/100 En consecuenci, el conjunto de los enteros y el de los decimles son suconjuntos de Q, el conjunto de los números rcionles. Simplificción entre frcciones: Ejemplo: MCD(24, 28) = divido num y den entre 4 Ejercicios 1) Puedes simplificr l frcción 1/3? Y 3/5? Por qué? Y mplificrls? 2) Escrie tres frcciones equivlentes cd un de ésts: 2/5; 3/2; 10/4. 3) Entre tres migos se hn reprtido 360 cromos de l siguiente mner: l primero 3/9, l segundo 4/12 y l tercero 1/3. Cuántos cromos le corresponde cd uno? Qué relción hy entre ls tres frcciones? 4) Cuál de ls siguientes frcciones es irreducile? 10/21; 15/24; 220/1617 5) Simplificr ls siguientes frcciones: 6) Un pelot reot 2/3 de l ltur que h cído. i) Si ce de 18m, qué ltur reot? ii) De qué ltur fue dejd cer si reot 4m? ,,, ) Retiro del nco los 3/7 de mi depósito que equivlen $1110. Cuánto he dejdo depositdo? 8) Un chcrero vendió 2/5 de su cmpo y rrendó 1/3 del resto quedndo pr él 300 hectáres. Cuál er l superficie totl de su cmpo ntes de hcer sus negocios? Prof. Crolin Colmn Págin 5

6 Representción gráfic de Q O µ Si tengo que representr por ejemplo l frcción 2/3, divido l unidd en 3 prtes y de ess tomo 2. Orden en Q Definición: < c d < c d Ejemplo: 2 < < < 15 cierto 3 4 Definición: > c c < c < d d > c d d Ejemplo: 2 > > > 7 cierto 7 8 9) Comprr: Csos prticulres: 1) frcciones de igul denomindor Prof. Crolin Colmn Págin 6

7 c <. =. c < c 0 Si dos frcciones tienen igul denomindor es menor l que tiene menor numerdor. 2) frcciones de igul numerdor < c. c =. c < 0 Si dos frcciones tienen igul numerdor es menor l que tiene myor denomindor. Dds y c d, queremos encontrr dos frcciones equivlentes ls dds que tengn el mismo denomindor (esto es reducir común denomindor). El común denomindor deerá ser un múltiplo común distinto de cero de los denomindores de ls frcciones dds (es conveniente que se el mínimo común múltiplo de y d) En generl: Si multiplico numerdor y denomindor de por d y numerdor y denomindor de c d por, otengo dos frcciones equivlentes ls primers y tienen el mismo denomindor.d. Es decir. d. d tienen el mismo denomindor c c. d d d. Prof. Crolin Colmn Págin 7 10)

8 El reglmento licel indic que un lumno dee sistir por lo menos los 4/5 del número totl de clses dictds por el profesor pr ser reglmentdo. Jun González tiene 16 insistencis y el profesor segur que dictrá 90 clses en totl. i) Jun González y quedó lire? ii) En cso negtivo, cuánts flts puede tener? OPERACIONES CON FRACCIONES Y NÚMEROS RACIONALES POSITIVOS Definición: c. d +. c + = d. d c sumndos sum de y d ADICIÓN Propieddes: 1) Propiedd uniforme: el resultdo de l sum no depende de l frcción representnte de los números rcionles que se tome. ' ' c ' c ' + = + c c ' d ' d ' d d ' 2) Propiedd conmuttiv: el orden de los sumndos no lter l sum c c + = + d d 3) Propiedd socitiv: c e c e + + = + + d f d f 4) Propiedd de monotoní: c e c e < + < + d f d f 5) Propiedd cnceltiv: Prof. Crolin Colmn Págin 8

9 e c e c + = + = f d f d 6) Existenci de neutro: = Q / Q se cumple + = + = n n n Sum de frcciones de igul denomindor: L sum de dos frcciones de igul denomindor se define como el resultdo de sumr los numerdores y dejr c + c invrinte el denomindor, + = Ejemplo: En un reunión, 2/6 de ls persons son homres y 3/6 son mujeres, Qué frcción de los presentes son dultos? Efectivmente utilizndo l definición de sum de frcciones: ( + ) c. +. c c. + c + = = =. fctor común. frcciones equivlentes ( divido num y den entre ) SUSTRACCIÓN O DIFERENCIA Definición: c e e c = + = d f f d min uendo sustrendo diferenci c Condición de existenci : d Prof. Crolin Colmn Págin 9

10 Regl práctic: c. d. c = d. d Necesitmos demostrr que. d. c c + =. d d Demostrción: (.. ). + (. ). d. c c d c d d c. d. d. c. d +. d. c + = = = d d d d d d. def. sum.. distriutiv.. de frcciones. d. d = =. d. d simplificndo frcción primer miemro MULTIPLICACIÓN Prof. Crolin Colmn Págin 10

11 Propieddes: 1) Propiedd uniforme: el resultdo del producto no depende de l frcción representnte de los números rcionles que se tome. ' ' c ' c ' = c c ' d ' d ' d d ' 2) Propiedd conmuttiv: el orden de los fctores no lter el producto c c = d d 3) Propiedd socitiv: c e c e = d f d f Prof. Crolin Colmn Págin 11

12 4) Propiedd de monotoní: c e c e < < con e Ν d f d f 5) Propiedd cnceltiv: * e c e = c f d f = d * e Ν 6) Existenci de neutro: n con n Ν * / Q se cumple n = n = n n n 7) Existenci de inverso: El inverso de un número e quel que multiplicdo por él nos d l unidd, es decir el neutro de l multiplicción. Todos los rcionles tienen inverso excepto el * Q ( 0) existe y es único el inverso de,este serí y se cumple = = 1 Oservmos: 1 = 8) Asorción: Q se cumple.0 0 = 9) Hnkelin. c = 0 = 0 o c = 0 d d 10) Distriutiv de l multiplicción respecto l dición o sustrcción: c e e c e +. =. +. d f f d f c e e c e. =.. d f f d f Prof. Crolin Colmn Págin 12

13 Definición: c e c e = = d f d f dividendo divisor cociente DIVISIÓN Ejemplo: En un reunión hy 24 persons, los 2/3 de los presentes son dultos y ¾ de los dultos son homres. ) Cuánts persons dults hy en l reunión? ) Cuántos niños hy en l reunión? c) Qué frcción son los homres respecto del totl de persons? DENSIDAD EN Q Prof. Crolin Colmn Págin 13

14 Un propiedd muy importnte del orden de rcionles es que ddos dos rcionles, por muy próximos que los elijmos siempre podemos encontrr tntos rcionles como quermos que sen myores que uno de ellos y menores que el otro. Est propiedd se suele enuncir diciendo que entre dos números rcionles distintos existen siempre infinitos rcionles. Tmién se dice que el conjunto de los números rcionles es un conjunto denso. Todo esto implic que en los números rcionles, diferenci de lo que sucede en los nturles, dej de tener sentido el concepto de número siguiente o nterior y que nunc podremos encontrr dos rcionles que no tengn otros rcionles entre ellos. Ejemplo: Existe un número rcionl α entre 2 5 y 3 5? L respuest es sí, por l propiedd enuncid nteriormente (densidd en Q ) Pr encontrr uno se puede proceder sí: - Si representmos 2 5 y 3 5 en l rect numéric, un vlor posile de α serí el punto medio del segmento determindo por ellos α α = α = 2 2 Oservción: Si considermos punto medio entre por ejemplo 2 5 y α, encontrrímos otro rcionl entre 2 5 y 3 5, luego punto medio entre 2 5 y este último, encontrrímos otro rcionl entre 2 5 y 3 5. Este procedimiento se puede seguir repitiendo tnts veces como quier, lo cul nos permite precir l existenci de infinitos rcionles entre 2 5 y Buscmos frcciones equivlentes 2 5 y con igul denomindor, por ejemplo: y 3 6, es decir que uscr un número rcionl entre 2 5 y 3 4 es equivlente uscr uno entre 5 10 y 6, por lo que α podrí ser. Si quisier encontrr más trtrí de encontrr otrs frcciones equivlentes ls 10 2 Prof. Crolin Colmn Págin 14

15 dds, por ejemplo 8 20 y 12 20, por lo que rcionles entre mos podrín ser 9 20, 10 20, Oservmos que es equivlente 1, por lo que encontrmos dos más, no tres. 2 Prof. Crolin Colmn Págin 15

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

Unidad 2. Fracciones y decimales

Unidad 2. Fracciones y decimales Mtemátics Múltiplo.º ESO / Resumen Unidd Unidd. Frcciones y decimles FRACCIONES NÚMEROS DECIMALES EXPRESIÓN, 8, 9 SIGNIFICADO FRACCIONES EQUIVALENTES 0 30 0 0 Prte de un unidd Prte de un cntidd ORDENACIÓN

Más detalles

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO 6 LÁMINA No. 1.1 REPRESENTACION GRÁFICA DE N N {0, 1,,, 4, 5,...} Propieddes de N: 1. Tiene primer elemento. 0 1 4 5... 1er elemento suc() último elemento. Todo número tiene sucesor. No existe último elemento

Más detalles

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor :

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor : RESUMEN 01 NÚMEROS Nomre : Curso : Profesor : PÁGINA 1 Números Los elementos del conjunto N = {1, 2, 3, 4, 5, } se denominn Números Nturles. Los Números Crdinles corresponden l unión del conjunto de los

Más detalles

Módulo 12 La División

Módulo 12 La División Módulo L División OBJETIVO: Epresrá lguns propieddes de l división usndo propieddes de l división los inversos; epresr un numero rcionl de l form deciml frcción común vicevers. L división es un operción

Más detalles

2 Números racionales positivos

2 Números racionales positivos Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto

Más detalles

Cálculo del valor decimal de una fracción Para obtener el valor de una fracción se divide el numerador entre el denominador. 2 5

Cálculo del valor decimal de una fracción Para obtener el valor de una fracción se divide el numerador entre el denominador. 2 5 LECCIÓN : FRACCIONES.- QUÉ ES UNA FRACCIÓN? UNA FRACCIÓN ES...... L epresión un prte un cntidd enter. Términos un frcción: DENOMINADOR: Es el número que se coloc bjo l r frcción e indic el número totl

Más detalles

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales. El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =

Más detalles

TEMA 1. LOS NÚMEROS REALES

TEMA 1. LOS NÚMEROS REALES TEMA. LOS NÚMEROS REALES. Operciones con números nturles. Los números nturles son los que se utilizn pr contr 0,,,,,, Con los números nturles podemos relizr diferentes operciones, como - Sum + = 8 - Rest

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

Guía de Trabajo n 1 Octavo año básico Refuerzo Contenido y Aprendizaje N. Cero (restitución de aprendizajes) Números

Guía de Trabajo n 1 Octavo año básico Refuerzo Contenido y Aprendizaje N. Cero (restitución de aprendizajes) Números Colegio Antil Mwid Deprtmento de Mtemátic Profesor: Nthlie Sepúlved Guí de Trjo n Octvo ño ásico Refuerzo Contenido y Aprendizje N Fech Tiempo 2 Hors Nomre del/l lumno/ Unidd Nº Núcleos temáticos de l

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I CURSO DE NIVELACIÓN 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I. Con relción l potencición, se firm que es un operción: ) Conmuttiv. ) Distriutiv respecto l sum. 3) Distriutiv

Más detalles

( x) = 4x. ( x) ( ) ( ) REPASO DE LAS RAZONES ALGEBRAICAS (4º ESO) CÁLCULO DEL M.C.D. Y m.c.m. DE VARIOS POLINOMIOS.-

( x) = 4x. ( x) ( ) ( ) REPASO DE LAS RAZONES ALGEBRAICAS (4º ESO) CÁLCULO DEL M.C.D. Y m.c.m. DE VARIOS POLINOMIOS.- REPASO DE LAS RAZONES ALGEBRAICAS (º ESO) CÁLCULO DEL M.C.D. Y m.c.m. DE VARIOS POLINOMIOS.- Ddos dos o más polinomios P Q form nálog l cálculo del M.C.D. el m.c.m. con números º) Se fctorizn los polinomios

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Capitulo II. Números Reales

Capitulo II. Números Reales Cpitulo II. Números Reles Ojetivo. El lumno plicrá ls propieddes de los números reles y sus suconjuntos, pr demostrr lguns proposiciones por medio del método de inducción mtemátic y pr resolver inecuciones.

Más detalles

LOS CONJUNTOS NUMÉRICOS

LOS CONJUNTOS NUMÉRICOS Pontifici Universidd Ctólic de Chile Fcultd de Educción Nivelción de Estudios pr Adultos CREA Educción Mtemátic Nivel 2 Profesor Jun Núñez Fernández LOS CONJUNTOS NUMÉRICOS Como se mencionó en l clse nterior,

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

Potencias y radicales

Potencias y radicales Potencis y rdicles. Rdicles Definición Llmmos ríz n-ésim de un número ddo l número que elevdo n nos d. por ser n n Un rdicl es equivlente un potenci de eponente frccionrio en l que el denomindor de l frcción

Más detalles

OPERACIONES CON FRACIONES

OPERACIONES CON FRACIONES LEY DE SIGNOS OPERACIONES CON FRACIONES SUMA Y RESTA: Si se sumn dos números con el mismo signo, se sumn los vlores solutos y se coloc el signo común (+) + (+) = + 8 (-) + (-) = - 8 Si se sumn dos números

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales.

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales. Fich Técnic Conjuntos numéricos Intervlos Operciones en el conjunto de números reles Índice de tems: Conjuntos numéricos Intervlos Operciones y propieddes Módulo o vlor bsoluto de un número rel Conjuntos

Más detalles

Números. Subclases dentro de los reales. Lectura sugerida

Números. Subclases dentro de los reales. Lectura sugerida Lectur sugerid Selección 1: Subclses dentro de los reles. Nturles. Enteros. Rcionles. Irrcionles. Operciones. Un comentrio y vris clrciones. Vlor bsoluto y signo. Enteros. Sum de enteros. Producto de enteros.

Más detalles

Sistema de los Números Reales

Sistema de los Números Reales Sistem de los Números Reles El Conjunto de los Números Rcionles Ysel Ocho Tpi Ysel Ocho Tpi Sistem de los Números Reles /2 Introducción Los rcionles: Q Los números rcionles permiten expresr medids. Cundo

Más detalles

a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b)

a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b) Clse-06 Números rcionles expresdos en form deciml: Todo número rcionl con b 0 se puede trnsformr form deciml l dividir b el numerdor por su denomindor. En form deciml los siguientes rcionles quedn escritos

Más detalles

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano Cpítulo 4 Números Rcionles. Luego de construir los Números Nturles, se presentron ciertos problems como Cuál es el resultdo de 3 menos 5?, pr poder encontrr un solución se creó prtir de N el conjunto de

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

NÚMEROS RACIONALES. Los números racionales son todos aquellos números de la forma b

NÚMEROS RACIONALES. Los números racionales son todos aquellos números de la forma b NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números enteros y b distinto de cero. El conjunto de los números rcionles se represent por l letr Q. IGUALDAD ENTRE

Más detalles

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida»

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida» 73 ESO dí. «El que pregunt lo que no se es ignornte un El que no lo pregunt será ignornte tod l vid» E = m c ÍNDICE: MENSAJES OCULTOS 1. EXPRESIONES ALGEBRAICAS. VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA

Más detalles

Fracciones algebraicas

Fracciones algebraicas Frcciones lgerics L histori del número irrcionl "" = 3.459653589793... Los ntiguos le dn un vlor de 3 con lo que errn en un 5 %; Arquímedes le dio el vlor, los chinos en el 7 siglo I le signron el vlor

Más detalles

En general, si. son números racionales, la suma es un número racional.

En general, si. son números racionales, la suma es un número racional. ... SUMA DE FRACCIONES. Al relizr sums con números rcionles encontrmos csos muy específicos, como son los siguientes: Sum de números rcionles con el mismo denomindor. Pr resolver este tipo de ejercicios

Más detalles

TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1

TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1 TEMA Polinomios y frcciones lgerics Tem Polinomios y frcciones lgerics ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum y rest de polinomios...- Producto de polinomios...- División de polinomios..-

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21 TEMA. NÚMEROS REALES SOLUCIONES DE LAS ACTIVIDADES Págs. Págin. Actividd personl, por ejemplo:,...,...,...,9...,8.... ) No, pues un deciml puede tener un número limitdo de cifrs o ser periódico. Por ejemplo,,

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer emen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, eplicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

POLINOMIO GRADO TERM. INDEP. ORDENAR COMPLETAR 2x-x x 3 8-x 4 x+4x 4 2x-1+x 5

POLINOMIO GRADO TERM. INDEP. ORDENAR COMPLETAR 2x-x x 3 8-x 4 x+4x 4 2x-1+x 5 SECRETARIA DE EDUCACIÓN DE BOGOTÁ D.C. COLEGIO CARLOS ALBÁN HOLGUÍN I.E.D. Resolución de Aproción (SED N 8879 de Dic. 7 de 001 Resolución de Jornd Complet (SED N 08 de Nov. 17 de 01 En sus niveles Preescolr,

Más detalles

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción. MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números

Más detalles

Si se divide una cuarta parte de un pastel a la mitad se obtiene una octava parte del mismo, lo que escrito en simbología matemática es

Si se divide una cuarta parte de un pastel a la mitad se obtiene una octava parte del mismo, lo que escrito en simbología matemática es págin 8 págin 8 DIVISIÓN DE FRACCIONES Si se divide un curt prte de un pstel l mitd se otiene un octv prte del mismo, lo que escrito en simologí mtemátic es Lo nterior es lo mismo que 4 8 4 4 8 De donde

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

NÚMEROS REALES 1º Bachillerato CC. SS.

NÚMEROS REALES 1º Bachillerato CC. SS. Números Reles NÚMEROS REALES 1º Bchillerto CC. SS. Reles R Irrcionles I Enteros Rcionles Z Q Nturles Nturles N 1,,,... EnterosZ, 1, 0, 1,... Rcionles Q 7,, 6'... 5 N Irrcionles I π,, 7'114... Números Reles

Más detalles

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1 TEMA Epresiones lgerics. Polinomios Tem Epresiones lgerics. Polinomios ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum rest de polinomios...- Producto de polinomios...- Potenci de polinomios..-

Más detalles

Respuesta: Con este resultado Anahí decide contratar a estos pintores.

Respuesta: Con este resultado Anahí decide contratar a estos pintores. Universidd de Concepción Fcultd de Ciencis Veterinris Nivelción de Mtemátics(0) Unidd-I: Conjunto de los Números Rcionles Introducción: Al plnter l necesidd de dividir números enteros, surge un problem:

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Módulo 16 Simplificación de fracciones

Módulo 16 Simplificación de fracciones Módulo 6 Simplificción de frcciones OBJETIVO: Mnejrá ls cutro operciones fundmentles con epresiones lgebrics frccionris, simplificrls hst trnsformrls en irreductibles y epresrá proposiciones en lenguje

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez Polinomios Operciones Regl de Ruffini Ríces o ceros Descomposición Frcciones lgebrics Ecuciones rcionles Repso de polinomios Ejercicios Ddos los polinomios P(, Q( R( clculr: P( Q( Q( R( P( Q( R( d P( Q

Más detalles

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8} NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

SECCIÓN 3 DESCRIPCIÓN DE LOS NÚMEROS REALES

SECCIÓN 3 DESCRIPCIÓN DE LOS NÚMEROS REALES SEMANA I I I Números Positivos y Negtivos Representción gráfic: SECCIÓN DESCRIPCIÓN DE LOS NÚMEROS REALES -5-4 - - - 0 4 5 Sentido izquierdo Sentido derecho El cero represent l usenci de l cntidd, y es

Más detalles

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros.

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros. 4. Espcios vectoriles, definición propieddes Viguers En l Físic, con frecuenci se us el término vector pr descriir mgnitudes como l fuer, l velocidd, l celerción, otros fenómenos de l nturle, sin emrgo

Más detalles

OPERACIONES CON RADICALES

OPERACIONES CON RADICALES OPERACIONES CON RADICALES RAÍCES Y RADICALES L ríz n-ésim de un número, representd por n, es un operción sore que d como resultdo un número tl que n. Si n es pr, h dos resultdos posiles: positivo negtivo:,

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f.

La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f. CAPÍTULO L integrl.6 Propieddes fundmentles de l integrl En est sección presentmos lguns propieddes ásics de l integrl que fcilitn su cálculo. Aditividd respecto del intervlo. Si < < c, entonces: f./ d

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

EXPONENTES. se abrevia n k, es decir que. Por ejemplo, para no escribir , se abrevia 3 6, que visto a la inversa 4 5 significa

EXPONENTES. se abrevia n k, es decir que. Por ejemplo, para no escribir , se abrevia 3 6, que visto a la inversa 4 5 significa págin 1 págin 16 EXPONENTES L ide de los exponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic un cntidd n por sí mism k veces, o se n nn... n k veces se revi

Más detalles

UNIDAD III INECUACIONES

UNIDAD III INECUACIONES Licencitur en Administrción Mención Gerenci y Mercdeo UNIDAD III INECUACIONES Elordo por: Ing. Ronny Altuve Rg, Esp. Ciudd Ojed, mrzo de 2017 Universidd Alonso de Ojed s reles Los números que están ordendos

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

EXPRESIONES ALGEBRAICAS: MONOMIOS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS: MONOMIOS Y POLINOMIOS EXPRESIONES LGERIS: MONOMIOS Y POLINOMIOS EXPRESIÓN LGERI.- Un epresión lgeric es culquier cominción de números letrs unidos por ls operciones ritmétics (sum, rest, multiplicción, división, potenci, (o)

Más detalles

Funciones Algebraicas

Funciones Algebraicas 1 1r Unidd s 1. Dominio de Polinomiles y Rcionles Cundo los pensmientos brumn nuestr mente es momento de tomr un pus, respirr, y reformulr ides. Unos minutos pr desconectrse resultn de provecho pr volver

Más detalles

3.- Página 10, actividad Página 10, actividad Página 10, actividad Página 10, actividad 27.

3.- Página 10, actividad Página 10, actividad Página 10, actividad Página 10, actividad 27. Lección : LOS NÚMEROS.- NÚMEROS ENTEROS ===================================================================== ACTIVIDADES Lee detenidmente ls págins y 0 del liro de teto l cuestión, Números enteros, refleion

Más detalles

Multiplicar y dividir radicales

Multiplicar y dividir radicales Multiplicr y dividir rdicles 1 Repso Simplificr: 000 4 0 18 1000 4 4 4 10 4 0 0 ( ( ) 0 8) 0 0 0 8 Multiplicción de rdicles Si y son números reles, n n n n n Podemos decir que cundo multiplicmos rdicles

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

TEMA 0: CONCEPTOS BÁSICOS.

TEMA 0: CONCEPTOS BÁSICOS. TEMA : CONCEPTOS BÁSICOS.. Intervlos:. Intervlos. 2. Propieddes de ls potencis.. Propieddes de los rdicles. Operciones con rdicles. Rcionlizción. 4. Conceptos de un polinomio. Fctorizción de polinomios..

Más detalles

Clase 2: Expresiones algebraicas

Clase 2: Expresiones algebraicas Clse 2: Expresiones lgebrics Operr expresiones lgebrics usndo ls propieddes lgebrics de ls operciones sum y producto, propieddes de ls potencis, regls de signos y préntesis. Evlur expresiones lgebrics

Más detalles

expresiones algebraicas, debemos de tener en consideración en el orden. Primero los signos, luego los coeficiente y por último las literales

expresiones algebraicas, debemos de tener en consideración en el orden. Primero los signos, luego los coeficiente y por último las literales Versión01. Divisiónlgeric Por:SndrElviPérezMárquez De l mism form que en l multiplicción, pr efectur l división de epresioneslgerics,deemosdetenerenconsiderciónenelorden. Primerolossignos,luegoloscoeficienteporúltimolsliterles

Más detalles

Y f. Para ello procederemos por aproximaciones sucesivas, de modo que cada una de ellas constituya un término de una sucesión G n cuyo límite

Y f. Para ello procederemos por aproximaciones sucesivas, de modo que cada una de ellas constituya un término de una sucesión G n cuyo límite INTEGRALES LECCIÓN Índice: El prolem del áre. Ejemplos. Prolems..- El prolem del áre Se f un función continu y no negtiv en [,]. Queremos clculr el áre S de l región del plno limitd por l gráfic de f,

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 147

INSTITUTO VALLADOLID PREPARATORIA página 147 INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: EDISON MEJÍA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 8

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

2 es racional y se llegará a una contradicción.

2 es racional y se llegará a una contradicción. Instituto de Enseñnz Superior Simón Bolívr Profesordo pr l Educción Secundri en Mtemátic Profesores: Olg Peñloz y Víctor Plzzesi. Espcio Curriculr: Elementos de l Aritmétic y el Álgebr. Clse 4: Si se pudiern

Más detalles

17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces.

17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces. Tem 1.- V de números 1.1.- Números pr contr. Un de ls primers ctividdes intelectules que reliz el ser humno es l de contr: el número de flechs, el número de ovejs, el número de enemigos, etc. En Mtemátics

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

Muchos cálculos algebraicos, que son difíciles o imposibles por otros métodos, son fáciles de desarrollar por medio de los logaritmos.

Muchos cálculos algebraicos, que son difíciles o imposibles por otros métodos, son fáciles de desarrollar por medio de los logaritmos. 1.3. L función Logrítmic Con el uso de los ritmos, los procesos de multiplicción, división, elevción potencis extrcción de ríces entre números reles pueden simplificrse notorimente. El proceso de multiplicción

Más detalles

INECUACIONES: solución y representación Parte 1: Desigualdades y sus propiedades

INECUACIONES: solución y representación Parte 1: Desigualdades y sus propiedades Proyecto Alinz de Mtemátics y Ciencis del Turo (AMCT) INECUACIONES: solución y representción Prte 1: Desigulddes y sus propieddes Mrlio Predes, Ph.D. 14 de noviemre de 2009 Año cdémico, 2009-2010 Este

Más detalles

Una magnitud es cualquier propiedad que se puede medir numéricamente.

Una magnitud es cualquier propiedad que se puede medir numéricamente. Etueri Clses Prticulres Online Tem 4. Proporcionlidd Mgnitudes Un mgnitud es culquier propiedd que se puede medir numéricmente. Ejemplos: longitud, cpcidd de un recipiente, peso, Rzón L rzón es el cociente

Más detalles

1Soluciones a los ejercicios y problemas

1Soluciones a los ejercicios y problemas Soluciones los ejercicios y problems ) 8 : 8 ) 8 8 : ) 8 8 : Pág PÁGINA 8 Clcul y comprueb con l clculdor ) ) : : ) ) ) 8 [ 0 )] ) ) : ) [ 0 ] : : 0 88 8 ) ) ) 8 [ ) 0) : ) ] : ) 8 8 Reduce un frcción

Más detalles

open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co

open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co Guí Mtemátic FRACCIONES ALGEBRAICAS profesor: Nicolás Melgrejo.co . Introducción El mnejo lgebrico es un herrmient básic que nos permite comunicr ides en el mbiente científico sin importr l lengu que ellos

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

4 FRACCIONES INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR

4 FRACCIONES INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR FRACCIONES..- INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES...- COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR..- OPERACIONES CON FRACCIONES (I)..- OPERACIONES CON FRACCIONES (II)..-

Más detalles

Taller de Álgebra. 0, 1, 2, 3, 4, 5, los llamamos enteros no negativos o números naturales 0.5, 0.333, 0.75, 0.875, 4.333

Taller de Álgebra. 0, 1, 2, 3, 4, 5, los llamamos enteros no negativos o números naturales 0.5, 0.333, 0.75, 0.875, 4.333 Tller de Álger. Dr. Blnc M. Prr UIA Tijun 0. Números reles rect numéric. Números reles son todos los números que representmos en l rect numéric. A cd punto de l rect corresponde un número rel pr cd número

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012.

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012. Artículo de sección Revist digitl Mtemátic, Educción e Internet www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

OPERACIONES CON RADICALES

OPERACIONES CON RADICALES OPERACIONES CON RADICALES Como consecuenci de ls fórmuls fundmentles de rdicles, se pueden relizr ls siguientes operciones. Se requiere que en los rdicles sólo h productos o cocientes. Si huier sumndos

Más detalles