Profesor Titular Universidad Simón Bolívar

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Profesor Titular Universidad Simón Bolívar"

Transcripción

1 Termodinámica Básica 2 d aa Ediiciión Eriich A.. Müllller Profesor Titular Universidad Simón Bolívar

2 ISBN Depósito Legal 1F Editado por Consultora Kemiteknik C.A. Caracas, Erich Müller, 2002 Impreso por Publidisa SA C/ San Florencio Sevilla, España Queda rigurosamente prohibida, sin la autorización escrita del titular del copyright, bajo las sanciones establecidas en las leyes, la reproducción parcial o total de esta obra por cualquier medio o procedimiento, comprendidos la reprografía y el tratamiento informático, y la distribución de ejemplares mediante alquiler o préstamo público.

3 PRÓLOGO Hace algunos años escribí el libro Termodinámica Básica (Editorial Equinoccio, USB, 1991) pues existía la necesidad de un libro de texto que recogiese los elementos fundamentales del curso introductorio de Termodinámica que dicta en la Universidad Simón Bolívar. El libro tuvo un éxito inesperado, considerando lo impopular del tema. Sin embargo, el texto tenía sus fallas y dejaba algunos temas en el aire o los tocaba de manera muy superficial. Adicionalmente, el libro presuponía que el estudiante tuviese acceso a tablas de propiedades termodinámicas que no se incluían en el mismo. Poco a poco comenzó a surgir la inquietud de expandir el libro para tratar de cubrir esas deficiencias. Este libro es pues, una segunda aproximación a un texto de termodinámica, donde se ha tratado de dar una explicación más cuidadosa a los diversos temas. Hay una nueva distribución de los capítulos, nuevos problemas, etc. Estamos en la generación de la informática, y en ese sentido, las tablas termodinámicas están siendo desplazadas poco a poco por programas que cumplen las mismas funciones de manera más eficiente. - Adiós a las interpolaciones! - comentan alegremente los estudiantes, sin notar que ahora, con tablas computarizadas, se pueden sugerir problemas más interesantes (o sea, más difíciles). Las tablas se incluyeron, junto con los programas que las generan, problemas resueltos, capítulos nuevos, soluciones a algunos problemas, diagramas,

4 videos, fotos de termodinámicos importantes, y otro material suplementario en la página web /www.termobasica.com/ Aprovecho la oportunidad para agradecer a todos mis alumnos que con sus inquietudes, preguntas y comentarios han hecho de este un mejor libro. Particularmente a Christian Leighton, quien resolvió muchos de los problemas planteados al final de los capítulos; a Carla Velasco quien hizo varios de los nuevos dibujitos, inclusive la portada; a Jorge Pikunic, que se encargo de pasar a limpio algunos de los nuevos capítulos, a Miguel Jackson quien desarrolló el programa de propiedades y a Diana Torres, Nicole Minionis y Carola Dos Ramos quienes desarrollaron el programa del cilindro-pistón; a mis colegas del departamento de Termodinámica y Fenómenos de Transferencia que con paciencia han revisado las versiones previas a esta y me han hecho las correcciones del caso. Por último (pero no por ello menos importante), a Evelyn, Erika y Werner por el tiempo que me prestaron. Mayo 2002

5 Prólogo de la primera edición Antes que nada; bienvenido al mundo de la termodinámica!; un mundo que con nombre ajeno, es el mismo que le rodea y del cual Ud. tiene un amplio conocimiento. Este libro nació de la inquietud de ciertos alumnos al no encontrar una fuente única que contuviera todo el material que se ofrece en el curso introductorio de termodinámica que se dicta en la Universidad Simón Bolívar. La finalidad de "Termodinámica Básica" es darle a conocer las herramientas elementales de esta disciplina. El título refleja muy bien el hecho de que aquí se presenta solo la punta del iceberg. Un tratado de termodinámica no cabría ni remotamente en este limitado espacio. He observado como profesor (y sufrido como estudiante) que no siempre se dispone de todo el tiempo ideal para leer y madurar los conceptos abstractos, los cuales abundan en la termodinámica. Por ello este libro está orientado hacia un enfoque resumido, mas no superficial. Algunas ideas al margen y aclaratorias se han añadido en letras pequeñas para ayudar al estudiante a profundizar ciertos temas. Por último quisiera destacar que la termodinámica es una materia teórica-práctica, de la cual este libro cumple solo la primera función. Es indispensable reforzar la teoría resolviendo ejercicios uno mismo y enfrentándose en carne propia a los problemas. Para ello se colocan algunos problemas al final de cada capítulo. Ellos requieren normalmente del uso de tablas y gráficos termodinámicos que no se incluyen en este libro sino se distribuyen de manera separada. La mayoría de los problemas han sido sacados de los exámenes preparados durante los últimos años en el Departamento de Termodinámica y Fenómenos de Transferencia de nuestra universidad. Las soluciones de los problemas están disponibles para quienes me las pidan, pero no sean flojos!, no es posible aprender a manejar una bicicleta viendo a otra persona manejarla, por muy bien que le expliquen a uno. Hay que montarse en ella e intentarlo, hasta dominarla. Montémonos pues en la bicicleta y adelante...

6 ÍÍNDIICE Capítulo 1 Introducción Qué es la Termodinámica? 1 Conceptos Básicos 6 Propiedades P-v-T 15 Problemas 41 Capítulo 2 Comportamiento volumétrico de los fluidos Descripción de sistemas puros 45 Superficies y diagramas termodinámicas 54 Tablas termodinámicas 59 Ecuaciones de estado 66 Problemas 84 Capítulo 3 Trabajo termodinámico El trabajo para un termodinámico 103 Cálculo de trabajo 107 Problemas 114 Capítulo 4 Calor y Energía Calor 121 Mecanismos de transferencia de calor 125 Equivalente mecánico del calor 128 Energía 131 Entalpía y calores específicos 142 Aplicaciones a gases ideales 146 Problemas 154

7 Capítulo 5 Primera ley de la Termodinámica Primera ley para sistemas abiertos 165 Modelos para los sistemas abiertos 169 Problemas 195 Capítulo 6 Entropía Por qué hace falta otra ley? 211 Máquinas térmicas 216 Reversibilidad e irreversibilidad 226 Ciclo de Carnot 233 Entropía 239 Cambio de entropía en sistemas cerrados 250 Cálculo de entropía 259 Problemas 268 Capítulo 7 Segunda ley de la Termodinámica Segunda ley para sistemas abiertos 281 Qué significa el aumento de entropía? 286 Otras aplicaciones del balance de entropía 293 Eficiencia real 296 Problemas 301 Página web /www.termobasica.com/

8

9 1 INTRODUCCIÓN "El principio es la mitad del todo." Pitágoras Qué es la Termodinámica? La palabra termodinámica se origina del griego y significa literalmente el estudio de las fuerzas (dynamis; dunamiz) que originan el calor (thermo; termh). Hoy en día esta traducción no tiene mucho que ver con la esencia de lo que estudiamos bajo el concepto de termodinámica. La definición original ya no es válida pues la termodinámica no sólo estudia el calor, sino todo tipo de formas de energía (mecánica, eléctrica, química, nuclear, etc.). Además, la termodinámica clásica (de la que trata este curso) se ocupa de estados de equilibrio y no de estados dinámicos, para los cuales las fuerzas son importantes. Hoy en

10 2 Introducción día, la termodinámica abarca campos tan diversos como la ingeniería, la biología, la química, la medicina entre otras. Se podría decir 1 que la termodinámica es la ciencia que estudia las transformaciones energéticas. La termodinámica es una ciencia exacta que se origina a mediados del siglo XVIII como consecuencia de una necesidad de describir, predecir y optimizar la operación de las máquinas de vapor. Las leyes de la termodinámica como las planteamos hoy son el resultado de más de 250 años de experimentación e interpretación teórica. El hecho de que la termodinámica pretenda describir matemáticamente hechos observables nos da a nosotros una gran ventaja, ya que inadvertidamente conocemos muchos aspectos de nuestra propia experiencia cotidiana. La termodinámica se fundamenta en cuatro leyes universales denominadas las leyes cero, primera, segunda y tercera. Cronológicamente sólo la tercera está correctamente numerada. La segunda ley fue formulada en 1824 y la primera ley unos veinte años después. La tercera y la ley cero se enunciaron a comienzos del siglo XX. En los siguientes párrafos vamos a hacer un ejercicio muy sencillo y simplista para que se den cuenta que ya, sin leer este 1 La Real Academia de la Lengua Española la define como: Parte de la física, en que se estudian las relaciones entre el calor y las restantes formas de energía. Observe como termodinámica se define en función de energía, un término que apenas discutiremos varios capítulos más adelante.

11 Qué es la termodinámica? 3 libro, saben bastante de termodinámica, pero quizás no lo hayan reconocido. Supongamos que tenemos un termómetro común pero sin marcas. Hoy lo ponemos en un vaso de agua fría, lo dejamos reposar y marcamos el nivel del mercurio en el termómetro. Al día siguiente repetimos la experiencia y el nivel del mercurio llega al mismo punto. A qué conclusión podemos llegar? Nuestra intuición nos dice que ambos vasos estuvieron a la misma temperatura. Sin embargo ante las preguntas inocentes Pero, qué es temperatura? Por qué es esa afirmación válida? Qué hace realmente un termómetro? quizás no tengamos una respuesta adecuada. Pronto la tendremos. T A T B T A T C T A = T B T A = T C T B = T C Imaginémonos ahora que tenemos tres vasos de agua marcados A, B y C. Usando el termómetro y el procedimiento descrito anteriormente observamos que A y B están a la misma temperatura y a su vez B y C están también a una misma temperatura. Qué conclusión podríamos sacar sobre la relación de temperaturas entre los vasos A y C? Naturalmente y sin

12 4 Introducción ninguna sospecha afirmaríamos que los vasos A y C están a una misma temperatura. Aunque los resultados nos parecen obvios, no lo son ni lo fueron para los científicos del siglo pasado. La transitividad de la temperatura es la llamada ley cero de la termodinámica y nos establece la base teórica para efectuar mediciones de temperaturas. Los primeros tres capítulos nos servirán para establecer un lenguaje común y para comenzar a establecer la relación entre las diversas propiedades termodinámicas de las sustancias. Sigamos con los ejercicios mentales. Pensemos ahora en una cámara aislada como por ejemplo una cava de anime, en la cual colocamos dos vasos de agua a temperaturas distintas, digamos a 20 y 40 C. Si los dejamos en reposo por un tiempo prudencial, cuál será la temperatura final de los vasos? Nuestra intuición nos dice que el vaso frío se calentará a medida que el caliente se enfríe. Es posible que ambos lleguen a equilibrarse a una temperatura intermedia. Sin advertirlo hemos usado el principio de conservación de energía térmica, que es un caso especial de la primera ley de la termodinámica. En el quinto capítulo de este libro se trata su descripción detallada. Consideremos otro caso cotidiano. Al echar azúcar al café, esta se disuelve sola. (Nosotros para acelerar el proceso, lo agitamos con una cucharilla. Una vez disuelta la azúcar, por más que esperemos el tiempo que queramos, el azúcar no se va a separar del café. Del mismo café vemos que su aroma se esparce poco a poco por todo el

13 Qué es la termodinámica? 5 cuarto, pero también sabemos que por si solo, el aroma no se va a concentrar en un solo lugar. Por último, el café, inicialmente caliente se enfría, calentado en una mínima proporción el aire del cuarto (o el cuerpo de quien lo tomó). Sin embargo una taza de café no se puede calentar sola a cuenta de que se enfríe el medio ambiente. Nosotros sabemos que en el párrafo anterior, las segundas opciones no ocurren en la naturaleza y sin embargo pudiesen cumplir con el principio de conservación de energía. Existe en la naturaleza solo una dirección en la cual ocurren los fenómenos. La segunda ley de la termodinámica nos aclara que solamente ciertos procesos y direcciones son posibles y que no todos aquellos que nosotros imaginemos son realizables aun cuando satisfagan las leyes de conservación de masa y energía. Los capítulos cinco y seis estudian en detalle la segunda ley. Los restantes capítulos del libro profundizan sobre las propiedades de sistemas puros. El conocimiento sobre el comportamiento de la materia es de suma importancia en los análisis de ingeniería. Turbinas, túneles de viento, plantas de potencia nucleares, motores de todo tipo, polímeros y sus mezclas, imanes superconductores, refinerías de petróleo, procesos biológicos, son sólo algunos ejemplos de sistemas que requieren de un análisis termodinámico. Cuando se realizan de manera sistemática, dichos análisis no son difíciles. No es posible subestimar la importancia que tiene el uso de una metodología sistemática, sin la cual aun los problemas fáciles se pueden volver muy complicados.

14 6 Introducción Comprender los conceptos y principios termodinámicos y desarrollar la habilidad de aplicarlos en los problemas típicos de ingeniería deberían estar entre los objetivos principales de cualquier curso básico de termodinámica. Conceptos Básicos Vamos a introducir una serie de definiciones y conceptos, algunos de los cuales parecerán de perogrullo y otros nuevos y poco claros. Es muy importante aprender a manejar estos conceptos y dominarlos completamente debido a que serán el lenguaje con el cual nos vamos a comunicar. Sistema es una región del espacio definida por un observador. Todo aquello que no sea parte del sistema se considera los alrededores. Todo sistema está definido por alrededores frontera sistema ciertas fronteras que pueden ser físicas o imaginarias.

15 Conceptos Básicos 7 Según las propiedades de estas fronteras el sistema se clasifica en cerrado o abierto. Sistema abierto es aquel que intercambia materia a través de sus fronteras. Una tetera hirviendo o un ser viviente son ambos ejemplos de sistemas que intercambian masa con los alrededores. Observemos que los sistemas abiertos pueden (y en general lo hacen) intercambiar energía (calor, trabajo, etc.) a través de sus fronteras. En ciertos textos se les da también el nombre de volúmenes de control. El sistema cerrado, por contrapartida, será aquel en el cual no hay transferencia de masa a través de la frontera. De nuevo, estas fronteras pueden intercambiar diversas formas de energía y por ende, el sistema puede cambiar. Un ejemplo de un sistema cerrado podría ser el helio contenido en un globo que se calienta bajo la acción de la radiación solar. Es interesante notar que la frontera de este sistema no es rígida y por el contrario variará con el tiempo. Despreciando la difusión del gas a través de la membrana, el sistema sufrirá transformaciones, pero su masa se mantendrá constante. Un caso particular del sistema cerrado es aquel que no percibe influencias del medio ambiente; denominado sistema aislado. Si bien el sistema aislado es una idealización debido a la imposibilidad de construir fronteras completamente impermeables, ciertas aproximaciones reales son muy buenas. Por ejemplo, una lata de cerveza dentro de una cava de anime se comportaría como un sistema aislado.

16 8 Introducción sistema aislado: La lata de cerveza (el sistema) está aislada dentro de la cava de playa. (Siempre y cuando la niñita no abra la cava ) sistema cerrado: el sistema es el helio dentro del globo, la frontera del sistema (el latex del globo) es flexible pero impermeable a la masa. sistema abierto: la frontera del sistema es la tetera, el sistema es el agua (líquido y vapor) dentro de ella. Los sistemas pueden no ser estáticos. De hecho, para el ingeniero, los sistemas en donde hay flujos, ya sea de materia o energía, son los de mayor interés. Cuando se desea analizar sistemas en movimiento existen dos tipos de descripciones.

17 Conceptos Básicos 9 t = 0 t = t 1 t = t 2 descripción lagrangiana todo t descripción euleriana Una de ellas, llamada la descripción lagrangiana, identifica un sistema cerrado y sigue su trayectoria. Esta clase de descripción es muy útil en la mecánica de sólidos. Por otro lado, podríamos identificar un volumen en el espacio y en este volumen establecer distintas ecuaciones de conservación. Este último enfoque se denomina descripción euleriana y se utiliza fundamentalmente en termodinámica y en el estudio de fenómenos de transferencia de momento, calor y masa. En el esquema se puede observar la dificultad que podría presentar la utilización de una descripción lagrangiana para analizar el flujo de agua por una tubería. En el primer caso, el sistema se mueve en el tiempo por lo que su descripción completa requiere no solo del conocimiento de las propiedades intrínsecas del sistema sino adicionalmente de los datos de posición versus tiempo. El segundo caso en el cual el sistema está inmóvil es, en ese sentido, más sencillo de analizar.

18 10 Introducción Los sistemas eulerianos, llamados también volúmenes de control, son sistemas abiertos que sirven para analizar procesos dinámicos en los cuales hay velocidades y flujos, ambas cantidades asociadas al tiempo. De tal manera, en vez de utilizar cantidades totales de masa, será más cómodo referirnos a caudales. Un sistema típico sería: &m e volumen de control &m s en donde nuestro sistema es el volumen encerrado dentro de la línea punteada. Continuamente entra y sale materia del sistema. Para contabilizar el flujo de masa, sabemos que esta se debe conservar y que Ï flujo de masa Ï flujo de masa Ï flujo de masa Ì - Ì = Ì Ó que entra Ó que sale Ó en el sistema en forma simbólica m& m& dm e - s = dt Las cantidades con un punto (. ) sobre ellas representan derivadas temporales o en términos físicos: flujos. Los subíndices (e) y (s) representan entradas y salidas al sistema

19 Conceptos Básicos 11 respectivamente. Los términos sin subíndices se refieren al sistema o volumen de control. Para sistemas con múltiples entradas y salidas podríamos generalizar y obtener la ecuación de conservación de la materia; también llamada ecuación de continuidad: Â Â m& - m& = dm e s 1.1 dt Propiedad termodinámica es una variable que cuantifica la situación de un sistema. Podemos clasificarlas en intensivas y extensivas. Serán intensivas aquellas que no dependen de la masa del sistema; por ejemplo el color, la temperatura, la presión. Aquellas que dependen de la masa del sistema como por ejemplo el volumen y el peso se denominan extensivas. La división de dos propiedades extensivas entre sí da como resultado una propiedad intensiva. Por ejemplo, la densidad definida tentativamente como la masa de un cuerpo entre su volumen (ambas propiedades extensivas) es una propiedad intensiva. Por convención, salvo la presión y la temperatura, las demás propiedades intensivas se representan con letras minúsculas a diferencia de las extensivas que se representan con mayúsculas. Estado es la condición del sistema definida por sus propiedades termodinámicas. Si un sistema en dos momentos distintos presenta los mismos valores de sus propiedades, se dice que estuvo en el mismo estado en ambos instantes. Por tal motivo, a las propiedades termodinámicas a veces se les da el

20 12 Introducción nombre de propiedades de estado. Se denomina proceso a la transformación de un estado a otro, siendo el camino del proceso la serie de estados a través de los cuales pasa. Algunos procesos se caracterizan por mantener alguna variable termodinámica constante y por lo tanto se le asignan nombres especiales. Entre otros, se pueden mencionar los de la siguiente tabla: proceso estado 1 estado 2 Proceso isotérmico isobárico isocórico Característica temperatura constante presión constante volumen constante Un ciclo es un proceso que comienza y termina en un mismo estado. Las propiedades varían durante el transcurso del ciclo, pero al volver al estado inicial todas las propiedades vuelven a tomar sus valores originales. Se dice que un sistema está en equilibrio siempre y cuando no ocurran cambios en sus propiedades sin un estímulo externo. La experiencia nos dice que todos los cuerpos tienden a un estado de equilibrio siempre y cuando se aíslen de los alrededores por suficiente tiempo. El estado de equilibrio puede

21 Conceptos Básicos 13 ser inestable, metaestable, estable o neutro. La posición posible de un carrito de una montaña rusa es un ejemplo clásico: El sistema en equilibrio estable tenderá a volver a su estado original aún después de una perturbación, a diferencia del estado inestable. Un sistema metaestable se comportará como un sistema estable siempre y cuando la perturbación sobre el sistema no sea lo suficientemente grande. Por ejemplo, una mezcla de oxígeno e hidrógeno se puede mantener inalterada por muchísimo tiempo, sin embargo, una chispa eléctrica produciría una explosión y el paso a otro estado de equilibrio. Fase se define como una cantidad homogénea y uniforme de materia. Las fases encontradas con más frecuencia 2 en la naturaleza son la sólida, la líquida y la gaseosa. Por ejemplo, aun cuando el agua y el hielo tienen una composición uniforme, no 2 Observe el uso de la frase con más frecuencia. Uno podría en principio reconocer otras fases con caracter propio como los geles (pastas de dientes); cristales líquidos (pantallas de computadoras portátiles) etc. Más aún, una misma sustancia puede presentar varias fases sólidas, como por ejemplo el grafito y el diamante, ambos fases sólidas del carbón.

22 14 Introducción van a tener una densidad igual y por lo tanto se consideran como dos fases distintas. Para una sustancia pura no pueden coexistir más de tres fases, no así para sistemas multicomponentes. Un mol es la cantidad de materia en un número determinado de partículas. Al igual que cuando hablamos de huevos o naranjas la unidad natural de cuantificación es la docena, al hablar de átomos y/o moléculas el utilizar docenas, millones o miles de millones no tiene sentido. Por tal motivo se define el mol como la cantidad de materia contenida en un número de Avogadro (N 0 ) de moléculas, átomos o partículas, según sea el caso; donde N 0 = 6, El peso molecular (M) es definido como la masa de un mol de átomos de una determinada sustancia: m M = n donde m es la masa y n el número de moles. La hipótesis original de Avogadro era que la masa correspondiente a un peso molecular correspondía a una misma cantidad de moléculas. Dándole el valor arbitrario de 1 al compuesto más ligero (el hidrógeno) y utilizando las relaciones que ofrecen las reacciones químicas se podría eventualmente estimar el peso molecular de las diversas sustancias. El número de moléculas en un peso molecular se denomina por lo tanto número de Avogadro. Este número fue desconocido para el

23 Conceptos Básicos 15 propio Avogadro. El físico inglés William Thomson (luego Lord Kelvin) tenía una manera de dar a entender a la gente la magnitud de este número. Imagínense que tenemos un vaso de agua donde todas las moléculas están marcadas de modo de hacerlas distinguibles de las demás moléculas de agua. Luego vaciamos este vaso en el océano y lo mezclamos. Una vez que todo el océano esté bien mezclado sacamos un vaso de agua y en él encontraremos diez mil de las moléculas marcadas! Propiedades P-v-T En esta sección intentaremos definir y analizar algunas de las propiedades mensurables de mayor interés para los sistemas que utilizaremos. Definamos tentativamente una propiedad llamada densidad (r) como la masa de un cuerpo entre su volumen (V): m r = V y tomemos un sistema arbitrario, por ejemplo un gas en un recipiente. Dentro de este recipiente consideremos un sistema formado por un pequeño cubo a través de cuyas paredes pueden salir y entrar las moléculas. Supongamos por último que tenemos la facultad de poder medir con infinita precisión tanto el volumen como la masa contenida dentro del cubo.

24 16 Introducción t t r = 2m V r = m V r = 3m V Estamos conscientes, aunque no lo podríamos observar, que aunque el gas se vea homogéneo, está formado por una cantidad astronómica de partículas en movimiento. Hagamos cada vez el cubo más pequeño y veamos que le pasa a la densidad. Mientras el cubo es lo suficientemente grande, la cantidad de partículas que salen y entran de él son despreciables frente al número total de ellas. Por tal motivo la densidad dentro del cubo permanecerá constante. Llegará el momento en que las dimensiones del cubo sean lo suficientemente pequeñas como para que la variación sea significativa, o sea que la entrada y/o salida de una partícula afecte el valor de densidad. Si graficáramos la densidad calculada de esta manera en función del volumen del cubo, V, veríamos que para volúmenes grandes la densidad es constante, pero a medida que el volumen disminuye la entrada y salida de moléculas causaría una incertidumbre en la medición, llegando esa variación a ser significativa a volúmenes muy pequeños.

25 Propiedades P-v-T 17 r V V Existe un cierto valor de volumen (V') a partir del cual el sistema puede considerarse homogéneo y teniendo propiedades constantes, o sea que puede tratarse como una sustancia continua y única. Esta idea física, llamada concepto de continuo permite separar dos grandes campos en la termodinámica: la clásica y la estadística. La termodinámica estadística o molecular toma en cuenta que la materia está formada por partículas, estudiando sus movimientos e interacciones para luego sacar promedios estadísticos que se reflejan en propiedades macroscópicas observables. Como es de esperarse, debido a la gran cantidad de moléculas que intervienen aun en el sistema más simple posible, estos cálculos son extremadamente complejos y requieren de

26 18 Introducción conocimientos matemáticos y estadísticos sólidos. Por otro lado, la termodinámica clásica o macroscópica no toma en cuenta el fenómeno molecular. Su desarrollo se lleva a cabo sin realizar suposiciones con respecto a la naturaleza de la materia y se basa en el análisis de las propiedades mensurables y de las interacciones de los sistemas como conjuntos. Este curso se dedica exclusivamente a la termodinámica clásica y por lo tanto consideraremos a la materia como un ente completamente homogéneo salvo en los casos que una visión del fenómeno a nivel molecular permita aclarar y entender los conceptos. Con la ayuda del concepto de continuo podemos definir adecuadamente la densidad ( r ) como el límite de la relación de la masa de un sistema entre su volumen, cuando el volumen se hace lo más pequeño posible sin perder su homogeneidad (V'), o sea sin entrar en la escala microscópica: La unidad 3 S.I. de densidades el kg/m 3. r = lim Ê m ˆ Á VÆV' Ë V 1.2 Por otro lado, el volumen específico (v) se puede definir como el inverso de la densidad, 3 Ojo, que esta unidad no es usual. Cuál es la densidad del agua a condiciones normales? - Uno responde el estudiante despistado. Pues no. en estas unidades corresponde a 1000 kg/m 3. El valor unitario corresponde a g/cm 3, la unidad de uso común en química y biología.

27 Propiedades P-v-T 19 v = V m = 1 r 1.3 y sus unidades S.I. serán el m 3 /kg. Similarmente se acostumbra definir una propiedad asociada, llamada peso específico ( g g ) como la densidad por la magnitud de la aceleración de gravedad (g), g = rg, cuyas unidades S.I. serán el N/m 3. g Es común hablar en ingeniería de gravedad específica (d); definida como la relación entre la densidad de un cuerpo dividida entre la densidad del agua. La notación comúnmente especifica las temperaturas a las cuales se refieren las mediciones como super- y subíndices de la letra d. Este concepto tiende a confundir al estudiante ya que como la densidad del agua es aproximadamente 1 g/cm 3, el valor numérico de la gravedad específica es muy similar a la de la densidad expresada en estas mismas unidades. La presión (P) se define como el cociente de la componente normal de una fuerza dada (F N ) entre el área sobre la cual actúa en el límite cuando dicha área sea lo suficientemente pequeña (A'), A F F N

28 20 Introducción P = Ê FN lim Á ÆA' Ë A A ˆ 1.4 Microscópicamente la presión es el resultado de los choques elásticos de las moléculas con las paredes del recipiente que las contiene y por tal motivo de debe apelar de nuevo al concepto de continuo para definirla apropiadamente. Debido a que la presión se define usando una componente muy específica de la fuerza actuante, la presión es una magnitud escalar que a diferencia de una fuerza no posee ni dirección ni sentido. En un sistema en equilibrio 4, si la presión es constante, ésta se aplica de manera uniforme y normal sobre todas las fronteras del mismo. En la página web de este libro ( El teorema de Pascal ) se expande un poco este tema. Es conveniente leerlo una vez que se dominen los conceptos básicos. La unidad de presión es el kg/m.s 2, que se le da el nombre de Pascal (Pa). Una presión de 1 Pa es relativamente pequeña en comparación con las presiones a las cuales estamos acostumbrados, por lo que en ingeniería se utiliza mucho sus múltiplos, ya sea el kpa o el MPa. Los instrumentos utilizados para medir presión se conocen comúnmente como manómetros. El manómetro más sencillo y el primero utilizado históricamente consiste en balancear la presión 4 Adicionalmente habría que hacer la anotación de que nos referimos a un sistema estático. Por ejemplo, para un fluido transportado en una tubería, la presión medida en dirección del flujo es distinta a la medida perpendicular a la pared de la tubería.

29 Propiedades P-v-T 21 en un sistema con una columna fluida. De los principios de la hidrostática se puede concluir que la presión ejercida por una columna de fluido en reposo será dp = - g g dz en donde (dz) es un diferencial de desplazamiento en sentido de la gravedad. Integrando dicha ecuación podemos obtener que dentro de un mismo fluido la diferencia de presión entre dos puntos separados por una elevación (h) será proporcional a dicha altura, a la aceleración de gravedad y a la densidad del fluido. DP = rgh 1.5 La ecuación anterior se puede deducir empíricamente, calculando el peso de una columna de material por unidad de área de su base: A h F mg P = A = A = 1 ( r A V ) g = r gh

TERMODINAMICA 1 Conceptos Basicos

TERMODINAMICA 1 Conceptos Basicos TERMODINAMICA 1 Conceptos Basicos Prof. Carlos G. Villamar Linares Ingeniero Mecánico MSc. Matemáticas Aplicada a la Ingeniería 1 CONTENIDO DEFINICIONES BASICAS Definición de Termodinámica, sistema termodinámico,

Más detalles

Sistema termodinámico

Sistema termodinámico IngTermica_01:Maquetación 1 16/02/2009 17:53 Página 1 Capítulo 1 Sistema termodinámico 1.1 Introducción En sentido amplio, la Termodinámica es la ciencia que estudia las transformaciones energéticas. Si

Más detalles

BALANCE MÁSICO Y ENERGÉTICO DE PROBLEMAS AMBIENTALES

BALANCE MÁSICO Y ENERGÉTICO DE PROBLEMAS AMBIENTALES BALANCE MÁSICO Y ENERGÉTICO DE PROBLEMAS AMBIENTALES Cálculos en Ingeniería, procesos y variables de procesos. Temperatura y presión Temperatura y presión La presión se define como la cantidad d fuerza

Más detalles

Joaquín Bernal Méndez Dpto. Física Aplicada III 1

Joaquín Bernal Méndez Dpto. Física Aplicada III 1 TERMODINÁMICA Tm Tema 7: 7Cn Conceptos ptsfndmntls Fundamentales Fundamentos Físicos de la Ingeniería 1 er Curso Ingeniería Industrial Dpto. Física Aplicada III 1 Índice Introducción Sistema y entorno

Más detalles

2. TIPOS DE TERMÓMETROS

2. TIPOS DE TERMÓMETROS 1. DEFINICIÓN. El termómetro (del idioma griego, termo el cuál significa "caliente" y metro, "medir") es un instrumento que se usa para medir la temperatura. Su presentación más común es de vidrio, el

Más detalles

Magnitudes y unidades

Magnitudes y unidades 1 Estados de agregación de la materia Magnitudes y unidades Magnitud física es toda propiedad de un objeto o de un fenómeno físico o químico que se puede medir. Medir es comparar dos magnitudes de las

Más detalles

INFORME LABORATORIO N 2 MEDICIONES, PRECISION E INCERTIDUMBRE

INFORME LABORATORIO N 2 MEDICIONES, PRECISION E INCERTIDUMBRE UNIVERSIDAD DE CIENCIAS E INFORMATICA FACULTAD DE CIENCIAS DE LA SALUD ESCUELA DE KINESIOLOGIA INFORME LABORATORIO N 2 MEDICIONES, PRECISION E INCERTIDUMBRE Asignatura Profesor Alumno :Química general

Más detalles

Física y química 1º bachillerato

Física y química 1º bachillerato TEMA 2: GASES. PROPIEDADES. LEYES. TEORIA CINETICO-MOLECULAR. 1.- Estados de agregación de la materia. Cambios de estado. 2.- Teoría cinético-molecular. 3.- Leyes de los gases. 3.1. Ley de Boyle-Mariotte.

Más detalles

(Fig. 43a). La presión en el fondo de la columna izquierda es p + ρgy 1. p + ρgy 1. + ρgy 2. = ρg (y 2. p - p atm. - y 1. = ρgy

(Fig. 43a). La presión en el fondo de la columna izquierda es p + ρgy 1. p + ρgy 1. + ρgy 2. = ρg (y 2. p - p atm. - y 1. = ρgy 3. El medidor de presión más simple es el manómetro de tubo abierto y consiste en lo siguiente: un tubo en forma de U contiene un líquido, comúnmente mercurio o agua; un extremo del tubo se conecta a un

Más detalles

TEMA 2.PROPIEDADES CARACTERISTICAS. SUSTANCIAS Y MEZCLAS

TEMA 2.PROPIEDADES CARACTERISTICAS. SUSTANCIAS Y MEZCLAS TEMA 2.PROPIEDADES CARACTERISTICAS. SUSTANCIAS Y MEZCLAS Al observar los objetos que nos rodean en seguida advertimos la diferencia que existe entre el objeto y la sustancia que lo forma. Así, de la misma

Más detalles

Los gases y la Teoría Cinética

Los gases y la Teoría Cinética 2 Los gases y la Teoría Cinética Objetivos Antes de empezar En esta quincena aprenderás a: Distinguir los distintos estados de la materia. Sus Propiedades. Concretar el modelo de gas que vamos a utilizar.

Más detalles

TEMA II.2. Medición de Presiones. Dr. Juan Pablo Torres-Papaqui

TEMA II.2. Medición de Presiones. Dr. Juan Pablo Torres-Papaqui TEMA II.2 Medición de Presiones Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus

Más detalles

Bases Físicas del Medio Ambiente. Sistemas Termodinámicos

Bases Físicas del Medio Ambiente. Sistemas Termodinámicos Bases Físicas del Medio Ambiente Sistemas Termodinámicos Programa VII. SISTEMAS TERMODINÁMICOS. (1h) Introducción. Sistema termodinámico. Estados de equilibrio. Procesos termodinámicos. Equilibrio termodinámico.

Más detalles

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura?

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? 9 ENERGÍA Y CALOR EJERCICIOS PROPUESTOS 9.1 Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? Al aumentar la temperatura, se mueven con mayor velocidad y

Más detalles

1. INTRODUCCIÓN 1.1 INGENIERÍA

1. INTRODUCCIÓN 1.1 INGENIERÍA 1. INTRODUCCIÓN 1.1 INGENIERÍA Es difícil dar una explicación de ingeniería en pocas palabras, pues se puede decir que la ingeniería comenzó con el hombre mismo, pero se puede intentar dar un bosquejo

Más detalles

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: GASES Nitrógeno 78% Oxígeno 21% Otros gases 1% La atmósfera también almacena otros gases Vapor

Más detalles

TEMA 1 Conceptos básicos de la termodinámica

TEMA 1 Conceptos básicos de la termodinámica Bases Físicas y Químicas del Medio Ambiente TEMA 1 Conceptos básicos de la termodinámica La termodinámica es el estudio de la transformación de una forma de energía en otra y del intercambio de energía

Más detalles

Tema 4 Difusión en estado sólido

Tema 4 Difusión en estado sólido Tema 4 Difusión en estado sólido Sabemos que los materiales están formados por átomos. Se ha modelado el agrupamiento de los átomos como un conjunto de esferas sólidas ordenadas siguiendo un patrón definido.

Más detalles

III. ESTADOS DE LA MATERIA

III. ESTADOS DE LA MATERIA III. ESTADOS DE LA MATERIA Fuerzas Intermoleculares Las fuerzas intermoleculares Son fuerzas de atracción entre las moléculas y son mas débiles que las fuerzas intramoleculares (enlaces químicos). Ejercen

Más detalles

LEY CERO DE LA TERMODINÁMICA Y TEMPERATURA.

LEY CERO DE LA TERMODINÁMICA Y TEMPERATURA. ara aprender Termodinámica resolviendo problemas Silvia érez Casas RESIÓN. F La presión se define como:. La presión ejercida por un gas se debe al A incesante choque de las moléculas que lo constituyen

Más detalles

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia.

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia. INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA 1. Qué es la Química Física? "La química física estudia los principios que gobiernan las propiedades el comportamiento de los sistemas químicos" El estudio de los

Más detalles

Calibración del termómetro

Calibración del termómetro Calibración del termómetro RESUMEN En esta práctica construimos un instrumento el cual fuera capaz de relacionar la temperatura con la distancia, es decir, diseñamos un termómetro de alcohol, agua y gas

Más detalles

Práctico de Física Térmica 1 ra Parte

Práctico de Física Térmica 1 ra Parte Enunciados Lista 0 Práctico de Física Térmica 1 ra Parte 2.8 * Un kilogramo de nitrógeno diatómico (N 2 con peso molecular de 28) se encuentra dentro de un depósito de 500 litros. Encuentre el volumen

Más detalles

ENERGÍA INTERNA PARA GASES NO IDEALES.

ENERGÍA INTERNA PARA GASES NO IDEALES. DEPARTAMENTO DE FISICA UNIERSIDAD DE SANTIAGO DE CHILE ENERGÍA INTERNA PARA GASES NO IDEALES. En el caso de los gases ideales o cualquier cuerpo en fase no gaseosa la energía interna es función de la temperatura

Más detalles

http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html

http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html PRACTICA NO. 1 CALIBRACION DE TRASNMISORES http://instrumentacionunexpo.blogspot.com/2007/05/laboratorio-1-calibracin-del-transmisor.html Transductor de presión de silicio difundido Cuando no hay presión,

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 04. Dinámica de Fluidos Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:

Más detalles

CARACTERÍSTICAS DE LA MATERIA

CARACTERÍSTICAS DE LA MATERIA LA MATERIA CARACTERÍSTICAS DE LA MATERIA - Todo lo que existe en el universo está compuesto de Materia. - La Materia se clasifica en Mezclas y Sustancias Puras. - Las Mezclas son combinaciones de sustancias

Más detalles

FÍSICA Y QUÍMICA 3º ESO

FÍSICA Y QUÍMICA 3º ESO FÍSICA Y QUÍMICA 3º ESO CUADERNO DE FICHAS Alumno: ---------------------------------------------------------------------------------------------------- 1 2 PRESENTACIÓN 1. Al estudiar el movimiento de

Más detalles

2003, Ernesto de Jesús Alcañiz

2003, Ernesto de Jesús Alcañiz 2003, Ernesto de Jesús Alcañiz 5 Gases y líquidos 5.1 La teoría cinético-molecular de los gases 5.2 Predicciones de la teoría cinético-molecular 5.3 Los gases reales: ecuación de Van der Waals 5.4 Propiedades

Más detalles

La materia, propiedades. Magnitudes y su medida.

La materia, propiedades. Magnitudes y su medida. La materia, propiedades. Magnitudes y su medida. Qué es la materia? En este tema vamos a estudiar algunas propiedades que observamos en la materia en los tres estados en los que se puede presentar: sólido,

Más detalles

b) Determinar la densidad de un líquido, aplicando el principio de igualdad de presiones en puntos a igual profundidad en un fluido en reposo.

b) Determinar la densidad de un líquido, aplicando el principio de igualdad de presiones en puntos a igual profundidad en un fluido en reposo. 1 Departamento: Ciencias Básicas Laboratorio: Física y Química Asignatura: Física. PRESIÓN MANOMÉTRICA Objetivos específicos a) Medir las diferentes alturas y presión que se indique. b) Determinar la densidad

Más detalles

2 Sistemas materiales

2 Sistemas materiales EJERCICIOS PROPUESTOS 2.1 Indica cuáles de las siguientes expresiones definen sistemas materiales y cuáles se refieren a sus propiedades. Una hoja de papel, el butano de un encendedor, el sabor amargo,

Más detalles

EL MUNDO QUE NOS RODEA. LA MATERIA. m V

EL MUNDO QUE NOS RODEA. LA MATERIA. m V EL MUNDO QUE NOS RODEA. LA MATERIA IES La Magdalena. Avilés. Asturias Materia es todo lo que tiene masa y volumen. Basta echar una ojeada a nuestro alrededor para darnos cuenta que la materia es diversa:

Más detalles

1. Dé un ejemplo de un sistema que tenga fronteras fijas, reales e imaginarias simultáneamente.

1. Dé un ejemplo de un sistema que tenga fronteras fijas, reales e imaginarias simultáneamente. Para estudiantes de Ingeniería Industrial Edición 2013 SISTEMAS, PROPIEDADES, ESTADO Y PROCESOS 1. Dé un ejemplo de un sistema que tenga fronteras fijas, reales e imaginarias simultáneamente. 2. Una lata

Más detalles

TEMA 2: DIVERSIDAD DE LA MATERIA.

TEMA 2: DIVERSIDAD DE LA MATERIA. TEMA 2: DIVERSIDAD DE LA MATERIA. 1.- MATERIA Y SISTEMAS MATERIALES: PROPIEDADES Y ESTADOS. (Pág 30-31) 1.1.- QUÉ ES LA MATERIA? (Pág 30) La Física y la Química son dos ejemplos de ciencias de la naturaleza

Más detalles

P cabeza Sca 5 1 0 6 m 2 2 10 6 Pa. beza. 6 m 2 10 8 Pa unta

P cabeza Sca 5 1 0 6 m 2 2 10 6 Pa. beza. 6 m 2 10 8 Pa unta Pág. 1 16 Ejercemos una fuerza de 10 N sobre un clavo. Si la superficie de su cabeza es de 5 mm y la de la punta 0,1 mm, qué presión se ejercerá al aplicar la fuerza sobre uno u otro de sus extremos? La

Más detalles

EFECTO JOULE-THOMSON

EFECTO JOULE-THOMSON PRACTICA nº 4 EFECTO JOULE-THOMSON Fundamentos teóricos El proceso de Joule-Thomson consiste en el paso de un gas desde un contenedor a presión constante a otro a presión también constante y menor (Pf

Más detalles

Proyecto Newton Sustancias puras y mezclas Unidad Didáctica 3º E.S.O. Objetivos

Proyecto Newton Sustancias puras y mezclas Unidad Didáctica 3º E.S.O. Objetivos Objetivos En esta unidad aprenderás a: Diferenciar entre sustancia pura y mezcla. Saber identificar una sustancia pura a partir de alguna de sus propiedades características. Distinguir entre elementos

Más detalles

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE ) La ecuación de un M.A.S. es x(t) cos 0t,, en la que x es la elongación en cm y t en s. Cuáles son la amplitud, la frecuencia y el período de este

Más detalles

Cuestiones de diagnóstico previo. 1. Qué es la materia? SOLUCIONES DE LAS ACTIVIDADES DEL LIBRO DEL ALUMNO UNIDAD 2

Cuestiones de diagnóstico previo. 1. Qué es la materia? SOLUCIONES DE LAS ACTIVIDADES DEL LIBRO DEL ALUMNO UNIDAD 2 SOLUCIONES DE LAS ACTIVIDADES DEL LIBRO DEL ALUMNO Cuestiones de diagnóstico previo 1. Qué es la materia? Página 28 1. La materia se puede definir como todo aquello que tiene masa y ocupa un volumen. a)

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL TRABAJO PRACTICO - PUNTO DE FUSION OBJETIVO: Determinar el punto de fusión (o solidificación)

Más detalles

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL Francisco Javier Navas Pineda javier.navas@uca.es Tema 5. Estados de agregación de la materia 1 ÍNDICE 1. Los Estados de la Materia 2. Estado Sólido. Tipos

Más detalles

CUADERNILLO PREPARADO POR LA CÁTEDRA DE TERMODINÁMICA 1.1.1. TEMPERATURA:

CUADERNILLO PREPARADO POR LA CÁTEDRA DE TERMODINÁMICA 1.1.1. TEMPERATURA: CUADERNILLO PREPARADO POR LA CÁTEDRA DE TERMODINÁMICA 1.1.1. TEMPERATURA: 1.1.. Introducción: El concepto de temperatura está muy relacionado con el diario vivir. Tenemos un concepto intuitivo de algo

Más detalles

PROCESOS FÍSICOS Y PROCESOS QUÍMICOS EN LA SEPARACIÓN DE SISTEMAS MATERIALES

PROCESOS FÍSICOS Y PROCESOS QUÍMICOS EN LA SEPARACIÓN DE SISTEMAS MATERIALES PROCESOS FÍSICOS Y PROCESOS QUÍMICOS EN LA SEPARACIÓN DE SISTEMAS MATERIALES AUTORÍA MARÍA FRANCISCA OJEDA EGEA TEMÁTICA CLASIFICACIÓN DE LOS SISTEMAS MATERIALES, SEPARACIÓN DE MEZCLAS, SEPARACIÓN DE COMPUESTOS,

Más detalles

Laboratorio 4. Cocientes de capacidades de calor de gases

Laboratorio 4. Cocientes de capacidades de calor de gases Laboratorio 4. Cocientes de capacidades de calor de gases Objetivo Determinar el cociente de capacidades de calor () para gases como dióxido de carbono (CO ) y nitrógeno (N ) utilizando la expansión adiabática.

Más detalles

LEY DE BOYLE: A temperatura constante, el volumen (V) que ocupa una masa definida de gas es inversamente proporcional a la presión aplicada (P).

LEY DE BOYLE: A temperatura constante, el volumen (V) que ocupa una masa definida de gas es inversamente proporcional a la presión aplicada (P). CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS N 3 TEMA: GASES IDEALES OBJETIVO: Interpretación de las propiedades de los gases; efectos de la presión y la temperatura sobre los volúmenes de los gases. PRERREQUISITOS:

Más detalles

3º ESOADAPTACIÓN: sistemas materiales y cambios de estado Antonio Batista

3º ESOADAPTACIÓN: sistemas materiales y cambios de estado Antonio Batista 1 A continuación te vas a encontrar información sobre LOS ESTADOS DE LA MATERIA basada en el tema que aparece en tu libro de texto. Lee las siguientes instrucciones para que puedas trabajar el tema: Separa

Más detalles

Laboratorio orio de Operaciones Unitarias I

Laboratorio orio de Operaciones Unitarias I Laboratorio orio de Operaciones Unitarias I 1 República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio

Más detalles

14. ENTALPÍA DE FUSIÓN DEL HIELO

14. ENTALPÍA DE FUSIÓN DEL HIELO 14. ENTALPÍA DE FUSIÓN DEL HIELO OBJETIVO Determinar la entalpía de fusión del hielo, H f, utilizando el método de las mezclas. Previamente, ha de determinarse el equivalente en agua del calorímetro, K,

Más detalles

MEDICIÓN DE PRESIÓN Y TEMPERATURA DURANTE UN CAMBIO DE FASE

MEDICIÓN DE PRESIÓN Y TEMPERATURA DURANTE UN CAMBIO DE FASE MEDICIÓN DE PRESIÓN Y TEMPERATURA DURANTE UN CAMBIO DE FASE OBJETIVOS: Observar un cambio de fase líquido-vapor del etanol, y un cambio de fase vapor-líquido del etanol. Comprender experimentalmente el

Más detalles

Compuestos comunes que son gses a temperatura ambiente. Gases - propiedades macroscópicas

Compuestos comunes que son gses a temperatura ambiente. Gases - propiedades macroscópicas Las propiedades químicas de un gas dependen de su naturaleza (elementos que lo forman y composición), sin embargo todos los gases tienen propiedades físicas marcadamente similares. Compuestos comunes que

Más detalles

TEMA II.6. Variación de la Presión con la Elevación. Dr. Juan Pablo Torres-Papaqui

TEMA II.6. Variación de la Presión con la Elevación. Dr. Juan Pablo Torres-Papaqui TEMA II.6 Variación de la Presión con la Elevación Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales

Más detalles

LA MATERIA Materia sustancias. Propiedades Propiedades generales. Propiedades características. Densidad

LA MATERIA Materia sustancias. Propiedades Propiedades generales. Propiedades características. Densidad LA MATERIA La materia son todos los sólidos, líquidos, gases que nos rodean (los árboles, los perros, el agua, una mesa de madera, aire, las personas, una silla de hierro, el refresco de una botella, las

Más detalles

Introducción a la Ing. Aeroespacial

Introducción a la Ing. Aeroespacial Introducción a la Ing. Aeroespacial Tema 3 El Campo Fluido Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Técnica Superior de Ingeniería

Más detalles

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA

ESTADOS DE AGREGACIÓN DE LA MATERIA ESADOS DE AGREGACIÓN DE LA MAERIA. Propiedades generales de la materia La materia es todo aquello que tiene masa y volumen. La masa se define como la cantidad de materia de un cuerpo. Se mide en kg. El

Más detalles

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 Instrucciones: Al final de este examen se encuentra la hoja de respuestas que deberá contestar. o ponga su nombre en ninguna de las hojas, escriba

Más detalles

Ejercicios de la unidad didáctica 2.- Estados físicos de la materia: Estados de agregación de la materia

Ejercicios de la unidad didáctica 2.- Estados físicos de la materia: Estados de agregación de la materia Nombre y apellidos: Ejercicios de la unidad didáctica 2.- Estados físicos de la materia: Estados de agregación de la materia La materia puede presentarse en estado sólido, líquido o gaseoso. Son los llamados

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

Aire acondicionado y refrigeración

Aire acondicionado y refrigeración Aire acondicionado y refrigeración CONCEPTO: El acondicionamiento del aire es el proceso que enfría, limpia y circula el aire, controlando, además, su contenido de humedad. En condiciones ideales logra

Más detalles

TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA. Ejercicios Propuestos: Enunciados

TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA. Ejercicios Propuestos: Enunciados Universidad Nacional de Educación a Distancia Escuela Técnica Superior de Ingenieros Industriales Departamento de Ingeniería Energética INTRODUCCIÓN TERMODINÁMICA A LA ENERGÍA TÉRMICA APLICADA I.T.I. Electrónica

Más detalles

ACTIVIDADES 3º E.S.O. Tema 2.- Los estados de la materia. La teoría cinética.

ACTIVIDADES 3º E.S.O. Tema 2.- Los estados de la materia. La teoría cinética. ACTIVIDADES 3º E.S.O. Tema 2.- Los estados de la materia. La teoría cinética. Pág. 29 2. Qué afirmaciones te parecen verdaderas? Justifica tu respuesta. a) La materia es todo lo que nos rodea. Falso. Porque

Más detalles

DRAFT. Trabajo, Calor y Primer Principio de la Termodinámica.

DRAFT. Trabajo, Calor y Primer Principio de la Termodinámica. DRAFT Trabajo, Calor y Primer Principio de la Termodinámica. J.V. Alvarez Departmento de Fisica de la Materia Condensada, Universidad Autonoma de Madrid. 28049 Madrid, Spain. (Dated: October 10, 2007)

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Tema 1. Hidráulica. Generalidades 1. Definición. Propiedades fundamentales de los líquidos 3. Conceptos previos: Peso, Densidad, Peso específico, Presión 4. Compresibilidad de un líquido 5. Tensión superficial

Más detalles

15. Termodinámica. Definiciones fundamentales. 15.1 Sistemas v sus restricciones. Termodinámica

15. Termodinámica. Definiciones fundamentales. 15.1 Sistemas v sus restricciones. Termodinámica 15. La termodinámica es fundamentalmente una ciencia fenomenológica, es decir, una ciencia macroscópica basada en leyes generales inferidas del experimento, independientemente de cualquier modelo microscópico

Más detalles

Diseño de una caja de refrigeración por termocélulas

Diseño de una caja de refrigeración por termocélulas Diseño de una caja de refrigeración por termocélulas Antonio Ayala del Rey Ingeniería técnica de telecomunicaciones especialidad en sist. electrónicos Resumen El diseño de un sistema refrigerante termoeléctrico

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL Francisco Javier Navas Pineda javier.navas@uca.es Tema 1. Método Científico Tema 1. Método Científico 1 ÍNDICE 1. El Método Científico 2. Hipótesis, Leyes y

Más detalles

CALCULOS EN DESTILACION CONTINUA PARA SISTEMAS BINARIOS UTILIZANDO HOJA DE CALCULO EXCEL

CALCULOS EN DESTILACION CONTINUA PARA SISTEMAS BINARIOS UTILIZANDO HOJA DE CALCULO EXCEL CALCULOS EN DESTILACION CONTINUA PARA SISTEMAS BINARIOS UTILIZANDO HOJA DE CALCULO EXCEL M. Otiniano. Departamento de Operaciones Unitarias. Facultad de Química e Ingeniería Química. Universidad Nacional

Más detalles

1. Las propiedades de las sustancias

1. Las propiedades de las sustancias 1. Las propiedades de las sustancias Propiedades características Son aquellas que se pueden medir, que tienen un valor concreto para cada sustancia y que no dependen de la cantidad de materia de que se

Más detalles

FÍSICA LAB. donde s es la desviación estándar (ver la teoría o consultar con su jefe de trabajo prácticos).

FÍSICA LAB. donde s es la desviación estándar (ver la teoría o consultar con su jefe de trabajo prácticos). FÍSICA LAB. 1 ERRORES Una magnitud física es un atributo de un cuerpo, un fenómeno o sustancia, susceptible de ser medido. El error de una medición está asociado al concepto de incertidumbre en el resultado

Más detalles

MEDIDAS Y PROPIEDADES FÍSICAS

MEDIDAS Y PROPIEDADES FÍSICAS UNIVERSIDAD MAYOR DE SAN ANDRÉS FACULTAD DE INGENIERÍA QMC 100 L CURSO BASICO SEM 1/2011 LABORATORIO QUIMICA GENERAL PRÁCTICA Nº 1 MEDIDAS Y PROPIEDADES FÍSICAS OBJETIVO GENERAL Realizar mediciones de

Más detalles

Estudio de la evaporación

Estudio de la evaporación Estudio de la evaporación Volumen del líquido Tipo de líquido Superficie del recipiente Altura del recipiente Forma del recipiente Presencia de una sal disuelta Introducción Todos hemos observado que una

Más detalles

Cuadernos de taller Operación de vacío. Efrén Andrés Díaz

Cuadernos de taller Operación de vacío. Efrén Andrés Díaz Cuadernos de taller Operación de vacío Efrén Andrés Díaz 0 Índice Página Introducción 2 Operación de vacío 3 1. Vacío. Unidades y medición 3 2. Presión absoluta y presión relativa 6 3. Útiles y herramientas

Más detalles

CONTENIDOS MÍNIMOS FÍSICA 4º ESO. - Fórmulas del movimiento rectilíneo uniformemente acelerado y de la caída libre.

CONTENIDOS MÍNIMOS FÍSICA 4º ESO. - Fórmulas del movimiento rectilíneo uniformemente acelerado y de la caída libre. CONTENIDOS MÍNIMOS FÍSICA 4º ESO TEMA 1: EL MOVIMIENTO Y SU DESCRIPCIÓN - Definición de movimiento. 2. Magnitudes para describir un movimiento. - Fórmulas de los movimientos rectilíneo y circular. TEMA

Más detalles

ALGUNAS ACTIVIDADES EN LAS CIENCIAS

ALGUNAS ACTIVIDADES EN LAS CIENCIAS ALGUNAS ACTIVIDADES EN LAS CIENCIAS CIENCIAS FÍSICAS SEGUNDO AÑO. MARZO 2007 LUIS BONELLI LOS CAMBIOS DE ESTADO FÍSICO DE LA MATERIA Los diferentes elementos que nos rodean pueden presentarse en diferentes

Más detalles

ASIGNATURA: ÁMBITO CIENTÍFICO-TECNOLÓGICO 4º ESO

ASIGNATURA: ÁMBITO CIENTÍFICO-TECNOLÓGICO 4º ESO 1. CONTENIDOS MÍNIMOS DE LA ASIGNATURA los contenidos mínimos para el Ámbito científico-tecnológico los podemos agrupar así: Contenidos mínimos de ámbito científico tecnológico MATEMÁTICAS UNIDAD 1: Números

Más detalles

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A.

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A. Tópico Generativo: La presión en vasos comunicantes. Aprendizajes Esperados: 1.-Aplicar la definir conceptual de presión y aplicarla a vasos comunicante. 2.- Caracterizar la presión en función de la fuerza

Más detalles

1 La ciencia y su método. Medida de magnitudes

1 La ciencia y su método. Medida de magnitudes EJERCICIOS PROPUESTOS 1.1 Cuál es el objeto de estudio de la ciencia? Cómo se contrastan los enunciados científicos? El objeto de estudio de la ciencia es el mundo natural, es decir, las propiedades físicas

Más detalles

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm EL PARACAIDISTA Webs.uvigo.es/cudav/paracaidismo.htm 1. Un avión vuela con velocidad constante en una trayectoria horizontal OP. Cuando el avión se encuentra en el punto O un paracaidista se deja caer.

Más detalles

TIMSS 11.2 DESCRIPCIÓN DE LO EVALUADO EN LOS DOMINIOS DE CONTENIDO MATEMÁTICA Números Incluye la comprensión del proceso de contar, de las maneras de representar los números, de las relaciones entre éstos

Más detalles

La Absorción del Agua

La Absorción del Agua La Absorción del Agua Importancia del Agua en las Plantas Es el cons5tuyente principal del protoplasma celular, en ocasiones representa hasta el 95% del peso total de la planta. Es el solvente en el que

Más detalles

Práctica 13. BARÓMETRO DE MERCURIO Y PSICRÓMETRO

Práctica 13. BARÓMETRO DE MERCURIO Y PSICRÓMETRO Práctica 13. BARÓMETRO DE MERCURIO Y PSICRÓMETRO OBJETIVOS Medida de la presión atmosférica. Determinación de la humedad relativa y de la presión de vapor de agua atmosférico. MATERIAL Barómetro de Mercurio.

Más detalles

JUAN ZITNIK Manual de vuelo del PIPER PA-11 Aerodinámica AERODINAMICA

JUAN ZITNIK Manual de vuelo del PIPER PA-11 Aerodinámica AERODINAMICA Definición AERODINAMICA Es la rama de la mecánica de fluidos que se ocupa del movimiento del aire y otros fluidos gaseosos, y de las fuerzas que actúan sobre los cuerpos que se mueven en dichos fluidos.

Más detalles

Comportamiento de fluidos acelerados Estudio experimental y modelo teórico

Comportamiento de fluidos acelerados Estudio experimental y modelo teórico Comportamiento de fluidos acelerados Estudio eperimental y modelo teórico Alejandra Barnfather (a), Matías Benitez (b) y Victoria Crawley (c) aboratorio de Física III (Curso ), Facultad de Ingeniería y

Más detalles

Movimiento de fluidos ideales

Movimiento de fluidos ideales Movimiento de fluidos ideales Problema 6.1 Una avioneta vuela a una velocidad de 150 km/h a una altitud de 1.200 m. En un punto A del ala, la velocidad del aire relativa a la misma es de 65 m/s. Suponiendo

Más detalles

MECANICA DE FLUIDOS PARA BACHILLERATO. Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023. Introducción

MECANICA DE FLUIDOS PARA BACHILLERATO. Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023. Introducción MECANICA DE FLUIDOS PARA BACHILLERATO Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023 Introducción Una tendencia en nuestro país es la de enseñar física en cursos de educación básica.

Más detalles

Cambios de estado de la materia. - Líquida, como el agua de un río o del mar, la sangre, una bebida y otros.

Cambios de estado de la materia. - Líquida, como el agua de un río o del mar, la sangre, una bebida y otros. Cambios de estado de la materia La materia que nos rodea se presenta en tres estados o fases: - Líquida, como el agua de un río o del mar, la sangre, una bebida y otros. - Sólido, como una piedra, un trozo

Más detalles

EXPERIMENTOS CON LA MATERIA, EL AGUA Y EL AIRE

EXPERIMENTOS CON LA MATERIA, EL AGUA Y EL AIRE EXPERIMENTOS CON LA MATERIA, EL AGUA Y EL AIRE AUTORÍA Mª LOURDES NAVARRO JIMÉNEZ TEMÁTICA EXPERIMENTOS ETAPA EP, ESO. Resumen La ciencia se basa fundamentalmente en la observación atenta y minuciosa de

Más detalles

PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES

PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES 1 de 14 CAPILARIDAD OBJETIVO Comprender el fundamento de la capilaridad. Aplicar la fórmula de Jurin para calcular

Más detalles

Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS

Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS CAMPUS TECNOLÓGICO DE LA UNIVERSIDAD DE NAVARRA. NAFARROAKO UNIBERTSITATEKO

Más detalles

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero).

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). Gases - Primera ley de la Termodinámica Ley Cero. 1. Se mantiene

Más detalles

Colegio La Salle TH. Prof. Leopoldo Simoza L. PROBLEMAS ACERCA DEL COMPORTAMIENTO DE LOS GASES.

Colegio La Salle TH. Prof. Leopoldo Simoza L. PROBLEMAS ACERCA DEL COMPORTAMIENTO DE LOS GASES. 2014 Colegio La Salle TH Prof. Leopoldo Simoza L. PROBLEMAS ACERCA DEL COMPORTAMIENTO DE LOS GASES. Tabla de contenidos Introducción... 2 I.- Variación en el volumen de un gas al modificar la presión,

Más detalles

Tema 2. Primer Principio

Tema 2. Primer Principio ema. rimer rincipio ROBLEMAS EJEMLO.- Un sistema cerrado, inicialmente en reposo sobre la tierra, es sometido a un proceso en el que recibe una transferencia neta de energía por trabajo igual a 00KJ. Durante

Más detalles

TERMODINÁMICA MICA DORY CANO DÍAZD OBJETIVOS INTRODUCCIÓN. Realizar balances simples. Conocer y aplicar las ecuaciones fundamentales que

TERMODINÁMICA MICA DORY CANO DÍAZD OBJETIVOS INTRODUCCIÓN. Realizar balances simples. Conocer y aplicar las ecuaciones fundamentales que INTRODUCCIÓN TERMODINÁMICA MICA DORY CANO DÍAZD MSc.. Ingeniero Civil Mecánico Junio de 2007 OBJETIVOS Comprender y aplicar los principios y conceptos básicos de la Termodinámica Realizar balances simples

Más detalles

UNIDAD III. ESTADO LIQUIDO.

UNIDAD III. ESTADO LIQUIDO. REPUBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD EXPERIMENTAL SUR DEL LAGO Jesús María Semprúm PROGRAMA DE INGENIERÌA DE ALIMENTOS UNIDAD CURRICULAR: QUIMICA GENERAL UNIDAD III. ESTADO LIQUIDO. Prof. David

Más detalles

HIDROSTÁTICA-TENSIÓN SUPERFICIAL

HIDROSTÁTICA-TENSIÓN SUPERFICIAL HIDROSTÁTICA-TENSIÓN SUPERFICIAL Los líquidos son sistemas materiales caracterizados por: Su tendencia a fluir si se les aplica un impulso externo. Los movimientos de translación de las moléculas que lo

Más detalles

Construcción de un Termómetro

Construcción de un Termómetro Construcción de un Termómetro Objetivo General Construir un instrumento que pueda utilizarse para medir la temperatura del agua. Visión General Se construirá un termómetro a partir de una botella de plástico,

Más detalles

FUNDAMENTOS DEL ENFRIAMIENTO EVAPORATIVO PARA INSTALACIONES AVÍCOLAS José Antonio Frejo Fernández

FUNDAMENTOS DEL ENFRIAMIENTO EVAPORATIVO PARA INSTALACIONES AVÍCOLAS José Antonio Frejo Fernández CALOR FUNDAMENTOS DEL ENFRIAMIENTO EVAPORATIVO PARA INSTALACIONES AVÍCOLAS FUNDAMENTOS DEL ENFRIAMIENTO EVAPORATIVO PARA INSTALACIONES AVÍCOLAS José Antonio Frejo Fernández B.U. Manager Munters Spain S.A.U.

Más detalles

ONDAS Y PARTÍCULAS UN NUEVO ENFOQUE QUE CONDUCE A LAS FÓRMULAS DE LA RELATIVIDAD ESPECIAL. Por Marcelo A. Crotti - Argentina

ONDAS Y PARTÍCULAS UN NUEVO ENFOQUE QUE CONDUCE A LAS FÓRMULAS DE LA RELATIVIDAD ESPECIAL. Por Marcelo A. Crotti - Argentina ONDAS Y PARTÍCULAS UN NUEVO ENFOQUE QUE CONDUCE A LAS FÓRMULAS DE LA RELATIVIDAD ESPECIAL. Por Marcelo A. Crotti - Argentina INTRODUCCIÓN En este trabajo se muestra la manera de obtener las fórmulas de

Más detalles