12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO"

Transcripción

1 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo Variación de () (b) (a) [a,b] al cociente: T.V.M.[a,b] = = Variación de b a Y es la pendiente del segmento que une los puntos A(a,(a)) y B(b,(b)) Con recuencia, el intervalo se le designa mediante la epresión [a,a+h], nombrando, así, a un etremo del intervalo a, y a su longitud, h. En tal caso, la tasa de variación (a + h) (a) media se obtiene : T.V.M. [a,a+h] = h Si una unción es creciente en [a,b], su tasa de variación media es positiva; y si es decreciente, negativa. TASA DE VARIACIÓN INSTANTÁNEA Deinición: Se llama tasa de variación instantánea (T.V.I) de una unción, y = () en un punto a () (a) (a + h) (a) T.V.I.(a) = lim = lim a a h h Y es la pendiente de la recta tangente a la curva y = () en el punto = a. Signiicado: Si es positiva La unción es creciente en el punto a Si es negativa La unción es decreciente en el punto a

2 . DERIVADA DE UNA FUNCIÓN EN UN PUNTO DEFINICIÓN Llamaremos derivada de una unción y = () en el punto = a a la tasa de variación instantánea de dicha unción en el punto a, y se designa por (a): SIGNIFICADO (a) = () (a) lim a a (a + h) (a) = lim h h La derivada de la unción y = () en el punto = a es la pendiente de la recta tangente a la curva y = () en el punto = a Por tanto la ecuación de la recta tangente a una curva en el punto = a : APLICACIONES y (a) = (a) ( a) - Si (a) > La unción es creciente en el punto = a - Si (a) < La unción es decreciente en el punto = a - Si hay un máimo o mínimo relativo en = a (a) =. FUNCIÓN DERIVADA DE OTRA Se llama unción derivada de (o simplemente derivada de ) a una unción que asocia a cada abscisa,, la derivada de en ese punto, (), es decir, la pendiente de la curva y = () en ese punto. A la derivada de la llamaremos o D: D() = () = ( + h) () lim h. REGLAS PARA OBTENER LAS DERIVADAS DE ALGUNAS FUNCIONES OPERACIONES CON DERIVADAS - Multiplicación por un número :(k.()) = k. () - Suma y resta: [() ± g()] = () ± g () - Producto : [().g()] = ().g() + ().g () ' () ().g() ()g'() - Cociente : = g() g () - Composición : [(g())] = (g()).g ()

3 REGLAS DE DERIVACIÓN FUNCIÓN DERIVADA FUNCIÓN DERIVADA y = k y = y = y = y = n y = n. n- y = n () y = n.() n-. () y = y = y = n y = n n n y = () y = y = n () y = n () () () n n y = a y = a. Ln a y = a () y = a ().Ln a. () y = e y = e y = e () y = e (). () y = log a y =.Lna y = log a () y = () () ().Lna y = Ln y = y = Ln () y = () () y = sen y = cos y = sen () y = cos (). () y = cos y = - sen y = cos () y = - sen (). () y = tag y = + tag = y = arcsen y = y = arccos y = cos y = tag () y = arcsen () y = y = arccos () y = () y = cos () = [ + tag ()]. () () () () () y = arctag y = + y = arctag () y = () + (). UTILIDAD DE LA FUNCIÓN DERIVADA CALCULAR LA DERIVADA DE UNA FUNCIÓN EN VARIOS PUNTOS Para hallar (a) se calcula la epresión general de la derivada () y luego se sustituye en la derivada la por a.

4 OBTENER LAS ABSCISAS EN LAS CUALES LA DERIVADA TIENE UN CIERTO VALOR Para averiguar los valores de para los cuales () = k, se calcula la epresión de la derivada en general (), se iguala a k y se resuelve la ecuación. OBTENER LAS ABSCISAS DE LOS PUNTOS SINGULARES Se llaman puntos singulares a los puntos de tangente horizontal, es decir, a los puntos en los que la derivada es cero. Entre ellos están los máimos y mínimos relativos, pero puede haber otros. Las abscisas de los puntos singulares son las soluciones de la ecuación : () = OBTENER LOS TRAMOS DONDE LA CURVA CRECE O DECRECE Si () > la unción es creciente y si () < la curva es decreciente. Por tanto, resolviendo tales inecuaciones se obtienen los intervalos donde la curva crece o decrece..6 ESTUDIO Y REPRESENTACIÓN DE FUNCIONES DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo de dentro de la raíz } - Raíces de índice impar : D = R - Logaritmos : D = {Lo de dentro del logaritmo > } - Eponenciales : D = R - Trigonométricas : Seno y coseno D = R ; El resto se estudia como un cociente - Arcos : D = {- Lo de dentro del arco } PUNTOS DE CORTE - Con el eje OX : y = = P(,) - Con el eje OY : = y = y P(,y ) SIMETRÍA - Simétrica respecto del OY o par: (-) = () - Simétrica respecto del Origen o impar : -(-) = () SIGNO DE LA FUNCIÓN - Se calculan los puntos que no pertenecen al dominio = a,... - Se resuelve la ecuación () = =, =,... - Estos puntos dividen la recta real en partes, tomando un punto en cada intervalo y sustituyendo en y = () se obtiene el signo de la unción

5 ASÍNTOTAS - Asíntotas verticales: Puntos donde la unción se va al ininito: y, = a - Cocientes: Puntos que anulan el denominador - Logaritmos : Puntos que anulan lo de dentro del logaritmo - Aproimación a la asíntota : Calcular límites laterales - Asíntotas horizontales : Puntos donde la se va al ininito :, y = b - Cálculo : lim () = b y = b - Aproimación( en = ±): - Asíntotas oblicuas - Cálculo : y = m + n; m = - Aproimación( en = ±): MONOTONIA Y PUNTOS CRÍTICOS ( ) > b La unción por encima de la asíntota ( ) < b La unción por debajo de la asíntota () lim ; n = lim[ () m] () > Asin t() La unción por encima de la asíntota () < Asint() La unción por debajo de la asíntota - Se calculan los puntos que no pertenecen al dominio = a,... - Se resuelve la ecuación () = =, =,... - Estos puntos dividen la recta real en partes, tomando un punto en cada intervalo y sustituyendo en y = () se obtiene el signo de la unción - Si (a) > la unción es creciente en dicho intervalo, y si es < es decreciente. - Máimo relativo : P(a,(a)) : = a es el punto del dominio donde la unción pasa de creciente a decreciente. - Mínimo relativo : P(a,(a)) : = a es el punto del dominio donde la unción pasa de decreciente a creciente. CURVATURA Y PUNTOS DE INFLEXIÓN - Se calculan los puntos que no pertenecen al dominio = a,... - Se resuelve la ecuación () = =, =,... - Estos puntos dividen la recta real en partes, tomando un punto en cada intervalo y sustituyendo en y = () se obtiene el signo de la unción - Si (a) > la unción es convea en dicho intervalo, y si es < es concava. - Puntos de inleión : P(a,(a)) : = a es el punto del dominio donde la unción cambia la curvatura. TABLA DE VALORES Dando valores a la se calculan los correspondientes de la y sustituyendo en la unción REPRESENTACIÓN GRÁFICA

6 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación media de la siguiente unción en el intervalo [, ] e indica si () crece o decrece en ese intervalo: T.V.M., Como la tasa de variación media es positiva, la unción es creciente en el intervalo [, ]. EJERCICIO : Dada la unción: Calcula la tasa de variación media en el intervalo [, ]. Es creciente o decreciente la unción en dicho intervalo? T.V.M., Como la tasa de variación media es positiva, la unción es creciente en este intervalo. EJERCICIO : Calcula la tasa de variación media de esta unción, (), en los intervalos siguientes e indica si la unción crece o decrece en cada uno de dichos intervalos: a) b),, a) T.V.M., Como la tasa de variación media es positiva, la unción es creciente en [,]. (También se puede apreciar directamente en la gráica). b) T.V.M., La unción decrece en este intervalo. DERIVADA DE UNA FUNCIÓN EN UN PUNTO, APLICANDO LA DEFINICIÓN EJERCICIO : Halla la derivada de la siguiente unción en =, aplicando la deinición de derivada: ( ) ( ).( ) lim lim lim lim lim ( ) Calcula, utilizando la deinición de derivada, () para la unción lim lim lim EJERCICIO :. EJERCICIO 6 : Halla la derivada de la unción ()=( ) en =, aplicando la deinición de derivada lim lim lim lim lim lim

7 EJERCICIO 7 : Aplicando la deinición de derivada, calcula ', siendo. lim lim lim FUNCIÓN DERIVADA, APLICANDO LA DEFINICIÓN lim EJERCICIO 8 : Halla (), aplicando la deinición de derivada : a) () ( ) lim lim ( ) b) c) d) e) a) h h h h lim lim lim h h h h h h hh lim lim lim h h h h h h h lim lim h h h h b) c) d) h h h lim h h h lim h h h lim h h h h h h h h h lim lim lim lim h h h h h h h h hh lim lim lim h h h h h h h lim lim h lim lim h h h h h h h h lim h h h h h lim lim lim lim h h h h h h h e) h h h h h h h h h lim h lim h h h h h h lim h h h CÁLCULO DE DERIVADAS INMEDIATAS EJERCICIO 9 : Halla la unción derivada de: a) e) i) m) b) e c) d) ln ) sen g) h) cos j) tg k) l) e n) sen ñ) o) ln p) e q) r) s) sen a) b) e c) 6 ) d e) ) cos g) 6 h) sen

8 i) k) m) ñ) tg cos 6 j) l) e e e n) sen cos o) ln ln e e e q) p) r ) 6 e s) sen cos sen cos CÁLCULO DE DERIVADAS EJERCICIO : Halla la unción derivada de: a) 6 e b) c) e 9 e d) ln sen e) sen ) g) h) e i) m) p) t) w) z) ) 6) 8 k) l) n) ln ñ) o) j) e 6 cos 7 q) r) e sen s) u) e v) sen 7 ) y) e 7 9 ) 7 6 ) ln ) cos ) e 7) 8) a) 6 b) c) ' e 6

9 d) e) cos cos 8 ) g) h) e e e i) 6 e e e e j) k) l) m) n) ñ) o) p) cos cos cos cos q) r) e sen e cos sen cos s) t) u) v) w) e 6 sen 6 sen 6 e sen sen 8 e e e cos cos cos cos

10 ) y) z) ) ) ) ) ) 6) 7) 8) 8 6 e e cos sen cos sen e 8 6 e e 6 ECUACIÓN DE LA RECTA TANGENTE A UNA CURVA 6 EJERCICIO : Halla la ecuación de la recta tangente a la curva y= + - en el punto de abscisa =. y () = ().( ) () = +. = () = + () = + = y y La recta será: EJERCICIO : Escribe la ecuación de la recta tangente a la curva y = - que tenga pendiente 7. m = -7 = () () = = -7 = - y (-) = (-).( + ) (-) =.(-).(-) = + = (-) = -7 La recta será: y 7 y 7 EJERCICIO : Halla la ecuación de la recta tangente a la curva y que sea paralela a. la recta y La pendiente de la recta es m La pendiente es igual a la derivada: y y y () = ()( - ) La recta será:

11 ESTUDIO DE LA MONOTONÍA DE UNA FUNCIÓN EJERCICIO : Estudia el crecimiento y el decrecimiento de las siguientes unciones: a) b) c) d) e) a) D() = R 6 D( ') R () 6 / Creciente (/,+) Decreciente (-,/) b) D() = R 6 D() () R 6 Mínimo (/,(/)) = (/,/) Creciente en todo R c) D() = R D( ') R 6 () 6 Creciente (-,) Decreciente (,+) Máimo (,()) = (,) d) D() = R ( ) D () R () Creciente (-,+) Decreciente (-,-) Mínimo (-,(-)) = (-,)

12 e) D() = R D( ') R () / EJERCICIO : Dada la unción: Creciente (/,+) Decreciente (-,/) Mínimo (/,(/)) = (/,-/8) a) Es creciente o decreciente en =? Y en =? b) Halla los tramos en los que la unción crece y en los que decrece. 8 a) Decreciente en 6 Creciente en b) D() = R 8 D( ') R () 8 / Creciente (/,+) Decreciente (-,/) Mínimo (/,(/)) = (/,/) EJERCICIO 6 : Consideramos la unción: a) Crece o decrece en? Y en? b) Halla los tramos en los que la unción es creciente y en los que es decreciente. a) Decreciente en 7 Creciente en b) D() = R D( ') R () / Creciente (/,+) Decreciente (-,/) Mínimo (/,(/)) = (/,9/) EJERCICIO 7 : Halla los intervalos de crecimiento y de decrecimiento de la unción: 8 D() = R D( ') R 8 () 8

13 Creciente (-,) Decreciente (,+) Máimo (,()) = (,6) EJERCICIO 8 : Estudia el crecimiento y el decrecimiento de la siguiente unción: D() = R D() R () / Creciente (/,+) EJERCICIO 9 : Dada la siguiente unción: 7 Decreciente (-,/) Mínimo (/,(/)) = (/,-9/6) a) Es creciente o decreciente en =? Y en =? b) Halla los tramos en los que la unción es creciente y en los que es decreciente. a) Creciente en Decreciente en b) D() = R D( ') R () Creciente (-,) Decreciente (,+) Máimo (,()) = (,7) APLICACIONES DE LA DERIVADA EJERCICIO a) Halla la ecuación de la recta tangente a la curva la abscisa. en? b) Es creciente o decreciente en el punto de a) y () = ()( ) () = + = - 6 () = 6 = - La recta será: y y 9 Es creciente en. b) EJERCICIO : la unción : Dada a Escribe la ecuación de la recta tangente a la unción en =.

14 b Halla los tramos en los que la unción crece y en los que decrece. a) y () = ()( ) () = = 6 () = 6 = La recta será: y y b D() = R 6 D() R () 6 / 6 Creciente (/6,+) Decreciente (-,/6) EJERCICIO : Consideremos la unción: Mínimo (/6,(/6)) = (/6,-/) a) Obtén la ecuación de la recta tangente a en el punto de abscisa b) Halla los tramos en los que la unción crece y en los que decrece.. a) y () = ()( ) () = 6 + = () = 6 - = La recta será: y y b D() = R D( ') R () / Creciente (/,+) Decreciente (-,/) Mínimo (/,(/)) = (/,/) PUNTOS DE TANGENTE HORIZONTAL EJERCICIO : Halla y representa gráicamente los puntos de tangente horizontal de la unción: 8 8 Puntos :, 7, y Máimo en, 7 Mínimo en,.

15 EJERCICIO : halla sus puntos singulares y represéntalos, Dada la unción ', Punto : en (,) Máimo EJERCICIO : y 9 9 Averigua los puntos de tangente horizontal de la unción represéntalos ' Punto : Punto : 9 8 9,,.,, Máimo en Mínimo en EJERCICIO 6 : Halla y representa gráicamente los puntos de tangente horizontal de la siguiente unción: ) ( ) ( () ' 9, Punto :, Punto : ). Mínimo en (, ), ( en Máimo EJERCICIO 7 : Halla los puntos de tangente horizontal de la siguiente unción y, con ayuda de las ramas ininitas, decide si son máimos o mínimos: 6 '

16 , Punto 8, Punto 6 6 ; 6 6-8). Mínimo en (, ) ( en Máimo, EJERCICIO 8 : Averigua los puntos de tangente horizontal de la unción: ' ' 6, Punto, Punto 6 EJERCICIO 9 : Halla y representa gráicamente los máimos y mínimos de la unción: 9 y D() = D( ) = R 9 6 ' y 6 Punto 6 Punto,, 6). - Mínimo en (, ) ( en Máimo 6, EJERCICIO : Determina los puntos de tangente horizontal de la unción: 6 6 ' 7, Punto, Punto 6 6 ' EJERCICIO : Halla y representa gráicamente los puntos singulares de la unción:, Punto, Punto Punto ',

17 Máimo en (, ) Mínimo en (-,-) y (,-) REPRESENTACIÓN DE FUNCIONES EJERCICIO : La siguiente gráica corresponde a la unción (). A partir de ella, indica: a Máimos y mínimos. b Puntos de corte con los ejes. c Ramas ininitas. d Intervalos de crecimiento y de decrecimiento. a) ' Hay un mínimo en ' Hay un máimo en, b),,,,, y,. c) lim ; lim, d) Decrece en, y en, ; crece en,. EJERCICIO : Dada la gráica de (), di cuáles son sus asíntotas e indica la posición de la curva respecto a ellas. Halla también los intervalos de crecimiento y de decrecimiento de la unción: Asíntota vertical: Posición de la curva: lim ; lim Asíntota horizontal: y Posición de la curva: La unción es decreciente en, y en,. Si Si,, y y

18 EJERCICIO : A partir de la gráica de (): a b c Cuáles son los puntos de corte con los ejes? Di cuáles son sus asíntotas. Indica la posición de la curva respecto a las asíntotas verticales. a (, ) b Asíntotas verticales:, Asíntota horizontal: y ) lim ; lim c lim ; lim EJERCICIO : Representa una unciónpolinómica, de la que sabemos que : lim ; lim Su derivada es en, y en,. Corta a los ejes en,,,,, y,. EJERCICIO 6 : Representa una unción (), de la que sabemos lo siguiente: La derivada no se anula en ningún punto. La unción es decreciente. Corta a los ejes en (-, ) y en (,-) lim ; lim Tiene una asíntota horizontal en y. Además: EJERCICIO 7 : Representa gráicamente una unción (), de la que conocemos lo siguiente : Su derivada se anula en No corta a los ejes. lim ; lim, y en,.

19 Tiene una asíntota oblicua, que es y. Además: EJERCICIO 8 : Estudia y representa la siguiente unción: Dominio: D() = R Puntos de corte con los ejes: Con el eje X Con el eje Y : y Punto, Punto (,) Punto (, ) Ramas ininitas: lim ; lim Monotonía y etremos: D() = R D( ) R 6 () ( ) Punto (, ) Punto (, ) Creciente: (-,-) (,) Decreciente: (-,) Máimo: (-,) Mínimo: (,) Curvatura y puntos de inleión: D() = D( ) = R D() R ' 6 6 '() 6 6 Cóncava: (-,-) Convea: (-,) Punto de Inleión: (-,) Gráica:

20 EJERCICIO 9 : Estudia y representa la unción: Dominio: D() = R Puntos de corte con los ejes: Con el eje X Con el eje Y = y = Punto (,) Punto (, ) Punto (, ) Punto (, ) Ramas ininitas: lim ; lim Monotonía y etremos: D() = R D( ) R () ( ) Creciente: (-,) (,+) Decreciente: (-,-) (,) Máimo: (,) Mínimo: (-,-), (,-) Curvatura y puntos de inleión: D() = D( ) = R D() R ' '() Gráica: / Cóncava:, Convea:,, Punto de Inleión:, 9

21 EJERCICIO : Estudia y representa la siguiente unción: Dominio R- {} Puntos de corte con los ejes: Con el eje X y y Punto Con el eje Y Punto, Asíntota vertical: lim ; lim Asíntota horizontal: y Monotonía y etremos: D() = R {} lim, con lim, con 6 6 D( y y ') R 6 Creciente: (,), 6 No tiene solución Decreciente: (-,) Curvatura y puntos de inleión: D() = D( ) = R {} ' Gráica:.( ) ( 6).( ) ( ) ( ) No eiste ni máimo ni mínimo D() R {} '() ( ) Cóncava: (-,) Convea: (,+) No tiene solución Punto de Inleión: No eiste

22 EJERCICIO : Representa gráicamente la siguiente unción, estudiando previamente los aspectos que consideres más relevantes: Dominio R {-} Puntos de corte con los ejes: Con el eje X y Punto, Con el eje Y y Punto, Asíntotas verticales: lim ; lim Asíntota horizontal: lim () lim No eiste asíntota horizontal Asíntota oblicua: y = m + n () m lim lim lim n lim () m lim. lim lim () A sin t() y ( ) A sin t( ) Monotonía y etremos: D() = R {-} D( ') R ( ). ( ) Creciente: (-,-) (,+) Decreciente: (-,-) (-,) Máimo (-,-) y Mínimo (,) Curvatura y puntos de inleión: D() = D( ) = R {-} ' ( ).( ) ( ).( ) ( ).( ) ( ). ( ) ( ) ( ) ( ) D( ) R { } ' () ( ) No tiene solución Cóncava: (-,-) Convea: (-,+) Punto de Inleión: No eiste Gráica:

23 EJERCICIO : Estudia y representa la siguiente unción: Dominio R {} Puntos de corte con los ejes: Con el eje X y Con el eje Y y Punto, Asíntota vertical: lim ; lim Punto Rama parabólica pues el grado del numerador es dos unidades mayor que el grado del denominador. lim ; lim, Monotonía y etremos: D() = R {} D( ) R 6 6 Creciente: (,+) Decreciente: (-,) (,) (,+) Mínimo: (,7) ' Curvatura y puntos de inleión: D() = D( ) = R {} (6 )( ) ( 6 )( ) (6 )( ) ( 6 ) ( ) ( ) 6 ( ) D( ') '() R {} ( ) ( ) ( ) Notienesolución Cóncava: (,) Convea: (-,) (,+) Punto de Inleión: (,) Gráica:

24 EJERCICIO : Representa gráicamente la siguiente unción, estudiando los aspectos que consideres más relevantes: Dominio R - {} Puntos de corte con los ejes: (-,6;) lim ; Asíntota vertical: : lim Rama parabólica: lim ; lim Monotonía y etremos: Creciente (,+) Decreciente (-,) (,) Mínimo (,) Curvatura y puntos de inleión Cóncava: (-,6;) Convea: (-;-,6) (,+) Punto de inleión: (-,6;) Gráica: EJERCICIO : Estudia y representa la unción: Dominio R - {-} Puntos de corte con los ejes: (,) lim Asíntota vertical: ; lim Rama parabólica lim ; lim Monotonía y etremos: Creciente (-,-) (-,+) Decreciente (-,-) Mínimo (-,7) Curvatura y puntos de inleión: a un número entre - y Cóncava: (-,a) Convea: (-;-) (a,+) Punto de inleión: (a,(a)) Gráica: EJERCICIO : Estudia y representa la siguiente unción: Dominio R - {} Puntos de corte con los ejes: (,) y (-,) lim ; Asíntota vertical: lim Rama ininitas: lim ; lim Monotonía y etremos: Creciente R {o} Curvatura y puntos de inleión: Cóncava: (-;-,8) (;,8) Convea: (--,8;) (,+) Punto de inleión: (-,8;,) y (,8;-,) Gráica:

25 EJERCICIO 6 : Estudia y representa la siguiente unción: Dominio R - {-,} Puntos de corte con los ejes: (,) Asíntotas verticales:, lim ; lim lim ; lim () Asíntota horizontal: y ( ) Monotonía y etremos: Creciente (,) (,+) Decreciente (-,-) (-,) Máimo: (,) Curvatura y puntos de inleión: Cóncava: (-,-) (,+) Convea: (-,) Punto de inleión: No eisten Gráica: EJERCICIO 7 : Representa gráicamente la siguiente unción, estudiando previamente los aspectos que consideres más relevantes: Dominio R Gráica: Puntos de corte con los ejes: (,) No tiene asíntotas verticales. () Asíntota horizontal: y ( ) Monotonía y etremos: Creciente (,+) Decreciente (-,) Mínimo: (,) Curvatura y puntos de inleión: Cóncava: (-;-,8) (,8;+) Convea: (-,8;,8) Punto de inleión: (-,8;,) y (,8;,) EJERCICIO 8 : Dada la unción represéntala gráicamente. estudia sus aspectos más relevantes y Dominio R {} Puntos de corte con los ejes: No eisten Asíntota vertical: lim ; lim () Asíntota horizontal: y ( ) Monotonía y etremos: Creciente (-,) Decreciente (,+) Máimo y Mínimo: No eisten Curvatura y puntos de inleión: Cóncava: R {} Punto de inleión: No eiste Gráica:

26 EJERCICIO 9 : Estudia y representa la siguiente unción: Dominio R Puntos de corte con los ejes: (,) Asíntota vertical: No tiene () A sin t() Asíntota oblicua: y ( ) A sin t( ) Monotonía y etremos: Creciente R Máimo y Mínimo: No eisten Curvatura y puntos de inleión: Cóncava: (-,) Convea: (,+) Punto de inleión: (,) Gráica: EJERCICIO : Dada la unción represéntala gráicamente. estudia sus aspectos más relevantes y Dominio R {} Puntos de corte con los ejes: (-,6;) Asíntota vertical: lim ; lim () A sin t() Asíntota oblicua: y ( ) A sin t( ) Monotonía y etremos: Creciente (-,) (,+) Decreciente: (,) Mínimo: (,) Curvatura y puntos de inleión: Convea: R {} Punto de inleión: No tiene Gráica: EJERCICIO : Estudia y representa la unción: Dominio R {-} Puntos de corte con los ejes: (;) Asíntota vertical: lim ; lim () A sin t() Asíntota oblicua: y - ( ) A sin t( ) Monotonía y etremos: Creciente (-,-) (-,+) Decreciente: (-,-) Máimo: (-,-7/) Curvatura y puntos de inleión: Cóncava: (-,-) (-,) Convea: (,+) Punto de inleión: (,) Gráica:

27 EJERCICIO : Estudia y representa la siguiente unción: Dominio R {-,} Puntos de corte con los ejes: (;) Asíntotas verticales:, lim ; lim lim ; lim () A sin t() Asíntota oblicua: y ( ) A sin t( ) Monotonía y etremos: Creciente (-;-,7) (,7;+) Decreciente (-,7;-) (-,) (;,7) Máimo (-,7;-,6) Mínimo: (,7;,6) Curvatura y puntos de inleión: Cóncava: (-,-) (,) Convea: (-,) (,+) Punto de inleión: (,) Gráica: EJERCICIO : Estudia y representa la unción: Dominio R {} Puntos de corte con los ejes: No tiene lim ; Asíntota vertical: lim Rama parabólica lim ; lim Monotonía y etremos: Creciente (-,) (,+) Decreciente (-,-) (,) Mínimo: (-,) y (,) Curvatura y puntos de inleión: Convea: R {} Punto de inleión: No tiene Gráica: EJERCICIO : Estudia y representa la unción: Dominio R Puntos de corte con los ejes: (,) Asíntotas verticales: No tiene. lim ; Rama parabólica lim Monotonía y etremos: Creciente (,+) Decreciente (-,) Mínimo: (,) Curvatura y puntos de inleión: Convea: R Punto de inleión: No tiene Gráica:

28 EJERCICIO : a) Dibuja la gráica de la unción: b) Ayúdate de la gráica para estudiar los siguientes aspectos de de crecimiento y de decrecimiento. : dominio,continuidad e intervalos a) Dominio R Puntos de corte con los ejes: (,), (,86;) y (-,8;) Asíntotas verticales: No tiene. Rama parabólica lim ; lim Monotonía y etremos: Creciente (-,-) (,+) Decreciente (-,) Máimo (-,/) Mínimo: (,-9) Curvatura y puntos de inleión: Cóncava: (-,-) Convea: (-,+) Punto de inleión: (-,-/) Gráica: Y 6 8 X b) Dominio R Es una unción continua. Creciente en,, y decreciente en,.

29 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa de variación media. Cálculo y signiicado EJERCICIO : Consideramos la unción:. Halla la tasa de variación media en el intervalo [, ] e indica si () crece o decrece en ese intervalo. EJERCICIO : a) Calcula la tasa de variación media de la unción en el intervalo [, ] b) A la vista del resultado obtenido en el apartado anterior, crece o decrece la unción en dicho intervalo? EJERCICIO : Calcula la tasa de variación media de esta unción, (), en los intervalos siguientes e indica si la unción a), b), crece o decrece en cada uno de dichos intervalos: Derivada de una unción por la deinición EJERCICIO : Halla, utilizando la deinición, la derivada de las siguientes unciones: a) () = + b) () = + c). d). EJERCICIO : Halla la derivada de la siguientes unciones, aplicando la deinición de derivada, en los puntos que se indican a). en = - b) en = c) () = + en = d). en = Cálculo de derivadas EJERCICIO 6 : Calcular las siguientes derivadas: ) y = ) y = ) y = 8 ) y = ) y = ) y = ) y = ) y = ) y =.. 7) y = ) y = 8) y = ) y = 9) y = 7) y = ( - ).( + ) ) y =. 8) y = ( -)/( + ) ) y = 6 + 9) y = - ) y = ) y = ) y= - ) y = ( + ).( + ) ) y = ( + ). - ) y = 6) y = 7) y =

30 8) y = 9) y = ) y = ) y = ( - + 7) 7 ) y =.( - + ) ) y = ( - - ) ) y = ( + ) ) y =.( - ) ( ) 6) y = ( ) 7) y = ( - ).( - ) ( ) 8) y = ( ) 9) y = ) y = ) y = ) y = ) y = ) y = 7 ) y = 6) y = + 7) y =. 8) y = ( - 9) y = ) y = ) ) y =.( - + ) ) y = 6 ( ) y = e ) 6 ) y = e ) y =.e 6) y = 7) y = e e e 8) y = e 9) y = log 6) y = log 6) y = log 6) y = Ln ( - ) 6) y = log 6) y = Ln e 6) y = log Ln 66) y = 67) y = Ln [.( + ) 68) y = Ln 69) y = Ln 7) y = Ln 7) y = (log + ). 7) y = tag 7) y = sen 7) y = sen 7) y = sen 76) y = sen 77) y = sen 78) y = sen 79) y =. sen 8) y = e cos 8) y = sen + cos sen 8) y = sen 8) y = tag ( + ) 8) y = tag ( + ) 8) y = Ln cos 86) y = tag ( - ) 87) y = tag cos ec 88) y = sec 89) y = sen 9) y = sen ( + e ) 9) y = Ln 9) y = cos. ( - cos ) sen cos 9) y = sen cos 9) y = Ln (.sen).sen 9) y = e cos 96) y = cos cos 97) y = 98) y = Ln (tag ) 99) y = Ln (sen ) ) y = sen (+) ) y = sec ) y = sen +cos ) y = sen [cos(tag ) ) y = Ln cos sen ) y = Ln cos cos 6) y = Ln (tag ) 7) y = Ln 8) y = Ln ( ) 9) y = Ln (sen ) cos ) y = e ) y = Ln (sen.cos ) ) y = sen - cos ) y = sen(+) EJERCICIO 7 - Halla la unción derivada de: a) y = b) y = c) y = d) y = ( + ).( + ) e) y = ) y = g) y = 7 9 ( ) h) y = i) y = 9. k) y =

31 l) y = e log m) y = ( ).( ) n) y = ( ) ñ) y = ( + ) o) y = ( ) - p) y = q) y = r) y = s) y = ( ) +. t) y = u) y = v) y = Ln ( + ) + e - w) y = log + ) y =.sen(+) y) y = cos () z) y = tag( +) ) y = ) y =.e Ln ) y = ) y =.( -) sen ) y = e 6) y = Ln( ) 7) y = e e 8) y = tag Recta tangente EJERCICIO 8 - Escribe la ecuación de la recta tangente a la curva y = - en el punto de abscisa. EJERCICIO 9 - Halla la ecuación de la recta de pendiente 7 que es tangente a la curva y = +. EJERCICIO - Halla los puntos de tangente horizontal de la siguiente unción y, con ayuda de las ramas ininitas, 6 decide si son máimos o mínimos: EJERCICIO - Averigua los puntos de tangente horizontal de la unción: EJERCICIO - Halla la ecuación de la recta tangente a la curva y = + en el punto de abscisa = EJERCICIO - Escribe la ecuación de la recta tangente a la curva y = que sea paralela a la recta y = 7 + EJERCICIO - Halla la ecuación de la recta de pendiente que sea tangente a la curva y = +. EJERCICIO - Obtén la ecuación de la recta tangente a la curva y = + en el punto de abscisa = - Crecimiento y etremos relativos EJERCICIO 6 Estudia la monotonía y calcula los etremos de la siguiente unción: Representar unciones que cumplan unas condiciones EJERCICIO 7 : Dibuja la gráica de la unción, sabiendo que: Su derivada se anula en,. Solo corta a los ejes en,. Sus asíntotas son = -, = e y = Si -, y La posición de la curva respecto a las asíntotas es: Si, y lim ; lim ; lim ; lim EJERCICIO 8 : Haz la gráica de una unción, sabiendo que : Es continua. lim ; lim Su derivada se anula en,, en, y en,. Corta a los ejes en los puntos,,,,,,, y,.

32 RCICIO 9 : A partir de la gráica de (), di cuáles son sus asíntotas, indica la posición de la curva respecto a ellas y halla los intervalos de crecimiento y de decrecimiento de la unción: EJERCICIO : La siguiente gráica corresponde a la unción (): a En qué puntos se anula la derivada? b Cuáles son sus asíntotas? c Indica la posición de la curva respecto a sus asíntotas verticales. Estudiar y representar unciones EJERCICIO : Estudia y representa las siguientes unciones: a) b) c) d) e) ) g) h) i) j) k) l) m) Recopilación EJERCICIO : a) Escribe la ecuación de la recta tangente a la curva () = en el punto de abscisa = - b) Es creciente o decreciente en? EJERCICIO : Dada la unción: a) Es creciente o decreciente en =? Y en =? b) Halla los tramos en los que la unción crece y en los que decrece.

33 EJERCICIO : a) Halla la ecuación de la recta tangente a la curva en el punto de abscisa b) Halla los tramos en los que es creciente y en los que es decrecient EJERCICIO : Consideramos la unción:. e. a) Crece o decrece en? Y en? b) Halla los tramos en los que la unción es creciente y en los que es decreciente. EJERCICIO 6 : Halla los intervalos de crecimiento y de decrecimiento de las unciones: a) 8 b) EJERCICIO 7 : Dada la siguiente unción: 7 a) Es creciente o decreciente en =? Y en =? b) Halla los tramos en los que la unción es creciente y en los que es decreciente. EJERCICIO 8 : Halla y representa gráicamente los puntos de tangente horizontal de la unción: 8 EJERCICIO 9 : Averigua los puntos de tangente horizontal de las siguiente unción y represéntalos gráicamente: () = 8 + EJERCICIO : Estudia y representa las siguientes unciones: 8 b) a) c) 9 d) e) ) g) h) i) j) k) l) m) n) ñ) 8 o) p) q) r) s) 6

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA 7 DERIVADAS Y APLICACIONES MATEMÁTICAS CCSSI º Bac TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Definición : Se llama

Más detalles

TEMA 11 REPRESENTACIÓN DE FUNCIONES

TEMA 11 REPRESENTACIÓN DE FUNCIONES Tema Representación de unciones Matemáticas II º Bachillerato TEMA REPRESENTACIÓN DE FUNCIONES EJERCICIO : Representa gráicamente la unción: Dominio R 8 respecto al origen. 8 Simetrías:. No es par ni impar:

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL 6.1. TASAS DE VARIACIÓN MEDIA E INSTANTÁNEA 6.1.1. Tasa de variación media La tasa de variación media de una unción en un intervalo a, b es el cociente: b a TVM,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009 0 Ejercicios de Selectividad Continuidad y derivabilidad de unciones Ejercicios propuestos en 009 1- [009-1-A-] a) [1 5] Halle las unciones derivadas de las unciones deinidas por las siguientes ln epresiones:

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Página 75 REFLEIONA RESUELVE Tomar un autobús en marca En la gráfica siguiente, la línea roja representa el movimiento de un autobús que arranca de la

Más detalles

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN. Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.3. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.3. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS TEMA. FUNCIONES REALES DE VARIABLE REAL.. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS . FUNCIONES REALES DE VARIABLE REAL.. CONCEPTO DE DERIVAD. CÁLCULO DE DERIVADAS... Derivada de una unción en un punto...

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)

Más detalles

Cálculo de derivadas

Cálculo de derivadas 0 Cálculo de derivadas. La derivada Piensa y calcula La gráfica f() representa el espacio que recorre un coche en función del tiempo. Calcula mentalmente: a) la pendiente de la recta secante, r, que pasa

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población: DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

x + x 2 +1 = 1 1 = 0 = lím

x + x 2 +1 = 1 1 = 0 = lím UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado

Más detalles

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente:

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente: Tasa de variación media DERIVADAS La tasa de variación media TVM de una unción ( en un intervalo (x, x se deine como: TVM (a, b ( x ( x x x Si consideramos x x + h, podemos expresar la TVM como: Interpretación

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?. ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4

Más detalles

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría 6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

Tema 7: Aplicaciones de la derivada, Representación de Funciones

Tema 7: Aplicaciones de la derivada, Representación de Funciones Tema 7: Aplicaciones de la derivada, Representación de Funciones 0.- Introducción 1.- Crecimiento y Decrecimiento de una función. Monotonía..- Máimos y mínimos de una función.1.- Etremos relativos...-

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3 [4] [EXT-A] a) La derivada de la función f() es: (-) (-) Determine la función f() sabiendo que f() = b) Determine el límite: lim + ++ ++ + [4] [EXT-B] a) Dadas las funciones f() = y g() = - +, determine

Más detalles

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro) (temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a 3 Derivación 3.. La derivada La derivada de una función en punto a de su dominio está dada por la fórmula f (a) = lím a f() f(a) a El cociente f() f(a) a es la pendiente de la recta secante a la función

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Ejercicio nº.- Estudia y representa la siguiente unción: ( ) + 6 Ejercicio nº.- Dibuja la gráica de la unción: ( + ) ( ) Ejercicio nº.- Dada la unción: y sen sen, [0, ] a) Halla

Más detalles

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas. f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +

Más detalles

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN Teoría Práctica Los pasos a seguir para el estudio completo y representación de una Función son los siguientes: ) Hallar el Dominio de la función. En dicho

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

DERIVADAS. es: = + = es: = +

DERIVADAS. es: = + = es: = + DERIVADAS. La derivada de la función f ( ) es: A) f ( ) f ( ) + B) f ( ) D) f ( ) ( ) f ( ). La derivada de la función f ( ) e es: A) f ( ) e f ( ) e B) f ( ) ( ) e D) f ( ) + e ( ) f e + e e e e ( ).

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

EJERCICIOS DE SELECTIVIDAD FUNCIONES

EJERCICIOS DE SELECTIVIDAD FUNCIONES EJERCICIOS DE SELECTIVIDAD FUNCIONES Representación gráfica Monotonía Curvatura - Asíntotas 1. Dadas las funciones siguientes, 6 + 1 a) b) = c) = 1 + d) + 4 1 = e) = f) = 1 g) + 1 + 1 = h) = i) =, 1 +

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6 ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media

Más detalles

GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS

GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS Funciones Límites Derivadas Aplicaciones Gráficas C ontenidos Idea de Función. Elementos notables de la gráfica de una función. Funciones lineales. Función definida por intervalos. Función Valor Absoluto.

Más detalles

APLICACIONES DEL CÁLCULO DIFERENCIAL-II

APLICACIONES DEL CÁLCULO DIFERENCIAL-II APLICACIONES DEL CÁLCULO DIFERENCIAL-II. Estudia si crecen o decrecen las siguientes funciones en los puntos indicados: π a) f() cos en 0 b) f() ln ( arc tg ) en 0 π c) f() arc sen en 0 d) f() ln en 0

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas

Más detalles

8 Representación de funciones

8 Representación de funciones 8 Representación de unciones ACTIVIDADES INICIALES 8I Escribe los siguientes cocientes menor que el grado de Q(): a) + + a) + + P() ( + ) P( ) Por tanto: + Q( ) + P ( ) Q ( ) como R ( ) C ( ) + con C()

Más detalles

Tema 2. FUNCIONES REALES DE VARIABLE REAL

Tema 2. FUNCIONES REALES DE VARIABLE REAL UAH Funciones reales de variable real 1 Tema FUNCIONES REALES DE VARIABLE REAL Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento

Más detalles

Funciones. Rectas y parábolas

Funciones. Rectas y parábolas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones DERIVADAS LECCIÓN Índice: Representación gráfica de funciones. Problemas.. Representación gráfica de funciones Antes de la representación de la gráfica de una función se realiza el siguiente estudio: º)

Más detalles

Tema 7.0. Repaso de números reales y de funciones

Tema 7.0. Repaso de números reales y de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA.- Calcular los etremos relativos de las siguientes funciones: a) f ( ) D(f) (Por ser polinómica) ; Posibles máimos o mínimos 6

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS UNIDAD APLICACIONES DE LAS DERIVADAS Página 98 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f

Más detalles

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

RELACIÓN DE EJERCICIOS DE CONTINUIDAD Y DERIVABILIDAD 1º DE BACHILLERATO

RELACIÓN DE EJERCICIOS DE CONTINUIDAD Y DERIVABILIDAD 1º DE BACHILLERATO RELACIÓN DE EJERCICIOS DE CONTINUIDAD Y DERIVABILIDAD º DE BACHILLERATO.-Dada la curva de ecuación y = -. Calcular la ecuación de su recta tangente punto de abscisa = -. Comprobar si eiste algún punto

Más detalles

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto» TEMA 10 DERIVADA DE UNA FUNCIÓN EN UN PUNTO f (a): Consideremos una función f(x) y un punto P de su gráfica (ver figura), de abscisa x=a. Supongamos que damos a la variable independiente x un pequeño incremento

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

Análisis de funciones y representación de curvas

Análisis de funciones y representación de curvas 12 Análisis de funciones y representación de curvas 1. Análisis gráfico de una función Aplica la teoría 1. Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles