CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS"

Transcripción

1 CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese ema esudiaremos las siuaciones en las que se emplean res variables para represenar una curva en el plano. Anes de resolver algunos ejemplos de curvas en el espacio, inroducimos un nuevo ipo de funciones, que se denominan funciones vecoriales; las cuales se aplican en números reales y vecoriales. DEFICINION DE FUNCIONE VECTORIAL Se llama asi a cualquier funcion de la forma: r( ) f ( ) i g( ) j Plano r( ) f ( ) i g( ) j h( ) k Espacio DEFINICION DE UNA CURVA PLANA Si f y g son funciones coninuas en en un inervalo inervalo abiero I, enonces las ecuaciones x=f() y g() se les llama ecuaciones parámeros y a se le llama parámero. Al conjuno de punos (x,y) que se obienen cuando varia sobre el inervalo I se le llama grafica de las ecuaciones paraméricas. A las ecuaciones paraméricas y a la grafica juna, es a lo que se llama curva plana, que se denoa por C.

2 . ECUACIONES PARAMETRICAS DE ALGUNAS CURVAS Y SE REPRESENTACION GRAFICA Ejemplo: Trazar la curva dada por las ecuaciones paramericas x 4 y T Y -1-1/ 0 1/ 1 3/ y en: Esbozar la curva dada por la ecuación paraméricas: x 4 4 ; y desde T -1-1/ 0 1/ 1 3/ y -1-1/ 0 1/ 1 3/ 1 3

3

4 Trace la curva represenada por encuenre ambién su ecuación paramérica. x 3 Cos e y 4 Sen cuando 0 y θ 0 π/ π 3π/ π Y x 3Cos y 4Sen Cos Sen Cos x 3 y 4 Sen Re escriviendo x y

5 .3 DERIVADA DE UNA FUNCION DADA PARAMETRICAMENTE DEFINICIÓN DE LA DERIVADA DE UNA FUNCION VECTORIAL La derivada de una función vecorial r se define como: r'( ) r( lim 0 ) r( ) DEFINICION DE LA DERIVADA EN FORMA PARAMETRICA Si una curva suave C viene dada por las ecuaciones x f (), y g(), la pendiene de C en (x,y) es:, 0 Pariendo de la función general de derivación (regla general) demuesre la definición de derivada en forma paramerica. y x y x lim 0 g'( ) f '( ) g( f ( ) ) g( ) f ( ) dg df dg df Hallar para la curva dada por x Sen e y Cos

6 dcos dsen Sen Cos Tan Dada: 1 x e y 4 con 0, encuenre el valor de su pendiene d y d d Segunda Derivada 3 d y 3 d d y d d y Tercera Derivada

7 .4.- LONGITUD DE ARCO EN FORMA PARAMETRICA. LONGITUD DE ARCO EN FORMA PARAMÉTRICA. Si una corva suave dada por y no iene auo inersecciones en el inervalo, enonces la longiud de arco de en el inervalo vine dada por: Ejemplos: 1.- Encuenre la circunferencia del elipse dada por las ecuaciones paraméricas; En Se uiliza la idenidad: y enemos que:..- calcule la longiud de arco de un elicé circular descrio por: Desde

8 Se aplica la idenidad 3.- calcule la longiud de arco descrio por un puno erminal de la represenación de posición conforme incremena de 1 a 4.

9 4.- calcule la longiud de arco descrio por un puno erminal de la represenación de posición. 5.- Deermine la longiud de arco de una curva cuyas ecuaciones paraméricas son: y en cada uno de los siguienes casos. a) a b) a 6.-Hallar la longiud de arco de una elicé circular con ecuación vecorial Desde el puno al puno

10 7.- encuenre la longiud de la curva cuando Problemas para pracicar: (Obenidos de Larson vol. ll sexa edición; problemas del 3 al 1. Sección 9.3. pág. 934) Ecuaciones paraméricas puno

11 En los ejercicios 11 y1 enconrar una ecuación de la reca angene en cada uno de los punos indicados de la curva Y Y (Obenidos de Larson vol. ll sexa edición; problemas del 31 al 36. Sección 9.3. pág. 935) Ecuaciones paraméricas puno

12 Ejercicios del de cálculo mulivariable Sewar pág. 855 seccion13.3. Realizar al 4.

13 .5.- COORDENADAS POLARES Un sisema de coordenadas represena un puno en el plano por medio de un par ordenado de números, llamados coordenadas. Hasa el momeno en cursos aneriores hemos empleado el uso de coordenadas caresianas, que son disancias dirigidas a parir de dos ejes perpendiculares. En ese ema describiremos un sisema de coordenadas inroducido por newon llamado sisema de coordenadas polares. Para ello elegimos un puno al que llamaremos polo u origen y luego lo idenificamos con O. O Eje polar A coninuacion razamos un rayo que es una semireca que comiensa en O y se denomina eje polar. Por lo general, ese eje se raza con direccion orizonal hacia la derecha y corresponde al eje de las posiivas en las coordenadas caresianos. r P O Si P es cualquier oro puno en el plano sea r la disancia d O a P y el ángulo (medio habiualmene medido en radianes) formado por el eje polar y la reca OP. Enonces el puno P esa represenado por el par ordenado (r, ) y r, se conocen como coordenadas polares de P. En la siguiene figura se muesra la relación enre las coordenadas polares y las caresianas, cuando el polo corresponde al origen y el eje polar coincide con el eje de las posiivas. Y CARTESIANO POLAR P(r, )=P(x, y) r Profr. Julio Y Meléndez Pulido 010- x x

14 Ejemplos: 1.- Exprese el puno en coordenadas caresianas..- Represene en coordenadas polares el puno grafique los punos cuyas coordenadas polares se dan a coninuación

15

16 4.- obenga una ecuación caresiana de la grafica que iene la ecuación polar: 5.-Reduzca la ecuación polar : Considere

17 .6.- GRAFICAS DE ECUACIONES POLARES. Una forma de represenar la grafica de una ecuación en polares consise en pasar a coordenadas recangulares y después dibujar la grafica de la ecuación recangular. Ejemplos: Describa la grafica de cada una de las siguienes ecuaciones en polares. Verifique cada descripción pasando a una ecuación recangular. r Circulo r Represenación polar: Represenación caresiana: π.- Y Reca radial x

18 3.- Y Reca verical 1 x 4.- Trace la curva cuya ecuación es

19 5.- Trace la grafica de la ecuación polar: a), b) deduzca la ecuación caresiana del comporamieno grafico obenido en el inciso anerior. a) Y x y r b) 6.- Demuesre cualquier consane dada: Y 3

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares Trabajo Prácico N 0: Curvas planas-ecuaciones paraméricas y Coordenadas polares Curvas planas y ecuaciones paraméricas Hasa ahora hemos represenado una gráfica por medio de una sola ecuación que coniene

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos.

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 4. Curvas paramerizadas: ejemplos. La descripción más direca y flexible de una curva es una represenación paramérica. En lugar de considerar una de las coordenadas

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

Lección 13 Introducción a los sistemas no lineales de ecuaciones diferenciales

Lección 13 Introducción a los sistemas no lineales de ecuaciones diferenciales Lección Inroducción a los sisemas no lineales de ecuaciones diferenciales Un modelo de Gierer-Meinhard para ecuaciones de ipo Acivador-Inhibidor Modelo G-M: con = [A], = [B]. k = k = k = k 4 = A B A +

Más detalles

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2]

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2] UNIVERSIDAD TECNOLÓGICA NACIONAL Faculad Regional Rosario UDB Física Cáedra FÍSICA I CAPITULO : Movimieno en una dirección [S.Z.F.Y. ] Cinemáica: La Cinemáica se ocupa de describir los movimienos de los

Más detalles

TRABAJO PRÁCTICO N 3: Derivadas - Diferencial

TRABAJO PRÁCTICO N 3: Derivadas - Diferencial TRABAJO PRÁCTICO N : Derivadas - Diferencial ) Definición de derivada en un puno: La derivada de la función f es aquella función, denoada por f ', al que su valor en un número del dominio de f esá dado

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

GUÍA DE EJERCICIOS II

GUÍA DE EJERCICIOS II Faculad de Ingeniería UCV Álgebra ineal Geomería Analíica Ciclo Básico GUÍA DE Encuenre las ecuaciones de la reca que a) iene vecor direcor v (,, ) pasa por el puno P ( 4, 5, ) b) pasa por los punos A

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES

TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES Tema 47. Generación de curvas por envolvenes. TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES. Inroducción. Una curva o supericie es envolvene de un conjuno de curvas o supericies si es angene en cada puno

Más detalles

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( )

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( ) 5 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Inegral definida:. Enunciar la regla de Barrow. Calcular:. Calcular:. (S) Calcular: d (Soluc: ) a + b a ( ) a + b d Soluc : b d (Soluc: 5/). Calcular: 5. Calcular:

Más detalles

a) en [0, 2] ; b) en [-1, 1]

a) en [0, 2] ; b) en [-1, 1] UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO FACULTAD DE CIENCIAS NATURALES CATEDRA: Maemáica I CURSO: 04 TRABAJO PRACTICO Nº -Tercera Pare Pare III. Aplicaciones de la derivada TEOREMA DE ROLLE

Más detalles

( ) ( 15 50) 0

( ) ( 15 50) 0 PRUE DE CCESO L UNIVERSIDD JUNIO 7 OPCION ) Deermina dos números reales posiivos sabiendo que su suma es y que el produco de sus cuadrados es máximo. Sean x e y los números reales que suman y P x y odos

Más detalles

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones

Más detalles

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006 EXAMEN DE MATEMÁTICAS I 8 de febrero de 006 MATEMÁTICAS I Eamen del º PARCIAL 8 de febrero de 006 Sólo una respuesa a cada cuesión es correca. Respuesa correca: 0. punos. Respuesa incorreca: -0. punos

Más detalles

MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas Problemas propuestos

MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas Problemas propuestos Geomería del espacio ecuaciones de recas planos; posiciones relaivas MATEMÁTICAS II TEMA Ecuaciones de recas planos en el espacio. Posiciones relaivas Problemas propuesos Ecuaciones de recas planos. Halla,

Más detalles

Actividades de recuperación

Actividades de recuperación Acividades de recuperación.- Dados los vecores a y b de la figura. Calcula: a) a + b ; b) a b + c ; c) a ; d) a b..- Dados los punos A(3, -), B(4, 3) y C(5, -3), se pide: a) Hallar las coordenadas de los

Más detalles

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1 Pruebas de Apiud para el Acceso a la Universidad. JUNIO 1998. Maemáicas II. OPCIÓN A 1. Discuir el sisema a z solución del mismo cuando a = [1 puno] (a 1) y a z 1 (a 1) y (a 1) z según sea el valor del

Más detalles

5. Planos y rectas en el espacio

5. Planos y rectas en el espacio 5. Planos recas en el espacio ACTIVIDADES INICIALES 5.I Calcula el valor de los siguienes deerminanes a) 5 b) 5 4 c) d) 5.II Esudia la compaibilidad de los siguienes sisemas resuélvelos en los casos en

Más detalles

Geometría del espacio

Geometría del espacio Geomería del espacio º) Dados los vecores u = (,, ) v = (,, ), calcula: a) sus módulos. b) su produco escalar. c) el coseno del ángulo que forman. d) el valor de w para que el vecor w (w,, ) sea perpendicular

Más detalles

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es SECCIÓN.4 Vecores angenes vecores normales 859 En la sección precedene se vio que el vecor velocidad apuna en la dirección del movimieno. Esa observación lleva a la definición siguiene, que es válida para

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO.

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. UNIVERSIDAD AUTONOMA SAN FRANCISCO CURSO DE DINÁMICA Docene: Álvarez Solís María del Carmen. Fecha: 10 Oc - 2017 TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. La cinemáica de cuerpos rígidos esudia las

Más detalles

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana.

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana. 1.- Sea una función coninua y = f() al que el dominio de f() =[a,b], enonces: a) El máimo absoluo de f() se alcanza en uno de los valores ales que f ()=0. b) No iene porque ener máimo absoluo. c) El máimo

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009 EXAMEN DE MATEMÁTICAS I (Primer Parcial) de febrero de 9 Sólo una respuesa a cada cuesión es correca. Respuesa correca:. punos. Respuesa incorreca: -. punos Respuesa en blanco: punos.- Sea ABC un riángulo

Más detalles

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x)

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x) Auoevaluación Cálculo Inegral Ejercicio 6. Calcular las siguienes inegrales indefinidas: ln d d ln( + d (a (b (c g cos + e d e + (d (e e + e d (f d cos( sen (g sen ( d (h ( + sen( d (i cos( cos ( + d (j

Más detalles

SERIE DE ECUACIONES DIFERENCIALES

SERIE DE ECUACIONES DIFERENCIALES SERIE DE ECUACIONES DIFERENCIALES PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) Clasifique cada una de las ecuaciones diferenciales siguienes indicando orden (O), grado (G) y si es lineal (L) o no (NL). a) ( y)

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO. Miércoles 3 de setiembre de 2014

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO. Miércoles 3 de setiembre de 2014 Universidad de Cosa Rica Insiuo Tecnológico de Cosa Rica TERCER EXAMEN PARCIAL CÁLCULO Miércoles 3 de seiembre de 4 INSTRUCCIONES Lea cuidadosamene, cada insrucción y preguna, anes de conesar. Uilice únicamene

Más detalles

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Guía para el ETS de Cálculo Vectorial IE ICA ISISA

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Guía para el ETS de Cálculo Vectorial IE ICA ISISA Funciones Vecoriales Insiuo Poliécnico Nacional 1. Para cada función vecorial, calcule r' ( r ''( 1.1 r( (sin cos i cos j sink (Res r' ( cosi sin j cosk 1. r( (cos i e j (1/ k (Res. r'( sin i e j (1/ k.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

Gráficos con Maple. . El segundo argumento especifica la variable independiente y su rango x de variación.

Gráficos con Maple. . El segundo argumento especifica la variable independiente y su rango x de variación. Gráficos con Maple Maple incluye poenes capacidades gráficas que permien realizar represenaciones bidimensionales, ridimensionales e incluso animaciones. El programa es muy flexible en lo que a la enrada

Más detalles

Ondas y Rotaciones. Principios fundamentales II

Ondas y Rotaciones. Principios fundamentales II Ondas y Roaciones rincipios fundamenales II Jaime Feliciano Hernández Universidad Auónoma Meropoliana - Izapalapa México, D. F. 5 de agoso de 0 INTRODUCCIÓN. Generalmene el esudio del movimieno se realiza

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I INSTRUCTIVO PRÁCTICA Nº 5. MOVIMIENTO RECTILINEO Preparado por. Ing. Ronny J. Chirinos S., MSc prácica

Más detalles

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales?

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales? Razón de cambio de una función cuadráica Ejemplo.5 Un puno se desplaza en el plano describiendo el lugar geomérico correspondiene a la función f ( x x 6x 3. Obén la razón promedio de cambio. Considera

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

Calcular el área del paralelogramo si las diagonales son los vectores 2U V

Calcular el área del paralelogramo si las diagonales son los vectores 2U V x + y z 3 1. Hallar la disancia d de la reca L: = = al plano π que coniene al riángulo de vérices A(, 1, 4), 1 1 4 (1,, -8) y C(, -3, 4) Ax + y + Cz + D Aplicando la disancia de un puno a un plano: d =

Más detalles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm

Más detalles

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3 EXTRAORDINARIO DE 8. PROBLEMA A. Esudia el siguiene sisema de ecuaciones lineales dependiene del parámero real a y resuélvelo en los casos en que es compaible: Aplicamos el méodo de Gauss: a-3 (a-3) 3-a

Más detalles

DPTO. DE ÁREA DE FÍSICA

DPTO. DE ÁREA DE FÍSICA UNIVERSIDD UTÓNOM CHPINGO DPTO. DE PREPRTORI GRÍCOL ÁRE DE FÍSIC Movimieno Recilíneo Uniforme Guillermo ecerra Córdova E-mail: gllrmbecerra@yahoo.com TEORÍ La Cinemáica es la ciencia de la Mecánica que

Más detalles

2. Independencia del camino. Campos conservativos.

2. Independencia del camino. Campos conservativos. GRADO DE INGENIERÍA AEROESPAIAL. URSO. Lección. álculo vecorial.. Independencia del camino. ampos conservaivos. Ha ocasiones en las que la inegral de un campo vecorial F, definido en una región U, a lo

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Soluciones modelo (Sepiembre de 009) Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f( ) -+. Deermina la asínoa de la gráfica Evidenemene, la función no iene asínoas vericales,

Más detalles

LECCIÓN 13: INTRODUCCIÓN A LOS SISTEMAS NO LINEALES DE ECUACIONES DI- FERENCIALES

LECCIÓN 13: INTRODUCCIÓN A LOS SISTEMAS NO LINEALES DE ECUACIONES DI- FERENCIALES LECCIÓN : INTRODUCCIÓN A LOS SISTEMAS NO LINEALES DE ECUACIONES DI- FERENCIALES Problema Calcula el sisema de primer orden equivalene a la ecuación + = 0, dibuja suficienes vecores del campo vecorial como

Más detalles

Laboratorio N 3, Funciones vectoriales, Curvas. Introducción.

Laboratorio N 3, Funciones vectoriales, Curvas. Introducción. Universidad Diego Porales Faculad de Ingeniería Insiuo de Ciencias Básicas Asignaura: Cálculo III Laboraorio N, Funciones vecoriales, Curvas Inroducción En la primera pare de ese laboraorio vamos a esudiar

Más detalles

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO hp://comunidad.udisrial.edu.co/elecriciyprojecudisrial/ Elecriciy Projec UD 2017 CORRIENTE ELÉCTRICA La corriene es la asa de variación de la carga respeco al iempo [1]. La Unidad de medida es el Ampere

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición.

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición. 1.. urvas paraméricas. Definición. Sean x 1, x,, xn funciones coninuas de R R para un inervalo [ ab, ] definidas como con [ a, b]. ( ( ( x1 = f1, x = f,, xn = fn El conjuno de punos ( x1, x,, xn = ( f1(,

Más detalles

Gráficas de curvas trigonométricas

Gráficas de curvas trigonométricas Capíulo 4 Gráficas de curvas rigonoméricas La definición de las razones rigonoméricas, como funciones del ángulo, lleva implicado el esudio de las funciones rigonoméricas desde el puno de visa de las funciones

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce. CINEMÁTICA La Cinemáica es la pare de la Física que esudia los moimienos sin preocuparse de la causa que los produce. SISTEMA DE REFERENCIA, POSICIÓN Y TRAYECTORIA Un cuerpo esá en moimieno cuando su posición

Más detalles

SUPERFICIES Y CURVAS EN EL ESPACIO

SUPERFICIES Y CURVAS EN EL ESPACIO SUPERFICIES Y CURVAS EN EL ESPACIO Es ese maerial se presenan algunas gráficas confeccionadas con el sofware MAPLE A coninuación de cada una se indica la senencia uiliada para obenerla Tenga en cuena que:

Más detalles

Cálculo Vectorial Primer Examen Parcial (30%)

Cálculo Vectorial Primer Examen Parcial (30%) iclo Básico Deparameno de Maemáica Aplicada ódigo: 54 Profesor: José Luis Quinero Sección Miércoles 4 de Mao de FAULTAD DE INGENIERÍA UNIERSIDAD ENTRAL DE ENEZUELA álculo ecorial Primer Examen Parcial

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Colegio Lux Mundi (Cajar-Granada) Examen Sepiembre de 009 Javier Cosillo Iciarra Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f ( x ) x -x+x. Deermina la asínoa de la

Más detalles

Coordenadas polares. Facultad de Ciencias UNAM Geometría Analítica I. Prof. Esteban Rubén Hurtado Cruz 1

Coordenadas polares. Facultad de Ciencias UNAM Geometría Analítica I. Prof. Esteban Rubén Hurtado Cruz 1 Coordenadas polares Si en un plano jamos un punto O que llamaremos polo u origen, y a partir de el trazamos un rayo o semirrecta L horizontal llamado eje polar, cualquier punto P del plano pertenece a

Más detalles

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 A) Hallar la pendiene de la reca secane a la parábola y + 8,cuyas abscisas de los punos de inersección son 1 y 4 f ( ) f ( a) B) Dada la siguiene epresión

Más detalles

Unidad Temática IX. Cinemática del Cuerpo Rígido

Unidad Temática IX. Cinemática del Cuerpo Rígido 0//06 Unidad Temáica IX Cinemáica del Cuerpo ígido Conenido: Traslación y roación de un cuerpo rígido. Medidas angulares. Coordenadas angulares, velocidad y aceleración angulares. Cinemáica de la roación

Más detalles

Capítulo 2 Cinemática

Capítulo 2 Cinemática Capíulo 2 Cinemáica 32 Problemas de selección - página 29 (soluciones en la página 104) 17 Problemas de desarrollo - página 40 (soluciones en la página 105) 27 2.A PROBLEMAS DE SELECCIÓN Sección 2.A Problemas

Más detalles

INTEGRALES Prueba de Evaluación Continua Grupo A1 10-XI Enunciar y demostrar el Teorema Fundamental del Cálculo Integral.

INTEGRALES Prueba de Evaluación Continua Grupo A1 10-XI Enunciar y demostrar el Teorema Fundamental del Cálculo Integral. INTEGRALES Pruea de Evaluación Coninua Grupo A -XI-.- Enunciar y demosrar el Teorema Fundamenal del Cálculo Inegral. Ver eoría de la maeria..- Calcular las derivadas de las siguienes funciones: a) F()

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN Problemas de Maemáicas º Bachillerao OPTIMIZACIÓN En ese documeno se eplica brevemene cómo se resuelven los problemas de opimización, y se ilusra mediane un ejemplo. Como sabéis, los problemas de opimización

Más detalles

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N. Cálculo Diferencial e Inegral - Funciones rascenenales. Prof. Farih J. Briceño N. Objeivos a cubrir Función logarimo y eponencial. Propieaes. Derivaa e inegración. Cóigo : MAT-CDI.5 Ejercicios resuelos

Más detalles

CINEMÁTICA II. pendiente = t(s)

CINEMÁTICA II. pendiente = t(s) C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II Tipos de movimienos i) Movimieno recilíneo uniforme (MRU): cuando un cuerpo se desplaza con rapidez consane a lo largo de una rayecoria recilínea,

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO

FÍSICA Y QUÍMICA 1º BACHILLERATO FÍSICA Y QUÍMICA 1º BACHILLERATO BLOQUE I: MECÁNICA Unidad 1: Cinemáica 1. INTRODUCCIÓN (pp. 8-3) 1.1. Definición de movimieno. Relaividad del movimieno Un cuerpo esá en movimieno cuando cambia de posición

Más detalles

Funciones trigonométricas

Funciones trigonométricas 0 Funciones rigonoméricas Tenemos en el plano R² la circunferencia C de radio con cenro (0,0. En ella disinguimos el puno (,0, que es el puno de inersección dec con el semieje de las x posiivas. Si pariendo

Más detalles

PRIMER EXAMEN EJERCICIOS RESUELTOS

PRIMER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G. I. T. I.) PRIMER EXAMEN 03 04 EJERCICIOS RESUELTOS EJERCICIO. Dada la curva cuya ecuación en coordenadas polares es r θ para 0 θ, se pide: () Deermina la ecuación de la reca angene a

Más detalles

at x En magnitud esa aceleración debe ser la misma que la radial es decir: a r t r 2 v m 2.52 m s m 81

at x En magnitud esa aceleración debe ser la misma que la radial es decir: a r t r 2 v m 2.52 m s m 81 Serie 8. M.C. y M.A.S. RESUELTA 1. Un auo enra en una curva a 7 km/h. Si una laa de refresco vacía, con 17 g de masa, en el asieno rasero se mueve desde el reposo hasa 1.6 m de donde esaba en.74 s. Cuál

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

Tema 12. Problemas Métricos. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 12

Tema 12. Problemas Métricos. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 12 Tema Problemas Méricos.- Inroducción..- Disancias...- Enre dos punos..- Enre puno y reca...- Enre puno y plano...- Enre dos recas..5.- Enre reca y plano..6.- Enre dos planos..- Ángulos..- Enre dos recas...-

Más detalles

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una.

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una. UNIVERSIDAD DE LONDRES PREPARATORIA GUIA DE MATEMÁTICAS VI Áreas I-II Plan : 9 Clave maeria : 00 Clave UNAM : Unidad I. Funciones Objeivos Que el alumno idenifique disinos ipos de funciones, esablezca

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

MATEMATICA PARA MEDICINA

MATEMATICA PARA MEDICINA MATEMATICA PARA MEDICINA CAPITULO II: NOCIONES DE CALCULO DIFERENCIAL... Concepo inuiivo de límie y el concepo de derivada en un puno. Considere la siguiene epresión: n, siendo n un número naural, es decir,

Más detalles

Unidad 6 Derivadas PÁGINA 135 SOLUCIONES. 1. La solución en cada caso es: = lím. lím. = h. 2. Queda: La recta debe tener una forma: y = x + b 5

Unidad 6 Derivadas PÁGINA 135 SOLUCIONES. 1. La solución en cada caso es: = lím. lím. = h. 2. Queda: La recta debe tener una forma: y = x + b 5 Unidad 6 Derivadas PÁGINA 15 SOLUCIONES 1. La solución en cada caso es: f ( ) f () ( ) 5 17 1 a) lím lím lím lím (1 ) 1 0 0 0 0 b) g ( ) g ( ) ( ) 1 1 lím lím lím 0 ( 1 1) 1. Queda: 1 La reca debe ener

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA

MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA 4. GEOMETRÍA CON LA FX 9860G SLIM DIVISIÓN DIDÁCTICA MAURICIO CONTRERAS MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA Enero/Febrero 008 Inroducción 1.

Más detalles

Examen Final de Ecuaciones Diferenciales Septiembre 2007

Examen Final de Ecuaciones Diferenciales Septiembre 2007 Eamen Final de Ecuaciones Diferenciales Sepiembre 007 Problema La siguiene ecuación diferencial de primer orden se puede resolver por diferenes méodos según cómo se planee. d d = + () Conesar las siguienes

Más detalles

CAPÍTULO 1 LA FUNCIÓN DERIVADA

CAPÍTULO 1 LA FUNCIÓN DERIVADA CAPÍTULO LA FUNCIÓN DERIVADA. LA DERIVADA En el fascículo anerior uilizase el concepo de la razón de cambio a ravés de problemas o siuaciones de la vida real e ilusrase gráficamene 0 o, dando una inerpreación

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

'( t ) 6cos(2 t ) i sec ( t ) j k ; r ( ) 3 2

'( t ) 6cos(2 t ) i sec ( t ) j k ; r ( ) 3 2 INSTITUTO POLITÉNIO NAIONAL ESIME ZAATENO I. E., I.. A., I.S.A. AADEMIA DE MATEMÁTIAS GUIA E.T.S. DE ÁLULO VETOIAL FUNIONES VETOIALES DE UN ESALA () Deermine las ecuaciones paraméricas de la reca angene

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 217

10Soluciones a los ejercicios y problemas PÁGINA 217 PÁGIN 217 Pág 1 P RCTIC 1 a) Represena en papel cuadriculado la figura H 1 obenida a parir de H mediane la raslación del vecor 1 (3, 2) b) Dibuja la figura H 2 ransformada de H 1 mediane la raslación 2

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

CINEMÁTICA: MRU. 2. Un móvil recorre 98 km en 2 h, calcular: a) Su velocidad. b) Cuántos kilómetros recorrerá en 3 h con la misma velocidad?.

CINEMÁTICA: MRU. 2. Un móvil recorre 98 km en 2 h, calcular: a) Su velocidad. b) Cuántos kilómetros recorrerá en 3 h con la misma velocidad?. CINEMÁTICA: MRU 1. Pasar de unidades las siguienes velocidades: a) de 36 km/ a m/s. b) de 10 m/s a km/. c) de 30 km/min a cm/s. d) de 50 m/min a km/. 2. Un móvil recorre 98 km en 2, calcular: a) Su velocidad.

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2010 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2010 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos ES CSTELR DJOZ Menguiano PRUE DE CCESO (LOGSE) UNVERSDD DE LERES JUNO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTCS Tiepo áio: horas inuos Conese de anera clara raonada una de las dos opciones propuesas

Más detalles

Guía de Ejercicios 1 Modulaciones Analógicas - Espacio de Señales - Modulaciones Digitales

Guía de Ejercicios 1 Modulaciones Analógicas - Espacio de Señales - Modulaciones Digitales 66.78 Comunicaciones Digiales y Analógicas Marzo, 3 Guía de Ejercicios Modulaciones Analógicas - Espacio de Señales - Modulaciones Digiales. Modulaciones Analógicas Ejercicio - AM-PS Una señal de AM con

Más detalles

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO # 1: CINEMÁTICA RECTILÍNEA-SOLUCIÓN DE LAS ECUACIONES DIFERENCIALES- Diego Luis Arisizábal R.,

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles