Integración numérica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integración numérica"

Transcripción

1 Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona)

2 Índice Motivación y objetivos Cuadratura numérica Planteamiento general Clasificación Orden de convergencia Cuadraturas de Newton-Cotes Cuadraturas de Gauss Cuadraturas mixtas Cuadraturas compuestas INTEGRACIÓN NUMÉRICA 2

3 Objetivo: calcular/aproximar el valor de la integral Motivación Limitaciones de la integración analítica: la expresión analítica de f(x) no es conocida: datos experimentales o función evaluable sólo de forma discreta, f(x) con expresión analítica pero con integral analítica complicada o desconocida. INTEGRACIÓN NUMÉRICA 3

4 Objetivos Entender cómo se aproxima una integral mediante una cuadratura numérica Entender qué es el orden de una cuadratura y ser capaz de calcularlo Aprender a utilizar las cuadraturas de Gauss y las de Newton-Cotes, y saber cuando se pueden utilizar unas u otras Ser capaz de utilizar cuadraturas compuestas INTEGRACIÓN NUMÉRICA 4

5 Cuadratura numérica error pesos puntos INTEGRACIÓN NUMÉRICA 5

6 1. Aproximar f por un polinomio Planteamiento general 2. Integrar (con interpolación de Lagrange) INTEGRACIÓN NUMÉRICA 6

7 Clasificación Según los puntos de integración: Newton-Cotes: puntos arbitrarios (datos experimentales ) generalmente puntos equiespaciados sólo hay que determinar los pesos y el error Gauss: puntos óptimos (hábilmente elegidos) f se puede evaluar donde se desee se eligen los puntos para que la cuadratura sea lo mejor posible y, después, se calculan y Mixtas (Radau, Lobatto): algunos puntos son predeterminados y el resto a elegir INTEGRACIÓN NUMÉRICA 7

8 Según los extremos: cuadraturas cerradas cuadraturas abiertas INTEGRACIÓN NUMÉRICA 8

9 Orden de una cuadratura Definición: se dice que una cuadratura es de orden q si integra exactamente polinomios de grado q Si la cuadratura se obtiene integrando el polinomio interpolador (con n+1 puntos), entonces la cuadratura es de orden n, o superior. Si el error es de la forma entonces la cuadratura es de orden q INTEGRACIÓN NUMÉRICA 9

10 Cuadraturas de Newton-Cotes INTEGRACIÓN NUMÉRICA 10

11 Fórmulas cerradas de Newton-Cotes Puntos arbitrarios Sólo hay que calcular los pesos y el error Cuadraturas tabuladas para puntos equiespaciados. INTEGRACIÓN NUMÉRICA 11

12 Cambio de variable Los puntos de integración α=0,1,,n Polinomios y resto de Lagrange corresponden a INTEGRACIÓN NUMÉRICA 12

13 Cuadraturas cerradas de Newton-Cotes con puntos equiespaciados Pesos de integración Error INTEGRACIÓN NUMÉRICA 13

14 Fórmula del trapecio (n=1) INTEGRACIÓN NUMÉRICA 14

15 Fórmula del trapecio (n=1) teorema del valor medio integral INTEGRACIÓN NUMÉRICA 15

16 Fórmula de Simpson (n=2) INTEGRACIÓN NUMÉRICA 16

17 Fórmula de Simpson (n=2) n=2 par orden 3 (mayor de lo esperado) INTEGRACIÓN NUMÉRICA 17

18 Error de las cuadraturas cerradas de Newton-Cotes Si n es impar (orden n) Si n es par (orden n+1) Demostración en Ralston & Rabinowitz, A first course in numerical analysis, McGraw-Hill, 2ª edición, 1978 INTEGRACIÓN NUMÉRICA 18

19 OBSERVACIÓN: si se considera un punto más x 3 (fuera del intervalo [a,b]) El polinomio interpolador con 4 puntos es 3ª diferencia de Newton INTEGRACIÓN NUMÉRICA 19

20 Integrando Utilizamos el residuo de Lagrange de p 3 (x) para calcular el error de Simpson orden 3 (mayor de lo esperado) (pasa siempre que n es par) INTEGRACIÓN NUMÉRICA 20

21 Fórmulas cerradas de Newton-Cotes (Trapecio) (Simpson) (2ª Simpson) INTEGRACIÓN NUMÉRICA 21

22 Fórmulas abiertas de Newton-Cotes La misma idea con x 0 = a+h y x n = b-h INTEGRACIÓN NUMÉRICA 22

23 INTEGRACIÓN NUMÉRICA 23

24 Cuadraturas compuestas INTEGRACIÓN NUMÉRICA 24

25 Idea Se divide el intervalo [a,b] en m subintervalos y se aplica una cuadratura numérica (de Newton-Cotes, de Gauss, ) con n+1 puntos en cada subintervalo. I 1 I m INTEGRACIÓN NUMÉRICA 25

26 Ejemplo: fórmula compuesta del trapecio En cada uno de los m subintervalos se utiliza la fórmula del trapecio (n=1). m=4, n=1 I 1 I 2 I 3 I 4 INTEGRACIÓN NUMÉRICA 26

27 Es decir, con INTEGRACIÓN NUMÉRICA 27

28 Si los puntos son equiespaciados, con distancia, la fórmula se escribe como donde el error es o, equivalentemente, m 0 (si f 2) está acotada) INTEGRACIÓN NUMÉRICA 28

29 Ejemplo: fórmula compuesta de Simpson En cada uno de los m subintervalos se utiliza la fórmula de Simpson (n=2). m=2, n=2 I 1 I 2 INTEGRACIÓN NUMÉRICA 29

30 Es decir, Si los puntos son equiespaciados, con INTEGRACIÓN NUMÉRICA 30

31 El error es o, equivalentemente, Como en cualquier fórmula compuesta, el error tiende a cero cuando se aumenta el número de puntos: (si f 4) está acotada) INTEGRACIÓN NUMÉRICA 31

32 Cuadraturas de Gauss INTEGRACIÓN NUMÉRICA 32

33 Cuadraturas de Gauss Newton-Cotes: Predetermined (equally spaced) integration points {x 0, x n } n+1 d.o.f (w i ) à order n (Special case: for even n order n+1) Gauss quadrature: we must ask Can we chose the integration points {x 0, x n } to have a higher order? 2n+2 d.o.f (w i, x i )à order 2n+1? What order can be reached? INTEGRACIÓN NUMÉRICA 33

34 Points and weights of the quadrature can be calculated by imposing the Gauss quadrature to verify b " a n! i=0 p(z)dz = w i p(z i ) for (nonlinear system with 2n+2 unknowns and 2n+2 equations) Quadrature has order 2n+1 a, b INTEGRACIÓN NUMÉRICA 34

35 Exercises: 1) Requiring exact integration for p 0 (x) =1, p 1 (x) =x, find the weights and Gauss points of this quadrature: [n=0, order 1] 2) Requiring exact integration for p 0 (x) =1, p 1 (x) =x, p 2 (x) =x2, p 3 (x) =x3 find the weights and Gauss points of the above quadrature in this case. [n=1, order 3] INTEGRACIÓN NUMÉRICA 35

36 Consideramos integrales de la forma Cuadraturas de Gauss más general ω(z) estrictamente positiva en [a,b] (salvo en un conjunto de medida nula) Interpolación polinómica con n+1 puntos {z 0, z n } L i (z): polinomios de Lagrange INTEGRACIÓN NUMÉRICA 36

37 Integrando se obtiene la cuadratura y el error INTEGRACIÓN NUMÉRICA 37

38 Newton-Cotes: Puntos de integración {z 0, z n } arbitrarios (equiespaciados) Se calculan los pesos w i para que la cuadratura sea de orden n (generalmente): n+1 condiciones para n+1 parámetros Caso especial: para n par orden n+1 Cuadraturas de Gauss: nos preguntamos podemos elegir los puntos de integración {z 0, z n } para tener mayor orden? qué orden se puede alcanzar? Se eligen los puntos de integración para que se integren exactamente polinomios de grado 2n+1 INTEGRACIÓN NUMÉRICA 38

39 Obtención de la cuadratura Consideramos un polinomio de grado 2n+1 En este caso, y el residuo de Lagrange se expresa como con INTEGRACIÓN NUMÉRICA 39

40 Es decir, el error se escribe como Considerando el producto escalar el error de integración para se expresa como INTEGRACIÓN NUMÉRICA 40

41 Familia de polinomios ortogonales Se considera una familia de polinomios tal que (1) (2) (ortogonales) Propiedades: Q k tiene k raíces simples reales en ]z a, z b [ ortogonalidad INTEGRACIÓN NUMÉRICA 41

42 Por lo tanto, si entonces el error de integración para es tal como queríamos. Los puntos de integración de la cuadratura de Gauss son los ceros del polinomio Q n+1 INTEGRACIÓN NUMÉRICA 42

43 Resumen Producto escalar Polinomios ortogonales (generalmente familias de polinomios ortogonales conocidas): Q n+1 tal que Puntos de integración: ceros de Pesos de integración: INTEGRACIÓN NUMÉRICA 43

44 Observaciones La cuadratura es de orden 2n+1 Los puntos y los pesos de la cuadratura también se pueden calcular imponiendo que la cuadratura de Gauss es exacta para (sistema no lineal con 2n+2 incógnitas y 2n+2 ecuaciones) INTEGRACIÓN NUMÉRICA 44

45 También se pueden deducir utilizando interpolación de Hermite con n+1 puntos {z 0, z n } Los puntos {z 0, z n } se eligen para que Aproximación (i=0,,n) INTEGRACIÓN NUMÉRICA 45

46 Cuadraturas de Gauss-Legendre: Cuadraturas de Gauss-Laguerre: INTEGRACIÓN NUMÉRICA 46

47 Cuadraturas de Gauss-Hermite: Cuadraturas de Gauss-Chebyshev: Los puntos y los pesos están tabulados INTEGRACIÓN NUMÉRICA 47

48 Gauss-Legendre n=0 (orden 1) n=1 (orden 3) n=2 (orden 5) INTEGRACIÓN NUMÉRICA 48

49 Cuadratura de Gauss-Legendre INTEGRACIÓN NUMÉRICA 49

50 INTEGRACIÓN NUMÉRICA 50

51 Ejemplo de aplicación: Gauss-Legendre Con el cambio de variable de [-1,1] a [a,b] se escribe la integral como INTEGRACIÓN NUMÉRICA 51

52 Aplicando la cuadratura de Gauss-Legendre o, utilizando la definición de f(z), El error es INTEGRACIÓN NUMÉRICA 52

53 Gauss-Hermite n=0 (orden 1) n=1 (orden 3) n=2 (orden 5) INTEGRACIÓN NUMÉRICA 53

54 Gauss-Laguerre n=0 (orden 1) n=1 (orden 3) n=2 (orden 5) INTEGRACIÓN NUMÉRICA 54

55 Gauss-Chebyshev n=0 (orden 1) n=1 (orden 3) n=2 (orden 5) INTEGRACIÓN NUMÉRICA 55

56 Ejemplo de aplicación: Gauss-Laguerre Aplicando el cambio Aplicando la cuadratura INTEGRACIÓN NUMÉRICA 56

57 Cuadraturas mixtas INTEGRACIÓN NUMÉRICA 57

58 Cuadraturas de Lobatto 2 puntos de integración prefijados: El resto de puntos de integración {z 1, z 2,, z n-1 } se eligen para que la cuadratura sea de orden 2n-1 Pesos de integración: INTEGRACIÓN NUMÉRICA 58

59 El error es con Si INTEGRACIÓN NUMÉRICA 59

60 Se considera el producto escalar Para el error es Considerando ({z 1, z 2,, z n-1 } son los ceros del polinomio de grado n-1 de la familia de polinomios ortogonales con <, >) se consigue para (orden 2n-1) INTEGRACIÓN NUMÉRICA 60

61 Producto escalar Resumen cuadraturas de Lobatto Polinomios ortogonales: Q n-1 tal que Puntos de integración: z 0 =-1, z n =1 y {z 1, z 2,, z n-1 } son los ceros del polinomio Q n-1 Pesos de integración: Orden 2n-1 INTEGRACIÓN NUMÉRICA 61

62 Lobatto n=2 (orden 3) n=3 (orden 5) INTEGRACIÓN NUMÉRICA 62

63 Cuadraturas de Radau Producto escalar Polinomios ortogonales: Q n tal que Puntos de integración: z 0 =-1 y {z 1, z 2,, z n-1, z n } son los ceros del polinomio Q n Pesos de integración: Orden 2n INTEGRACIÓN NUMÉRICA 63

64 Radau n=1 (orden 2) n=2 (orden 4) INTEGRACIÓN NUMÉRICA 64

65 Convergencia INTEGRACIÓN NUMÉRICA 65

66 Ejemplo Newton-Cotes Gauss-Legendre Compuesta Trapecio Compuesta Simpson Compuesta Gauss-Legendre n=1 Compuesta Gauss-Legendre n=2 INTEGRACIÓN NUMÉRICA 66

67 Newton-Cotes: Gauss-Legendre: Compuesta del trapecio: Compuesta de Simpson: Compuesta de Gauss-Legendre: INTEGRACIÓN NUMÉRICA 67

68 Ejemplo Newton-Cotes Gauss-Legendre Compuesta Trapecio Compuesta Simpson Compuesta Gauss-Legendre n=1 Compuesta Gauss-Legendre n=2 INTEGRACIÓN NUMÉRICA 68

69 Convergencia NO tiene asegurada la convergencia: Fórmulas simples de Newton-Cotes para puntos equiespaciados (aumentando n) SI tiene convergencia asegurada: Cuadraturas simples de Gauss (aumentando n) Cuadraturas compuestas (aumentando m) INTEGRACIÓN NUMÉRICA 69

70 Double integration Consider the double integral The integration domain is represented y a set or points (grid) having coordinates (x i,j, y i,j ) where 0 i n and 0 j m. Numerical double integration can be applied by analogy with analytical double integration, i.e. first integrate with respect to x, then integrate with respect to y. Exercise: Compute the double integral using the optimum number of Gauss points in order to obtain the exact result. INTEGRACIÓN NUMÉRICA 70

71 FIN Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona)

72 Interpolación de Lagrange Polinomios de Lagrange Residuo de Lagrange INTEGRACIÓN NUMÉRICA 72

73 Interpolación de Hermite Polinomios de Hermite Residuo INTEGRACIÓN NUMÉRICA 73

74 INTEGRACIÓN NUMÉRICA 74

75 INTEGRACIÓN NUMÉRICA 75

76 INTEGRACIÓN NUMÉRICA 76

Integración numérica

Integración numérica Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura

Más detalles

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc. Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura

Más detalles

Aproximación funcional. Introducción

Aproximación funcional. Introducción Aproximación funcional. Introducción Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Objetivos Entender

Más detalles

Aproximación funcional por mínimos cuadrados

Aproximación funcional por mínimos cuadrados Aproximación funcional por mínimos cuadrados Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Introducción

Más detalles

Integración numérica

Integración numérica Integración numérica Javier Segura Cálculo Numérico I. Tema 4. Javier Segura (Universidad de Cantabria) Integración numérica CNI 1 / 21 Introducción y definiciones Estructura de la presentación: 1 Introducción

Más detalles

El objetivo de esta sección es aproximar la integral definida de una función ƒ(x) en un intervalo [a, b] es

El objetivo de esta sección es aproximar la integral definida de una función ƒ(x) en un intervalo [a, b] es INTEGRACIÓN NUMÉRICA El objetivo de esta sección es aproximar la integral definida de una función ƒ(x) en un intervalo [a, b] es decir Los métodos de integración numérica se usan cuando ƒ(x) es difícil

Más detalles

Cuadratura de Newton-Cotes

Cuadratura de Newton-Cotes Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION

Más detalles

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain)

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) Ceros de funciones Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es Índice Objetivos Esquemas iterativos

Más detalles

Cuadratura Numérica. Javier Segura. J. Javier Segura Cuadratura Numérica

Cuadratura Numérica. Javier Segura. J. Javier Segura Cuadratura Numérica Cuadratura Numérica Javier Segura Tema: Integración numérica. Contenidos Fórmulas de Newton-Cotes: Error en las fórmulas de Newton-Cotes. Fórmulas compuestas de Newton-Cotes. Error; Evaluación recurrente.

Más detalles

Métodos Numéricos. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Métodos Numéricos. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Métodos Numéricos Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Integración numérica Integración numérica Objetivo: aproximar el valor de la integral I = f (x)dx Limitaciones de la integración analítica

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

Interpolación seccional: SPLINES

Interpolación seccional: SPLINES Motivación: problemas en aproximación funcional. Interpolación polinómica oscilaciones para número elevado de datos Interpolación seccional: SPLINES.5 8 6 4 Laboratori de Càlcul Numèric (LaCàN) Departament

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas. Curso 0/0. 0 de Junio de 0 Apellidos:... Nombre:... Examen. Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas, buscando un contraejemplo

Más detalles

Interpolación seccional: SPLINES

Interpolación seccional: SPLINES Interpolación seccional: SPLINES Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es Motivación: problemas en

Más detalles

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /

Más detalles

Tema 4. Obtener una solución aproximada de la integral definida de una función, a b f(x)dx :

Tema 4. Obtener una solución aproximada de la integral definida de una función, a b f(x)dx : Tema 4. Obtener una solución aproximada de la integral definida de una función, a b f(x)dx : Objetivos:. Obtener unos pesos W k independientes de la función f(x) tales que sumando su producto por los correspondientes

Más detalles

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA. IEM APLICACIONES COMPUTACIONALES

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA. IEM APLICACIONES COMPUTACIONALES APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA MOTIVACIÓN REPRESENTACIÓN GRÁFICA DE UNA DERIVADA Aproximación Definición MOTIVACIÓN REPRESENTACIÓN GRÁFICA DE UNA INTEGRAL

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 13

Análisis Numérico para Ingeniería. Clase Nro. 13 Análisis Numérico para Ingeniería Clase Nro. 13 Aproximación de Funciones Temas a tratar: Métodos de Newton-Cotes. Método de los Trapecios. Método de 1/3 de Simpson. Método de 3/8 de Simpson. Método de

Más detalles

Integración Numérica. Hermes Pantoja Carhuavilca. Métodos Computacionales. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integración Numérica. Hermes Pantoja Carhuavilca. Métodos Computacionales. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integración Numérica Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Hermes Pantoja Carhuavilca 1 de 64 CONTENIDO Introducción

Más detalles

Integración Numérica

Integración Numérica Integración Numérica Contenido Integración Numérica Método de Coeficientes Indeterminado Método de Curvatura de Newton-Cotes Método de Romberg Integración Numérica Los métodos numéricos utilizados para

Más detalles

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x)

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x) Introducción al método de los elementos finitos Métodos Numéricos 2 Laboratori de Càlcul Numèric (LaCàN) Dep. de Matemàtica Aplicada III Universitat Politècnica de Catalunya www-lacan.upc.es Ventajas del

Más detalles

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Interpolación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Contenidos 1 Introducción 2 Interpolación de Taylor Cálculo del polinomio

Más detalles

METODOS NUMERICOS. Curso

METODOS NUMERICOS. Curso Boletín 1 de prácticas. 1. Localizar las raíces de la ecuación F (x) = 0, para los siguientes casos: (a) F (x) = x + e x. (b) F (x) = 0.5 x + 0.2 sen(x). (c) F (x) = x tg(x). (d) F (x) = x 5 3. (e) F (x)

Más detalles

5. Derivación e integración numérica

5. Derivación e integración numérica 5. Derivación e integración numérica 5.. Ejercicios Ejercicio 5. Calcular usando la fórmula del punto medio: la integral: b a ( ) f(x)dx a+b = (b a)f xdx Calcular la integral y dar el error. Dibujar el

Más detalles

La interpolación polinomial en el análisis de métodos iterativos

La interpolación polinomial en el análisis de métodos iterativos Notas La interpolación polinomial en el análisis de métodos iterativos Resumen La solución de ecuaciones no lineales es de extrema importancia en la ingeniería y ciencias. Los métodos que se estudian para

Más detalles

1. Interpolación e Integración Numérica

1. Interpolación e Integración Numérica 1. Interpolación e Integración Numérica 1.1. Interpolación Dados n + 1 puntos en el plano: (x 0, y 0 ), (x 1, y 1 ),... (x n+1, y n+1 ) con x i x j si i j; existe un único polinomio de grado n, p n (x)

Más detalles

APÉNDICE A ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMATICAS INGENIERIA EN ESTADISTICA E INFORMATICA

APÉNDICE A ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMATICAS INGENIERIA EN ESTADISTICA E INFORMATICA APÉNDICE A ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMATICAS INGENIERIA EN ESTADISTICA E INFORMATICA Nivel de Conocimientos en Estadística de los estudiantes de Ingeniería de la

Más detalles

TEMA 6: DERIVACION NUMERICA

TEMA 6: DERIVACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 6: DERIVACION NUMERICA 1 INTRODUCCION En este tema nos ocupamos de aproximar las derivadas de orden arbitrario ν en un punto cualquier α de una función

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 13

Análisis Numérico para Ingeniería. Clase Nro. 13 Análisis Numérico para Ingeniería Clase Nro. 13 Aproximación de Funciones Temas a tratar: Métodos de Newton-Cotes. Método de los Trapecios. Método de 1/3 de Simpson. Método de 3/8 de Simpson. Método de

Más detalles

Métodos numéricos para Ecuaciones Diferenciales Ordinarias. Laboratori de Càlcul Numèric (LaCàN) www-lacan.upc.es

Métodos numéricos para Ecuaciones Diferenciales Ordinarias. Laboratori de Càlcul Numèric (LaCàN) www-lacan.upc.es Métodos numéricos para Ecuaciones Diferenciales Ordinarias Laboratori de Càlcul Numèric (LaCàN) www-lacan.upc.es Ecuación Diferencial Ordinaria (EDO) n Gran cantidad de problemas de la física y la ingeniería

Más detalles

III. OBJETIVOS Y COMPETENCIAS A ADQUIRIR EN LA ASIGNATURA

III. OBJETIVOS Y COMPETENCIAS A ADQUIRIR EN LA ASIGNATURA I. DATOS IDENTIFICATIVOS DE LA ASIGNATURA Asignatura Métodos Numéricos http://aulavirtual.unican.es Código 3510 Departamento Matemáticas, Estadística y Computación Área Análisis Matemático Tipo Troncal

Más detalles

Integración numérica MAT 1105 F EJERCICIOS RESUELTOS. 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas:

Integración numérica MAT 1105 F EJERCICIOS RESUELTOS. 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas: MAT 1105 F Integración numérica EJERCICIOS RESUELTOS 1 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas: Donde: 4 2 Ecuación lineal Luego, Área del trapecio -1-1

Más detalles

CEROS DE FUNCIONES. Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya (UPC)

CEROS DE FUNCIONES. Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya (UPC) CEROS DE FUNCIONES Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya (UPC) http://www-lacan.upc.edu Diseño de un colector solar Diseño óptimo de un colector solar plano para obtener

Más detalles

Fórmulas de cuadratura positivas en la circunferencia unidad con nodos prefijados

Fórmulas de cuadratura positivas en la circunferencia unidad con nodos prefijados Fórmulas de cuadratura positivas en la circunferencia unidad con nodos prefijados Francisco José Perdomo Pío Departamento de Análisis Matemático, Universidad de La Laguna Preprint: Positive quadrature

Más detalles

Cuadratura gaussiana. Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias

Cuadratura gaussiana. Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias Análisis Numérico 2018 2 Universidad Nacional Autónoma de México Facultad de Ciencias Contenido 1 2 Introducción Las fórmulas de Newton-Cotes se dedujeron integrando los polinomios de interpolación. El

Más detalles

Interpolación. Javier Segura. February 12, 2012

Interpolación. Javier Segura. February 12, 2012 February 12, 2012 polinómica Para cualquier conjunto de n + 1 (n 0) números distintos x 0, x 1,..., x n y cualquier conjunto de números arbitrarios y 0, y 1,..., y n, existe un único polinomio P n (x)

Más detalles

Interpolación. Javier Segura. Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29

Interpolación. Javier Segura. Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29 Interpolación Javier Segura Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29 Contenidos: 1 Interpolación de Lagrange Forma de Lagrange Teorema del resto Diferencias

Más detalles

Métodos Numéricos CÓDIGO: Teórico - Práctico. Agosto 5 de 2018.

Métodos Numéricos CÓDIGO: Teórico - Práctico. Agosto 5 de 2018. Página 1 de 4 FACULTAD: CIENCIAS BASICAS PROGRAMA: _FISICA DEPARTAMENTO DE: FISICA Y GEOLOGIA CURSO: ÁREA: Métodos Numéricos CÓDIGO: 157103 Profundización REQUISITOS: 167003 CORREQUISITO: -------------

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas y doble grado Física/Matemáticas. 16 de junio de 017 Curso 016/017. Apellidos:... Nombre:... Examen 1. Explicar razonadamente si las siguientes afirmaciones son

Más detalles

Métodos Numéricos: Solución de los ejercicios Tema 3: Integración Numérica

Métodos Numéricos: Solución de los ejercicios Tema 3: Integración Numérica Métodos Numéricos: Solución de los ejercicios Tema : Integración Numérica Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 8, versión.4

Más detalles

Los datos necesarios para calcular la interpolación los obtenemos del enunciado del problema y son los siguientes: Ahora sustituimos:

Los datos necesarios para calcular la interpolación los obtenemos del enunciado del problema y son los siguientes: Ahora sustituimos: Problemas Sesión :INTERPOLACIÓN ) Calcula el polinomio que interpola los puntos (-,), (,), (,) y (,-) en las formas de Lagrange y diferencias divididas. Solución La expresión para el polinomio interpolador

Más detalles

Curso Hoja 1. Análisis de errores

Curso Hoja 1. Análisis de errores Hoja 1. Análisis de errores 1 Teniendo en cuenta que MATLAB trabaja en doble precisión, calcular el número máquina inmediatamente anterior a 1 y comprobar que dista 2 53 de 1. 2 Calcular 1 2 52, 1 2 53,

Más detalles

Cálculo Numérico III Curso 2010/11

Cálculo Numérico III Curso 2010/11 Cálculo Numérico III Curso 2010/11 Problemas del Tema 1 1. Sean {x 0, x 1,..., x n } IR con x i x j si i j. Hoja de problemas - Parte I a) Hallar el polinomio de grado n que interpola a la función en los

Más detalles

Interpolación. Dan Casas

Interpolación. Dan Casas Interpolación Dan Casas 1 Motivación 2 Motivación 2 Motivación 2 Motivación 3 Interpolación 1. Introducción La mayor parte de los procesos relacionados con la Animación se basan en la Interpolación. 4

Más detalles

CN - Cálculo Numérico

CN - Cálculo Numérico Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 200 - FME - Facultad de Matemáticas y Estadística 749 - MAT - Departamento de Matemáticas 751 - ECA - Departamento de Ingeniería

Más detalles

ANÁLISIS NUMÉRICO. 4 horas a la semana 8 créditos Cuarto semestre

ANÁLISIS NUMÉRICO. 4 horas a la semana 8 créditos Cuarto semestre ANÁLISIS NUMÉRICO 4 horas a la semana 8 créditos Cuarto semestre Objetivo del curso: El estudiante deducirá y utilizará métodos numéricos para obtener soluciones aproximadas de modelos matemáticos que

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental

Más detalles

Interpolación. Dan Casas

Interpolación. Dan Casas Interpolación Dan Casas 1 Motivación 2 Motivación 3 Motivación 4 Interpolación 1. Introducción La mayor parte de los procesos relacionados con la Animación se basan en la Interpolación. Qué necesitamos?

Más detalles

Los datos necesarios para calcular la interpolación los obtenemos del enunciado del problema y son los siguientes: Ahora sustituimos:

Los datos necesarios para calcular la interpolación los obtenemos del enunciado del problema y son los siguientes: Ahora sustituimos: Problemas Sesión :INTERPOLACIÓN ) Calcula el polinomio que interpola los puntos (-,), (,), (,) y (,-) en las formas de Lagrange y diferencias divididas. Solución La expresión para el polinomio interpolador

Más detalles

1.1) Escribir la solución de elementos nitos del problema. en (0, 1) u (0) = u (1) = 0. con el valor estimado por la fórmula del error.

1.1) Escribir la solución de elementos nitos del problema. en (0, 1) u (0) = u (1) = 0. con el valor estimado por la fórmula del error. Examen Extraordinario de Métodos Matemáticos de la Especialidad (Técnicas Energéticas). 7 de Junio de 16 1.1) Escribir la solución de elementos nitos del problema d u + du + u f en (, 1) u () u (1). (1)

Más detalles

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008 UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas Matemáticas Manuel Fernández García-Hierro Badajoz, Febrero 2008 Capítulo X Integración numérica Introducción La integral definida I(f) = b a f(x)

Más detalles

Interpolación de la función módulo mediante polinomios de Lagrange

Interpolación de la función módulo mediante polinomios de Lagrange Interpolación de la función módulo mediante polinomios de Lagrange Pauline Morrison Fell 02 de mayo de 2006. Introducción Interpolación es el método mediante el cual se puede llegar a estimar un valor

Más detalles

Problemas. Hoja 1. Escriba el algoritmo para N = 4 y calcule el número de operaciones que realiza.

Problemas. Hoja 1. Escriba el algoritmo para N = 4 y calcule el número de operaciones que realiza. Dpto. de Matemáticas. CÁLCULO NUMÉRICO. Curso 12/13 Problemas. Hoja 1 Problema 1. El método o algoritmo de Horner para evaluar en x 0 el polinomio P (x) = a 0 + a 1 x + + a N x N consiste formalmente en

Más detalles

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos

Más detalles

Capítulo 3. Polinomios

Capítulo 3. Polinomios Capítulo 3 Polinomios 29 30 Polinomios de variable real 31 Polinomios de variable real 311 Evaluación de polinomios Para el cálculo eficiente de los valores de un polinomio se utiliza el algoritmo de Horner,

Más detalles

INGENIERIA MATEMATICA PROGRAMAS DE ESTUDIO DEL CUARTO SEMESTRE METODOS NUMERICOS II

INGENIERIA MATEMATICA PROGRAMAS DE ESTUDIO DEL CUARTO SEMESTRE METODOS NUMERICOS II INGENIERIA MATEMATICA PROGRAMAS DE ESTUDIO DEL CUARTO SEMESTRE METODOS NUMERICOS II INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES ESCUELA: Escuela Superior de

Más detalles

INTERPOLACIÓN POLINÓMICA POR TRAMOS: Planteamiento

INTERPOLACIÓN POLINÓMICA POR TRAMOS: Planteamiento INTERPOLACIÓN POLINÓMICA POR TRAMOS: Planteamiento Prof. Arturo Hidalgo LópezL Prof. Alfredo López L Benito Prof. Carlos Conde LázaroL Marzo, 2007 1 OBJETIVOS 1º. Justificar la necesidad de interpolar

Más detalles

Tema 5. Interpolación

Tema 5. Interpolación E.T.S. de Ingenieros de Telecomunicación Universidad de Vigo Plan Introducción Introducción Motivación Formulación 2 3 Interpolación spline Motivación Formulación Introducción Motivación Formulación 2

Más detalles

FORMATO DE CONTENIDO DE CURSO PLANEACIÓN DEL CONTENIDO DE CURSO

FORMATO DE CONTENIDO DE CURSO PLANEACIÓN DEL CONTENIDO DE CURSO FACULTAD DE: CIENCIAS DE LA EDUCACIÓN PROGRAMA DE: LICENCIATURA EN MATEMÁTICAS 1. IDENTIFICACIÓN DEL CURSO PLANEACIÓN DEL CONTENIDO DE CURSO NOMBRE : ANÁLISIS NUMÉRICO CÓDIGO : 22145 SEMESTRE : SÉPTIMO

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUMÉRICO (58) Tema 5. Diferenciación e Integración Numérica Enero 5. Utilice la fórmula para calcular la derivada de f(x) = cos(x) en utilizar la fórmula. f(x + ) f(x) f'(x) x = y con =.. Estime

Más detalles

PROGRAMA DE LA ASIGNATURA Curso académico 2010/2011

PROGRAMA DE LA ASIGNATURA Curso académico 2010/2011 PROGRAMA DE LA ASIGNATURA Curso académico 2010/2011 Identificación y características de la asignatura Denominación Ampliación de Cálculo Numérico Código 100130 Créditos (T+P) Titulación Centro 3T + 3P

Más detalles

GRADO EN INGENIERÍA MECÁNICA GRUPOS 2 y 3 MATEMÁTICAS I CUADERNO 2 DE PRÁCTICAS DE ORDENADOR CURSO 2013/14

GRADO EN INGENIERÍA MECÁNICA GRUPOS 2 y 3 MATEMÁTICAS I CUADERNO 2 DE PRÁCTICAS DE ORDENADOR CURSO 2013/14 DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA GRADO EN INGENIERÍA MECÁNICA GRUPOS 2 y 3 MATEMÁTICAS I CUADERNO 2 DE PRÁCTICAS DE ORDENADOR CURSO 2013/14 Profesores : Pedro Luis Gómez Sáncez José J.

Más detalles

Unidad IV: Diferenciación e integración numérica

Unidad IV: Diferenciación e integración numérica Unidad IV: Diferenciación e integración numérica 4.1 Diferenciación numérica El cálculo de la derivada de una función puede ser un proceso "difícil" ya sea por lo complicado de la definición analítica

Más detalles

Aproximación funcional por mínimos cuadrados

Aproximación funcional por mínimos cuadrados Aproximación funcional por mínimos cuadrados Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Introducción

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO NUMÉRICO Y EVOLUCIÓN HISTÓRICA

TEMA 1 INTRODUCCIÓN AL CÁLCULO NUMÉRICO Y EVOLUCIÓN HISTÓRICA É TEMA 1 INTRODUCCIÓN AL CÁLCULO NUMÉRICO Y EVOLUCIÓN HISTÓRICA Profesora : Ana Domingo Despacho: 422(4ª planta) Teléfono: 913366481 Email : ana.domingo.preciado@upm.es 1 1.1- Una posible definición? -Antigüedad

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN 97 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN Carrera: Programa de la Asignatura: COMPUTACIÓN II Clave: No. de créditos:

Más detalles

2.I Introducción a la interpolación y aproximación.

2.I Introducción a la interpolación y aproximación. 2.I Introducción a la interpolación y aproximación. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior - Universidad de Zaragoza Otoño 2001 Contents 1 Planteamiento general

Más detalles

Planteamiento General para Polinomios Ortogonales. 1. Producto interno genérico, norma y ortogonalidad

Planteamiento General para Polinomios Ortogonales. 1. Producto interno genérico, norma y ortogonalidad Semana 08/03/0 Polinomios Ortogonales Planteamiento General para Polinomios Ortogonales Hemos considerado un par de ejemplos de Polinomios Ortogonales En ambos podemos idenficar algunas características

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Aproximación de funciones Interpolación Int. Segm. Complementos de Matemáticas, ITT Telemática Tema 2. Departamento de Matemáticas, Universidad de Alcalá Aproximación de funciones Interpolación Int. Segm.

Más detalles

TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA

TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA 1. Números naturales, enteros y racionales. Principio de inducción. Divisibilidad y algoritmo

Más detalles

ANEXO I. Profesor Consulto (Titular Exclusivo Regular): Lic. Juan E. Macluf Profesor Ajunto Exclusivo: MSc. María Eva Ascheri

ANEXO I. Profesor Consulto (Titular Exclusivo Regular): Lic. Juan E. Macluf Profesor Ajunto Exclusivo: MSc. María Eva Ascheri 1 Corresponde al Anexo I de la Resolución Nº 33/03 ANEXO I DEPARTAMENTO: Matemática ASIGNATURA: Análisis Numérico II CARRERA - PLAN: Licenciatura en Matemática Plan 1986. CURSO: Quinto Año. RÉGIMEN: Cuatrimestral.

Más detalles

EJERCICIO COMPUTACIONAL N o 5. CUADRATURA Y DERIVACIÓN NUMÉRICAS

EJERCICIO COMPUTACIONAL N o 5. CUADRATURA Y DERIVACIÓN NUMÉRICAS EJERCICIO COMPUTACIONAL N o 5. CUADRATURA Y DERIVACIÓN NUMÉRICAS Ángel Durán Departamento de Matemática Aplicada Universidad de Valladolid 14 de mayo de 2011 Contenidos 1 Cuadratura numérica Técnicas elementales

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: MÉTODOS NUMÉRICOS FECHA DE ELABORACIÓN: FEBRERO 2005 ÁREA DEL PLAN DE ESTUDIOS: AS ( ) AC ( X

Más detalles

04 - Elementos de finitos de flexión de vigas. Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales

04 - Elementos de finitos de flexión de vigas. Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales 04 - Elementos de finitos de flexión de vigas Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales 1 Contenido Viga de Euler-Bernoulli Viga de Timoshenko Problema

Más detalles

1. El Teorema de Rolle Generalizado.

1. El Teorema de Rolle Generalizado. Proyecto III: Los Teoremas de Rolle y del valor Medio Objetivos: Profundizar el estudio de algunos teoremas del cálculo diferencial 1 El Teorema de Rolle Generalizado La formulación más común del Teorema

Más detalles

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas. Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente

Más detalles

Splines Cúbicos. t 0 < t 1 < < t n (1)

Splines Cúbicos. t 0 < t 1 < < t n (1) Splines Cúbicos Roberto J León Vásquez rleon@alumnosinfutfsmcl Jorge Constanzo jconstan@alumnosinfutfsmcl Valparaíso, 24 de octubre de 2006 1 Interpolación con Splines Una función spline está formada por

Más detalles

( 3) 2 ( ) : 1

( 3) 2 ( ) : 1 ( 3) 2 ( ) 201516 : 1 Método de Newton Se utiliza para resolver ecuaciones de una variable de la forma () =0 siendo una función derivable. Supongamos que tenemos una raíz de esta ecuación, es decir ()

Más detalles

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Septiembre

Más detalles

ANÁLISIS NUMÉRICO. 4 horas a la semana 6 créditos Cuarto semestre

ANÁLISIS NUMÉRICO. 4 horas a la semana 6 créditos Cuarto semestre ANÁLISIS NUMÉRICO 4 horas a la semana 6 créditos Cuarto semestre Objetivo del curso: El estudiante deducirá y utilizará métodos numéricos para obtener soluciones aproximadas de modelos matemáticos que

Más detalles

Fundamentos de la materia dentro del plan de estudios: Objetivos:

Fundamentos de la materia dentro del plan de estudios: Objetivos: ASIGNATURA: MATEMATICA SUPERIOR APLICADA CODIGO : 95-1198 DEPARTAMENTO: INGENIERIA QUIMICA Clase: Cuatrimestral BLOQUE: CIENCIAS BASICAS Horas Sem : 6 (seis) AREA: MATEMATICA Horas/año : 96 Fundamentos

Más detalles

Nombre de la Asignatura METODOS NUMERICOS PARA INGENIEROS INFORMACIÓN GENERAL Escuela. Departamento Unidad de Estudios Básicos

Nombre de la Asignatura METODOS NUMERICOS PARA INGENIEROS INFORMACIÓN GENERAL Escuela. Departamento Unidad de Estudios Básicos Código 0083813 Horas Semanales 04 Horas Teóricas 04 UNIVERSIDAD DE ORIENTE INFORMACIÓN GENERAL Escuela Departamento Unidad de Estudios Básicos Ciencias Pre-requisitos Introducción a la Programación y Matemáticas

Más detalles

Resolución numérica de ecuaciones no lineales

Resolución numérica de ecuaciones no lineales Resolución numérica de ecuaciones no lineales Son muchas las situaciones en las que se presenta el problema de obtener las soluciones de ecuaciones de la forma f(x) = 0. En algunos casos existe una fórmula

Más detalles

ETS Minas: Métodos matemáticos Guía de estudio: Tema 6 Integración numérica

ETS Minas: Métodos matemáticos Guía de estudio: Tema 6 Integración numérica ETS Minas: Métodos matemáticos Guía de estudio: Tema 6 Integración numérica Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre 2008, versión

Más detalles

VISUALIZACIÓN INTERACTIVO DEL MÉTODO GAUSS LEGENDRE DOS NODOS Y REGLA DE SIMPSON ADAPTATIVA. Oscar E. ARES, Fernando J.

VISUALIZACIÓN INTERACTIVO DEL MÉTODO GAUSS LEGENDRE DOS NODOS Y REGLA DE SIMPSON ADAPTATIVA. Oscar E. ARES, Fernando J. III REPEM Memorias Santa Rosa, La Pampa, Argentina, Agosto 00 CB 36 VISUALIZACIÓN INTERACTIVO DEL MÉTODO GAUSS LEGENDRE DOS NODOS Y REGLA DE SIMPSON ADAPTATIVA Oscar E. ARES, Fernando J. QUIROGA VILLEGAS

Más detalles

Clase No. 20: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 14

Clase No. 20: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 14 Clase No. 2: Integrales impropias MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 26.11.211 1 / 14 Integrandos con singularidades (I) Cuando el integrando o alguna de sus derivadas de bajo orden

Más detalles

TEMA 3 Aproximación de funciones: interpolación y ajuste

TEMA 3 Aproximación de funciones: interpolación y ajuste TEMA 3 Aproximación de funciones: interpolación y ajuste Chelo Ferreira González Isaac Newton (1643-1727) 1. Introducción. Modelos matemáticos 2. Métodos numéricos. Resolución de sistemas lineales y ecuaciones

Más detalles

METODOS DE SOLUCION DE SISTEMAS DE ECUACIONES

METODOS DE SOLUCION DE SISTEMAS DE ECUACIONES Jacobi El método de Jacobi es un proceso simple de iteraciones de punto fijo en la solución de raíces de una ecuación. La iteración de punto fijo tiene dos problemas fundamentales : Algunas veces no converge

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA 1. DATOS DE LA ASIGNATURA CARRERA CÓDIGO: MÉTODOS NUMÉRICOS PARA INGENIERÍA T: 4 E: 2 L: 0 REQUISITOS CIENCIAS BASICAS DICTA DEPARTAMENTO MATEMÁTICA AÑO-SEMESTRE-NIVEL CATEGORIA Obligatorio HORAS PRESENCIALES

Más detalles

3.4 El Teorema de Taylor. Extremos relativos

3.4 El Teorema de Taylor. Extremos relativos 3.4. EL TEOREMA DE TAYLOR. EXTREMOS RELATIVOS 103 3.4 El Teorema de Taylor. Extremos relativos La derivación está directamente relacionada con la posibilidad de aproximar localmente funciones suficientemente

Más detalles

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIAS

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIAS UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIAS PROGRAMA 2017 Asignatura: CÁLCULO NUMERICO Carrera: PROFESORADO EN MATEMÁTICA Responsable: Colabora: Ing. RICARDO

Más detalles

MÉTODOS NÚMERICOS SÍLABO

MÉTODOS NÚMERICOS SÍLABO MÉTODOS NÚMERICOS SÍLABO I. DATOS GENERALES CARRERA PROFESIONAL ASIGNATURA CÓDIGO DE ASIGNATURA PRE- REQUISITO N DE HORAS TOTALES N DE HORAS TEORÍA N DE HORAS PRÁCTICA N DE CRÉDITOS CICLO TIPO DE CURSO

Más detalles

Asignaturas antecedentes y subsecuentes Cálculo Diferencial, Cálculo Integral, Álgebra Lineal I, Cómputo Científico y Programación

Asignaturas antecedentes y subsecuentes Cálculo Diferencial, Cálculo Integral, Álgebra Lineal I, Cómputo Científico y Programación PROGRAMA DE ESTUDIOS ANÁLISIS NUMÉRICO I Área a la que pertenece: Área de Formación Integral Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0033 Asignaturas antecedentes y subsecuentes

Más detalles

Unidad 1: Fuentes y propagación de errores

Unidad 1: Fuentes y propagación de errores Unidad 1: Fuentes y propagación de errores 1.1 Qué es el Análisis Numérico. Fuentes de errores. Errores de redondeo y discretización. Propagación de errores. 1.2 Sistemas numéricos. Aritmética del computador.

Más detalles

03 - Elementos de finitos Lagrangianos para tensión/compresión axial

03 - Elementos de finitos Lagrangianos para tensión/compresión axial 03 - Elementos de finitos Lagrangianos para tensión/compresión axial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Polinomios de Lagrange 2 Funciones de

Más detalles

Interpolación. Esta función se denomina función interpolante. con. Dado un conjunto de datos. Queremos determinar una función.

Interpolación. Esta función se denomina función interpolante. con. Dado un conjunto de datos. Queremos determinar una función. Interpolación Dado un conjunto de datos con Queremos determinar una función tal que Esta función se denomina función interpolante Interpolación Usos de la Interpolación Graficar una curva suave a través

Más detalles

Carrera: Participantes Representantes de las academias de Ingeniería Civil de los Institutos Tecnológicos.

Carrera: Participantes Representantes de las academias de Ingeniería Civil de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Métodos Numéricos Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 2 2 6 2.- HISTORIA DEL PROGRAMA Lugar y fecha

Más detalles

Integración Numérica. Regla de Simpson.

Integración Numérica. Regla de Simpson. Integración Numérica. Regla de Simpson. MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Salvador Botello CIMAT A.C. e-mail: botello@cimat.mx Lo que ya se vió

Más detalles

DESCRIPCIÓN DE LA ASIGNATURA

DESCRIPCIÓN DE LA ASIGNATURA DESCRIPCIÓN DE LA ASIGNATURA ASIGNATURA: Nombre en Inglés: NUMERICAL METHODS IN MECHANICAL ENGINEERING Código UPM: 565000325 MATERIA: MÉTODOS NUMÉRICOS CRÉDITOS ECTS: 3 CARÁCTER: ITINERARIO IMPARTIDO EN

Más detalles