Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10"

Transcripción

1 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014) 2. Estudia y representa f ()= 5 Dom f() = R + - {5} Intersecciones con los ejes OX: y=0 f()=0 (0, 0) OY: =0 f(0)=0 (0, 0) Simetrías f() f (-) f() - f (-) Asíntotas A.V. lim 5 5 = 5 0 =? lim f ( )=+ 5 + lim f ( )= 5 A.H. lim 5 =0 y = 0 Cómo hay asíntota horizontal no hay asíntota oblicua. Máimos y mínimos. f ( )= f ' 2 2 ( 5) ( 5) ( )= = ( 5) 2 2 = ( 5) 2 ( 5) 2 2 ( 5) 2 = ( 5) 2 = 5 2 ( 5) 2

2 página 2/20 Igualo f () a cero para sacar los puntos críticos. 5 =0 ; 5=0 ; = ( 5) El valor = -5 no pertenece al dominio de la función, por lo que: (0,5) (5,+ ) f () f() decrece crece Concavidad y conveidad f ( )= 5 2 ( 5) 2 [ 2 ( 5) ] ( 5)[ ( +2 5)2 2( 5)] f ( )= [2 ( 5) 2 ] 2 [2 ( 5)] ( 5)[ ( 5) +4 ] f ' ' ()= = (2 ) 2 ( 5) 3 4 ( 5) ( 5) = =0 30 ± = Sólo tomamos el valores positivo de la solución porque evaluamos en los reales (+). (0, ) ( ,5) (5,+ ) f () f() U U

3 página 3/20

4 página 4/20 Hoja 2. Problema 4 Resuelto por Carmen Martín Rubio (enero 2015) 4. Estudia y representa f ( )= + 2 Dominio Todo R ecepto donde se anula el denominador o hay raíz de un número negativo. Es decir: D f = (0, ). Continuidad Función continua en todo su dominio. Puntos de corte con los ejes Eje X Para y=0 0= = + No corta eje de abscisas, ya que = 0 no pertenece al dominio de la función. Eje Y Para =0 no pertenece al dominio de la función no hay corte con eje OY Simetría No tiene. Asíntotas Asíntota vertical lim = 0 0 Dividimos todo por 2 el límite tiende a + No hacemos límite por 0 - porque la función no está definida para dicho valor. Hay asíntota vertical en =0 Asíntota horizontal lim + =0 2 Hay asíntota horizontal en y = 0. Asíntota oblicua No hay porque eiste asíntota horizontal. Crecimiento y decrecimiento. Máimos y mínimos Hallamos la primera derivada y la igualamos a 0 para hallar los puntos críticos. ( 1 f ( )= + 2 ) +1 2 ( ( + )2 1 f ' ( )= f ' ( )= 2 4 f ' ( ) = ( 2 + ) f ' ( ) = f ' ( ) = 2 ) +1 ( + )

5 página 5/20 f ' ( ) = Igualamos a 0 0= 2 3 0= ( 2 3 ) = 0 La función no está definida en ese punto. + 3 El valor positivo de una raíz no puede ser igual a un número negativo, por lo que 2 es un absurdo matemático. Por lo tanto, no tenemos puntos candidatos a etremos relativos. Si evaluamos la derivada en un punto cualquiera del dominio, por ejemplo = 10, comprobamos que es negativa, por lo que la función es decreciente en todo su dominio.

6 página 6/20 Hoja 2. Problema 5 Resuelto por María Moreno Lemos (enero 2015) 5. Estudia y representa f ()= 2 1 Dominio de f(): Todo que pertenece al intervalo (-,-1), (1, ) porque el radicando tiene que ser 0 Puntos de corte con los ejes: Eje OX: y = 0 2 1=0 = 0 no pertenece al intervalo. 2 1=0 Los puntos serían (-1,0) y (1,0) Eje OY: = 0 no pertenece al dominio de la función Asíntotas: Asíntota vertical: lim f ( )= = k k l i m( 2 1) no eiste porque no hay ningún numero para esta función que k haga al limite infinito. Asíntota horizontal: lim f ( )=k y = k 2 1 = lim Asíntota oblicua: y = m + n por tanto no eiste asíntota horizontal. m=lim f ( ) n=lim [ f ( ) m ] m=lim 2 1 oblicua. lim 2 1 = no eiste asíntota Etremos relativos, crecimiento y decrecimiento: f () = 0 f ' ()= =0 2 1 f ' ()= =0 2 2 =1 = ± 1 2 Estos puntos no pertenecen al dominio de f(): no eisten etremos relativos.

7 Para 1 cuando crece f() crece por lo tanto es creciente. Para 1 cuando decrece f() decrece por lo tanto es creciente. Puntos de infleión, concavidad y conveidad: f () = 0 f ' ' ()= ( 2 2 1) = f ' ' ()= ( 1) 2 1 =0 2 2 =3 =± 3 2 página 7/20 Para valores inferiores a 3 2 f ' ' ()>0 cóncava Para valores pertenecientes a ( 3, 1) f ' ' ()<0 convea 2 Para valores pertenecientes a (1, 3 ) f ' ' ()>0 cóncava 2 Para valores mayores a 3 2 f ' ' ()<0 convea Simetría: f() = -f(-) simétricaa respecto al origen (0,0)

8 página 8/20 Hoja 2. Problema 6 Resuelto por Sara Aparicio (enero 2015) 6. Estudia y representa f ( )= Dominio todo R (por ser polinómica) Puntos de corte: Eje OY f(0) = 0 (0,0) Eje OX =0 (0, 0), (0, 4/3) Signo de la función: (,0)>0 ( 0, 4 3 ) <0 ( 4, 3 ) >0 Simetría: No es simétrica No periódica Asíntotas: Verticales: No hay al estar definida en todo R y ser continua en todo su dominio Horizontales: No hay por ser polinómica diverge en el infinito Oblicua: lim f ( ) = lim = no hay asíntota oblícua Máimos y mínimos: f ' ( )= (,0) ( 0, 4 3 ) ( 4 3, ) f '() < 0 f '() < 0 f '() > 0 f() decreciente f() decreciente f() creciente

9 página 9/20 f(4/3) = 64/9 Hay un mínimo en el punto ( 4 3,64 9 ) Concavidad y conveidad: f ' ' ()= =0 = 0, = 2 3 (,0) ( 0, 2 3) ( 2 3, ) f ''() > 0 f ''() < 0 f ''() > 0 Convea Cóncava Convea

10 página 10/20 Hoja 2. Problema 7 Resuelto por Ignacio Roldán (diciembre 2014) 7. Estudia y representa f ( )= Dominio de la función Df= R ya que es una función polinómica Continuidad de la función Continuidad= R ya que es una función polinómica Puntos de corte(ox,oy) Puntos de corte eje OY (=0) Puntos de corte eje OX (y=0) y= y=2 A(0,2) =0 Como no tengo la solución aproimamos por el teorema de Bolzano, buscando un intervalo cerrado donde la función sea continua y cambie de signo al ser evaluada en los etremos del intervalo g ( )= =0 [0,-2] cojo el valor -1= g()<0 [0,-1] cojo el valor -0.5= g()<0 [0,-0.5] cojo el valor-0.4= g()<0 0,3 [0,-0.3] cojo el valor -0.3=g()<0 [0,-0.2] cojo el valor -0.2=g()>0 g ( )= =0 [-2,-4] cojo el valor-3=g()>0 [-2,-3] cojo el valor -2.8=g()>0 2,7 [-2,-2.8] cojo el valor -2.7=g()<0 Al ser un polinomio de grado cuatro, como máimo, tendra cuatro soluciones (cuatro

11 página 11/20 raíces). Con los dos puntos de corte obtenidos, por ahora, tenemos suficiente para seguir estudiando nuestra función y poder pintarla. Asintotas Asintota vertical(a.v) No eiste ya que la función no se anula en ningun punto Asintota horizontal(a.h) No eiste A.H lim = X = lim X 0 Asintota oblicua(a.o) lim X =0 No eiste A.O lim = Crecimiento, máimos y mínimos Realizo la primera derivada: f ' ( )= f ' ( )=0 g ( )= =0 Aplicamos de nuevo el teorema de Bolzano, para obtener la aproimación de los candidatos a puntos críticos: = -1.9, =0.4, =1.5 (,-1.9) -1.9 (-1.9,0.4) 0.4 (0.4,1.5) 1.5 (1.5, ) f (-2)=- (0,- 16,13) f (0)=+ (0,3.07) f (1)=- (0,1.06) f (2)=+

12 página 12/20 Decreciente Creciente Decreciente Creciente Mín Má Mín Concavidad, conveidad y puntos de infleión f ' ' ( )= f ' ' ( )= =0 2 =±1 (,-1) -1 (-1,1) 1 (1, ) f (-2)=+ (0,-8) f (0)=- (0,2) f (2)=+ Convea Punto de infleión Cóncava Punto de infleión Convea

13 página 13/20

14 página 14/20 Hoja 2. Problema 8 Resuelto por Isabel Navarro-Pelayo Torres (diciembre 2014) 8. Estudia y representa f ( )= Estudio de la función: ( +1) 2 Dominio: Dom f()= R { 1 } Todo R salvo donde se anula el denominador Asíntota Vertical (A.V.): Para que eista A.V. se debe cumplir que lim a En =-1 el denominador vale cero, por tanto: lim 1 lim 1 + ( +1) 2 = = ( +1) 2= 0 =+ + Eiste asíntota vertical en =-1 f ( )= Asíntota Horizontal (A.H.): Para que eista A.H. se debe cumplir que lim f ( )=k lim ( +1) 2 =lim =lim Eiste asíntota horizontal en y=0 Asíntota oblicua (A.O.): Asíntota oblicua: y= m + n f ( ) m= lim = lim 2= lim ( +1) ( +1) 2 =0 = = 0 1 =0 Como m debe dar un número finito y distinto de 0, no hay asíntota oblicua.

15 página 15/20 Crecimiento, decrecimiento, máimos y mínimos: Calculamos la primera derivada y, a continuación, la igualamos a cero para calcular los puntos críticos (valores en los que la primera derivada se anula): f ( )= ( +1) 2 f ' ( )= ( +1)2 2 ( +1) ( +1) 4 = ( +1) 2 ( +1) 3 = 1 ( +1) 3 f ' ( )=0 1 =0 =1 Estudiemos el comportamiento de la primera derivada a la izquierda y a la derecha de ese valor crítico =1, y así sabremos el crecimiento o decrecimiento de la función. Recordamos que la función no está definida en =-1. (, 1) ( 1, 1) 1 (1, ) y Negativa Positiva 0 Negativa y Decreciente Creciente MÁXIMO Decreciente Concavidad, conveidad y puntos de infleión: Calculamos la segunda derivada e igualamos a cero para calcular los puntos de infleión: f ' ( )= 1 ( +1) 3

16 página 16/20 f ' ' ( )= ( +1)3 3 ( +1) 2 (1 ) 1 3 (1 ) = = = 2 4 ( +1) 6 ( +1) 4 ( +1) 4 ( +1) 4 f ' ' ( )=o 2 4=0 =2 Estudiemos el comportamiento de la segunda derivada a la izquierda y a la derecha de ese valor =2, y así sabremos la concavidad o conveidad de la función. Recordamos que la función no está definida en =-1. (, 1) ( 1, 2) 2 (2, ) y Negativa Negativa 0 Positiva y Cóncava Cóncava Punto de infleión Convea Para ratificar que en =2 hay un punto de infleión hacemos la tercera derivada, la cual evaluada en ese punto debe darnos distinto de 0. f ' ' ' ( )= 2( +1)4 4( +1) 3 (2 4) = = 6+18 ( +1) 8 ( +1) 5 ( +1) 5 f ' ' ' (2)= Por tanto, X=2 es un punto de infleión. Representación de la función

17 página 17/20

18 página 18/20 Hoja 2. Problema 10 Resuelto por María Olivares Guerrero (enero 2015) 10. Estudia y representa f ()=+ 1 e Dominio de la función: R Puntos de corte: Con el eje OX y=0 e +1 =0 e e +1=0 Estudiamos el comportamiento de esta función, que llamaremos solución. g( )=e +1 g ( ), para comprobar que no tiene g ' ()=e (1+ ) g ' ()=0 e (1+ )=0 = 1 f ( 1)= 1+e>0 Evaluamos la derivada a la izquierda y a la derecha del punto crítico ( 1,e 1) para determinar si es máimo o mínimo: g ' ( 10)<0 g ' (0)>0 Por lo tanto ( 1,e 1) es un mínimo ==> g( )=e +1 nunca corta al eje horizontal OX ==> nuestra función de partida no corta al eje OX Con el eje OY = 0 (0,1) Asíntotas No hay asíntota vertical por ser la función continua en todo R. lim + 1 e = lim + 1 e = Por lo tanto, no hay asíntota horizontal. m=lim f ( ) = lim + 1 e = L'Hôpital lim 1 e e 2 1 =1 m = 1

19 página 19/20 n=lim f ( ) m=lim 1 e =0 Tenemos asíntota oblícua y = (si tiende a infinito; si tiende a menos infinito, no hay asíntota oblícua ya que ahí la función tiende a infinito). Crecimiento f ()=+ 1 e f ' ( )=1 1 e f ' ( )=0 1= 1 e =0 (0,1) Tenemos un punto crítico (0,1) candidato a etremos relativo. Evaluamos la derivada a izquierda y derecha de = 0. f ' ( 10)=1 1 <0 10 e f ' (10)=1 1 >0 10 e Por lo tanto en (0,1) tenemos un mínimo relativo Curvatura Realizamos la segunda derivada f ' ' ()= 1 e La segunda derivada nunca se anula, por lo que no eisten puntos de infleión. Con esta información, ya podemos representar nuestra gráfica.

20 página 20/20

Tema 4: Representación de Funciones

Tema 4: Representación de Funciones Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...

Más detalles

REPRESENTACIÓN DE CURVAS - CCSS

REPRESENTACIÓN DE CURVAS - CCSS REPRESENTACIÓN DE CURVAS - CCSS Esquema Para representar gráficamente una función se debe estudiar: 1. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía

Más detalles

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN . ASÍNTOTAS DE UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición más formal

Más detalles

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4 Tema 4 Representación de Funciones 0.- Introducción.- Estudio de una función...- Dominio...- Simetrías...- Periodicidad..4.- Continuidad..5.- Puntos de Corte con los ejes..6.- Asíntotas y ramas infinitas..7.-

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 16 - Problemas 3, 4, 5, 7

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 16 - Problemas 3, 4, 5, 7 página /9 Problemas Tema Solución a problemas de Repaso de Matemáticas I - Hoja 6 - Problemas 3, 4, 5, 7 Hoja 6. Problema 3 Resuelto por Gloria Corpas (octubre 204) 3. Representa y=x 3 4 x. Dominio de

Más detalles

Tema 5 Funciones(V). Representación de Funciones

Tema 5 Funciones(V). Representación de Funciones Tema 5 Funciones(V). Representación de Funciones 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con eje OX 1... Con eje OY 1.. Signo de la función 1.4. Simetría y periodicidad

Más detalles

1.- Sea la función f definida por f( x)

1.- Sea la función f definida por f( x) Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función

Más detalles

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo:

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Estudio de una función Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Una función f () tiene asíntota vertical en asi f () a Una función f () tiene

Más detalles

Matemáticas aplicadas a las CC.SS. II

Matemáticas aplicadas a las CC.SS. II Tema Nº 8 Aplicaciones de las Derivadas ( 17! Determina las dimensiones de una ventana rectangular que permita pasar la máima cantidad de luz, sabiendo que su marco debe medir 4 m. ---oooo--- La ventana

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES GRÁFICA DE UNA FUNCIÓN: Conjunto de puntos del plano (,y), en los que y = f(), es decir, conjunto de puntos del plano en los que la segunda coordenada es la imagen de la primera.

Más detalles

Ejercicios de representación de funciones: Primer ejemplo:

Ejercicios de representación de funciones: Primer ejemplo: www.juliweb.es tlf. 69886 Ejercicios de representación de funciones: Primer ejemplo: f ( ) º) Dominio. Dom f ( ) R {} º) Simetrías. f ( ) No es par f ( ) f ( ) No es impar No hay simetría. º) Puntos de

Más detalles

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan

Más detalles

Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos

Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos página 1/10 Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos Hoja 8. Problema 1 a) Deriva f ()=arcosen( 1 2 ) 1 f ' ( )= 2 1 ( 1 2 ) 2 2 1 = 1 2 1 2 b) Determina el punto (,

Más detalles

TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES

TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES 1 DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN El dominio de una función está formado por aquellos valores de (números reales) para los que se puede calcular f(). PUNTOS

Más detalles

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. En las siguientes funciones estudia las características: dominio, los puntos de corte con los ejes, las simetrías, la periodicidad, las asíntotas, la monotonía,

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y) Estudio de funciones y su representación gráfica. TIPO I. Funciones Polinómicas. Ejemplo: y 4 1º. Dominio. El dominio de una función es el conjunto de valores para los que está definida la función. En

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos página 1/12 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos Hoja 26. Problema 1 1. a) Calcula el número real m que cumple lim 0 ln(1+m ) sen(2 ) =. b) Obtener

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES Para representar gráficamente funciones eplícitas (es decir del tipo y f()), deben seguirse los siguientes pasos, representando inmediatamente todos los datos que se

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS ºBachillerato REPRESENTACIÓN DE CURVAS Esquema Para representar gráficamente una función se debe estudiar:. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN

5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN 5 GUÍA PARA REALIZAR ESTUDIO DE UNCIÓN ) Determinar el Dominio de la función. ) Hallar, si eisten, las Intersecciones con los Ejes de Coordenadas Signo. ( Int. con eje y, hacer = Int. con eje, hacer y

Más detalles

SOLUCIÓN. BLOQUE DE FUNCIONES.

SOLUCIÓN. BLOQUE DE FUNCIONES. SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.

Más detalles

GRÁFICA DE FUNCIONES

GRÁFICA DE FUNCIONES GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.

Más detalles

Tema 7: Aplicaciones de la derivada, Representación de Funciones

Tema 7: Aplicaciones de la derivada, Representación de Funciones Tema 7: Aplicaciones de la derivada, Representación de Funciones 0.- Introducción 1.- Crecimiento y Decrecimiento de una función. Monotonía..- Máimos y mínimos de una función.1.- Etremos relativos...-

Más detalles

Problemas resueltos funciones de una variable. Continuidad. Matemáticas I. La función es continua en { 3} La función es continua en (, 1) ( 1, )

Problemas resueltos funciones de una variable. Continuidad. Matemáticas I. La función es continua en { 3} La función es continua en (, 1) ( 1, ) Problemas resueltos funciones de una variable. Continuidad. Matemáticas I. 1.-Estudiar la continuidad de las siguientes funciones: + f( ) = f( ) = f( ) = 1 + + 1 1 + 1 f( ) = log 1 f( ) = + 1 f ( ) 6 La

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 10 - Problemas 1, 2, 3

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 10 - Problemas 1, 2, 3 página 1/6 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 10 - Problemas 1, 2, 3 Hoja 10. Problema 1 Resuelto por María Olivares Guerrero (septiembre 2014) 1. Sea la función definida

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

Problemas Tema 9 Solución a problemas de derivadas - Hoja 7 - Todos resueltos

Problemas Tema 9 Solución a problemas de derivadas - Hoja 7 - Todos resueltos Asignatura: Matemáticas I ºBachillerato página / Problemas Tema 9 Solución a problemas de derivadas - Hoja 7 - Todos resueltos Hoja 7. Problema 2 a) Deriva f (x)= ln 3 ( 2 x) f ' ( x)= 2 ln 6 ( 2 x) 3

Más detalles

Unidad 8 Representación gráfica de funciones

Unidad 8 Representación gráfica de funciones Unidad 8 Representación gráfica de funciones PÁGINA 187 SOLUCIONES 1. Las funciones quedan: a) f( ) = 8 Dominio: Dom f =R Puntos de corte con el eje OX: Puntos de corte con el eje OY Simetrías: f( ) =

Más detalles

8QLGDG $SOLFDFLRQHVGHODV'HULYDGDV

8QLGDG $SOLFDFLRQHVGHODV'HULYDGDV 5HVXHOYHW~3iJppp 'HPXHVWUDTXHODIXQFLyQI[ [ FRV[WLHQHDOJ~QSXQWRFUtWLFRHQHOLQWHUYDOR f() = ( - 4) cos Como es producto de dos funciones continuas y derivables, una polinómica de º grado ( -4) y otra trigonométrica

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

Estudio y gráficas de funciones

Estudio y gráficas de funciones PROBLEMAS RESUELTOS DE SELECTIVIDAD DE ESTUDIO Y GRÁFICAS DE FUNCIONES ) Sea f: R R la función definida por f() ( ) e. a) Halla las asíntotas de la gráfica de f. A.H. Hay que calcular ( ) e. Pero como

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS. Monotonía: Crecimiento y decrecimiento de una unción. Determinación de etremos relativos. Optimización de unciones. Curvatura: Concavidad o curvatura de una unción 5. Puntos

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 07 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 7/8 Esther Madera Lastra. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (). A la

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

Unidad 13 Representación gráfica de funciones

Unidad 13 Representación gráfica de funciones 1 Unidad 13 Representación gráfica de funciones PÁGINA 315 SOLUCIONES 1. Las funciones son: a) f 8 ) ( = Dominio: = f Dom Puntos de corte con el eje OX: = = (4,0) (0,0) 0 8 Q P y y Puntos de corte con

Más detalles

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1)

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) 1) Halle los intervalos de monotonía y los etremos relativos, los intervalos de curvatura y los puntos de infleión de la función g() + +. Represéntela gráficamente.

Más detalles

REPRESENTACIÓN GRÁFICA DE CURVAS - II

REPRESENTACIÓN GRÁFICA DE CURVAS - II REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas

Más detalles

I.- Representación gráfica de una función polinómica

I.- Representación gráfica de una función polinómica Los campos a considerar en el estudio de una representación gráfica son; Dominio de la función Continuidad y derivabilidad Simetrías Periodicidad Asíntotas Verticales Horizontales Oblicuas Posición de

Más detalles

Tema 8: Aplicaciones de la derivada, Representación de Funciones

Tema 8: Aplicaciones de la derivada, Representación de Funciones Tema 8: Aplicaciones de la derivada, Representación de Funciones 0.- Introducción.- Crecimiento y Decrecimiento de una función. Monotonía..- Máimos y mínimos de una función..- Etremos relativos...- Etremos

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

Tema 8: Estudio y representación de funciones

Tema 8: Estudio y representación de funciones Tema 8: Estudio y representación de funciones 1. Introducción El objetivo de esta unidad es representar gráficamente funciones polinómicas, racionales, irracionales, exponenciales y logarítmicas sencillas,

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS:

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE (5%) (Cada respuesta incorrecta resta, puntos)

Más detalles

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS)

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS) EXAMEN DE MATEMÁTICAS (º DE BACHILLERATO) ANÁLISIS (DERIVADAS) 009 1 (CLS09) (1 punto) Probar que la ecuación e + 0 tiene alguna solución (CLJ13) (1 punto) Sea la función + Calcula sus asíntotas y estudia

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva, Ejercicio 1, Opción A

Más detalles

Tema 9: Estudio y representación de funciones

Tema 9: Estudio y representación de funciones 1. Introducción Tema 9: Estudio y representación de funciones El objetivo de esta unidad es representar gráficamente funciones polinómicas, racionales, irracionales, exponenciales y logarítmicas sencillas,

Más detalles

"""##$##""" !!!""#""!!!

##$## !!!#!!! Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 11 AUTTOEEVALLUACI IÓN 1 Eplica qué significan los símbolos 0 y -. 0 ( tiende a 0) significa que tomamos valores ( 0) cuya distancia a 0, dada por, se hace

Más detalles

Tema 8 Representación de funciones

Tema 8 Representación de funciones Tema 8 Representación de funciones 8.1 Dominio y recorrido Página 17 Ejercicios 1. Obtén el dominio de las siguientes funciones. 3 d) f 6 Como se trata de una fracción, tendremos problemas si el denominador

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Matemáticas Problemas resueltos de gráficas de funciones (2)

Matemáticas Problemas resueltos de gráficas de funciones (2) Matemáticas Problemas resueltos de gráficas de funciones () PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES () 1) Estudiar y dibujar la gráfica de: y + 1) Dominio: R (es polinómica). ) Par / Impar: f( ) (

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Selectividad Junio 7 JUNIO 7 PRUEBA A PROBLEMAS 1.- Sea el plano π + y z 5 = y la recta r = y = z. Se pide: a) Calcular la distancia de la recta al plano. b) Hallar un plano que contenga a r y sea perpendicular

Más detalles

REPRESENTACION GRÁFICA DE FUNCIONES

REPRESENTACION GRÁFICA DE FUNCIONES REPRESENTACION GRÁFICA DE FUNCIONES 1 REPRESENTACION GRÁFICA DE FUNCIONES UNIDADES Pag. 1. DEFINICIÓN DE DOMINIO UNA FUNCIÓN.3 2. CORTES CON LOS EJES...5 3. SIMETRÍA..7 4. PERIODICIDAD 9 5. FUNCIONES INVERSAS....10

Más detalles

1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla

1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 1 PROBLEMAS PROPUESTOS 1 Elabora una tabla de valores de la función f() - + en puntos próimos a. Sugiere la tabla que f() es continua en? 1 9 1 99 1 999 1 01

Más detalles

= +1. A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos.

= +1. A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos. Ejemplo 1 Dibujar la función: = +1 A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos. Dominio Puntos de corte con los ejes Simetría Asíntotas Crecimiento decrecimiento/máximos

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

y' nos permite analizar el crecimiento o decrecimiento

y' nos permite analizar el crecimiento o decrecimiento http://wwwugres/local/metcuant APLICACIONES DE LAS DERIVADAS La derivada de una función f (), en un punto = a, representa el valor de la pendiente de la recta tangente a dicha función, en el citado punto

Más detalles

L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S

L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S 1. T A S A D E V A R I A C I Ó N M E D I A Definimos la variación media de una función f en un intervalo [, + ], y la designamos por t m o TVM[,

Más detalles

Representaciones gráficas

Representaciones gráficas 1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.

Más detalles

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN Teoría Práctica Los pasos a seguir para el estudio completo y representación de una Función son los siguientes: ) Hallar el Dominio de la función. En dicho

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 18 - Problemas 2, 3, 5

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 18 - Problemas 2, 3, 5 página 1/7 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 18 - Problemas 2, 3, 5 Hoja 18. Problema 2 Resuelto por José Juan Hidalgo Molina (octubre 2014) 2. Qué clase de triángulo

Más detalles

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 21 - Todos resueltos

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 21 - Todos resueltos página 1/ Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 21 - Todos resueltos Hoja 21. Problema 1 1. a) Demostrar que la función f ()= definida en el dominio [ 1, ) admite inversa.

Más detalles

2) (1p) Demuestra que la derivada de y=ln x es y'=1/x.

2) (1p) Demuestra que la derivada de y=ln x es y'=1/x. CURSO 00-0 6 de noviembre de 00. ) (p) Define función derivada. ) (p) Demuestra que la derivada de yln es y'/. 3) (p) Enuncia el criterio de la derivada segunda para el estudio de la curvatura y los puntos

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1

Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 EJERCICIO : A partir de la gráica de (): a b c Cuáles son los puntos de corte con los ejes? Di cuáles son sus asíntotas. Indica la posición

Más detalles

5 APLICACIONES DE LA DERIVADA

5 APLICACIONES DE LA DERIVADA 5 APLICACIONES DE LA DERIVADA La derivada va a ser la herramienta más potente a la hora de dar forma a la representación gráfica de una función. Ella determinará con toda fidelidad el crecimiento, decrecimiento,

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 18/19 Esther Madera Lastra 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (. A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles

2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función.

2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función. Septiembre. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) Ln ) si > b) Represéntese gráficamente la función para el caso a. Nota: Ln denota

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

Estudio local de una función.

Estudio local de una función. Estudio local de una función. A partir de una cartulina cuadrada de 60 cm de lado, se va a construir una caja de base cuadrada, sin tapa, recortando cuatro cuadrados iguales en las esquinas de la cartulina

Más detalles