Intervalos de Confianza para la diferencia de medias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Intervalos de Confianza para la diferencia de medias"

Transcripción

1 Itervalo de Cofiaza para la diferecia de media

2 INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza ; y,,..., ua muetra aleatoria de obervacioe tomada de la eguda població co valor eperado μ y variaza. Si y o la media muetrale, la etadítica e u etimador putual de μ μ, y tiee ua ditribució ormal i la do poblacioe o ormale, o aproimadamete ormal i cumple co la codicioe del teorema del limite cetral (tamaño de muetra relativamete grade). Por lo tato, z = ( μ μ )

3 Para calcular el itervalo de cofiaza para la diferecia de do media e debe aber i la variaza poblacioale o coocida o decoocida, y e cao de que ea decoocida, e debe probar i o iguale o diferete. Cada uo de eto tre cao e aalizará por eparado Variaza coocida pero diferete, Si la variaza poblacioale o coocida y diferete, lo pao a eguir para ecotrar el itervalo de cofiaza o lo iguiete: a) El etadítico uado como etimador putual de la diferecia de media μ μ, erá T =, que e u etimador uficiete b) La variable aleatoria aociada co el etimador erá la variable ormal etádar dada por: ( μ μ ) z =

4 c) Para calcular el itervalo de cofiaza e debe teer e cueta el ivel de cofiaza que e quiere coiderar. Teorema. Si o la media de do muetra aleatoria idepediete de tamaño y tomada de poblacioe que tiee variaza coocida y, repectivamete, etoce el itervalo de cofiaza para μ μ e: Z μ μ Z

5 Ejemplo. Cotruya u itervalo de cofiaza del 94% para la diferecia real etre la duracioe de do marca de foco, i ua muetra de 40 foco tomada al azar de la primera marca dio ua duració media de 48 hora, y ua muetra de 50 foco de otra marca diero ua duració media de 40 hora. La deviacioe etádare de la do poblacioe o 6 hora y hora, repectivamete. Solució. Teemo que: = 48 = 6, =, = 40, = 50, Z =.88 El itervalo de cofiaza e, etoce:, 40, = Z μ μ Z (48 40 ) μ μ (48 40 ) μ μ 5.7

6 Variaza decoocida e iguale ( = = ) Cuado la variaza o decoocida, e debe realizar previamete ua prueba etadítica para verificar i éta o iguale o diferete. Para hacerlo debemo hacer uo de la ditribució F, bie ea mediate el cálculo de la probabilidad de que la muetra tomada provega de do poblacioe co variaza iguale, o mediate el uo de u itervalo de cofiaza para la relació de do variaza, egú e etudiará má adelate. Como e decooce la variaza de la població, e ua la variaza de la muetra como etimadore. El procedimieto a eguir para el cálculo del itervalo de cofiaza para la diferecia de do media erá el iguiete: a) El etadítico uado como etimador putual de la diferecia de media μ μ erá, que e u etimador uficiete.

7 b) La variable aleatoria aociada co el etimador erá la variable defiida como (e ua t e cao de muetra pequeña): t = ( μ μ ) p dode p e u etimador combiado de la, mejor que por eparado, dode ( ) ( ) p =, c) Para calcular el itervalo de cofiaza e debe teer e cueta el ivel de cofiaza que e quiere coiderar y lo grado de libertad que e calcula g.l.=

8 De uevo, maipulado la epreió aterior e forma imilar al cao previo e llega al iguiete teorema que o defie el itervalo de μ cofiaza para la diferecia etre do media co variaza decoocida pero iguale: Teorema. Si,, μ, o la media y la variaza de do, muetra aleatoria de tamaño, repectivamete, tomada de do poblacioe ormale e idepediete co variaza decoocida pero iguale, etoce u itervalo de cofiaza para la diferecia etre μ media e: μ t p μ μ t p

9 Ejemplo. La iguiete tabla preeta lo reultado de do muetra aleatoria para comparar el coteido de icotia de do marca de cigarrillo. Supoiedo que lo cojuto de dato proviee de muetra tomada al azar de poblacioe ormale co variaza decoocida e iguale, cotruya u itervalo de cofiaza del 95% para la diferecia real de icotia de la do marca. Solució. Como la variaza o iguale, calculamo por: p que etá dado p (9)0.5 (7)0.7 = = p 6 = 0.596

10 El itervalo de cofiaza del 95% etá dado por (t(0.05,g.l.6) =.): t p μ μ t p (0.596) μ μ (0.596) μ μ.0

11 Variaza decoocida y diferete a) El etadítico uado como etimador putual de la diferecia de media μ μ, erá, que e u etimador uficiete b) La variable aleatoria aociada co el etimador erá la variable t defiida como: t = ( μ μ ) c) El itervalo de cofiaza eta dado por el iguiete teorema, baado e la ditribució t co grado de libertad.

12 Teorema.. Si,,, o la media y la variaza de do,, repectivamete, tomada de muetra aleatoria de tamaño do poblacioe ormale e idepediete co variaza decoocida y diferete, etoce u itervalo de cofiaza para la diferecia etre μ media e (uevamete para el cao de muetra pequeña): μ t μ μ t Lo grado de libertad etá dado por: ( / / ) ν = ( ) ( ) ( ) / / / /( ) Nota: el valor obteido e redodea al etero má próimo.

13 Nota. Si llevamo a cabo u cálculo de itervalo de cofiaza para diferecia de media, upoiedo que la variaza o o iguale, e el dado cao que í lo fuera, perderíamo muy poco, y el itervalo obteido ería u poco coervador. El cao de que upogamo que la variaza o iguale, iedo que o lo o, o produce u error mayor que puede er coiderable por lo que ua ugerecia e uar variaza diferete como regla geeral.

14 Problema. Cierto metal e produce, por lo comú, mediate u proceo etádar. Se dearrolla u uevo proceo e el que e añade ua aleació a la producció del metal. Lo fabricate e ecuetra itereado e etimar la verdadera diferecia etre la teioe de ruptura de lo metale producido por lo do proceo. Para cada metal e eleccioa ejemplare y cada uo de éto e omete a ua teió hata que e rompe. La iguiete tabla muetra la teioe de ruptura de lo ejemplare, e kilogramo por cetímetro cuadrado: Si e upoe que el muetreo e llevó a cabo obre do ditribucioe ormale e idepediete, obteer lo itervalo de cofiaza etimado del 95 y 99% para la diferecia etre lo do proceo. Iterprete lo reultado.

15 Solució: Calculamo lo valore que eceitamo. Media S ( / / ) ( ) ( ) ( / / / ) /( ) ν = = 8 Ditributio Plot T, df= % de cofiaza Deity t =.0, t = X t μ μ t

16 Por lo tato: ( ).0 μ μ ( ) μ μ 9.49 Y para 99% de cofiaza Ditributio Plot T, df=8 0.4 t =.88, t = Deity X ( ).88 μ μ ( ) μ μ 5.99

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES.

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES. ECTURA 4: INTERVAOS DE CONFIANZA PARA A MEDIA POBACIONA. INTERVAOS DE CONFIANZA ENTRE DOS MEDIAS POBACIONAES. TEMA 8: INTERVAOS DE CONFIANZA: INTRODUCCIÓN Y DEFINICIÓN. INTRODUCCION: Actualmete e debe

Más detalles

Pruebas de hipótesis para dos muestras.

Pruebas de hipótesis para dos muestras. Prueba de hiótei ara do muetra. Prueba de Hiótei ara do muetra grade, deviacioe etádar de la oblacioe deiguale. La roiedade de la Ditribució Normal o tambié umamete útile cuado queremo ecotrar i do cojuto

Más detalles

Módulo de Estadística. Tema 7 : Estimación paramétrica e Intervalos de confianza

Módulo de Estadística. Tema 7 : Estimación paramétrica e Intervalos de confianza Módulo de Etadítica Tema 7 : Etimació paramétrica e Itervalo de cofiaza Etimació U etimador e ua catidad umérica calculada obre ua muetra y que eperamo que ea ua buea aproximació de cierta catidad co el

Más detalles

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros:

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: Prueba de Hipótei (Do Muetra) Ete procedimieto prueba hipótei acerca de cualquiera de lo iguiete parámetro:. la diferecia etre la media μ y μ de do ditribucioe ormale.. el radio de la deviació etádar σ

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

Salazar Rosales Leandro

Salazar Rosales Leandro Etadítica para la Admiitració Tarea: Itervalo de Cofiaza INTERVALO DE CONFIANZA Itervalo de Cofiaza: Rago de valore ituado alrededor del parámetro muetral etre lo cuale e ituará el parámetro poblacioal

Más detalles

Inferencia Estadística

Inferencia Estadística Iferecia Etadítica 1 I Delia Motoro Cazorla. Dpto. de Etadítica e I.O. Uiveridad de Jaé. Capítulo 6. Itroducció a la Iferecia Etadítica 6.1 Itroducció El pricipal objetivo de la Etadítica e iferir o etimar

Más detalles

DISTRIBUCIÓN BIDIMENSIONAL

DISTRIBUCIÓN BIDIMENSIONAL DISTRIBUCIÓ BIDIMESIOAL E ete tema e etudia feómeo bidimeioale de carácter aleatorio. El objetivo e doble: 1. Determiar i eite relació etre la variable coiderada(correlació).. Si ea relació eite, idicar

Más detalles

ESTADISTICA II Guía de Estudio Corte #1 Prof. Mariugenia Rincón ESTIMACIÓN DE PARÁMETROS

ESTADISTICA II Guía de Estudio Corte #1 Prof. Mariugenia Rincón ESTIMACIÓN DE PARÁMETROS ESTADISTICA II Guía de Etudio Corte # Prof. Mariugeia Ricó ESTIMACIÓN DE PARÁMETROS Etadítica.- Ua etadítica e cualquier fució de la variable aleatoria que e obervaro e la muetra de maera que eta fució

Más detalles

DESCONOCIDA. Distribución de la media muestral. EJERCICIOS DE INFERENCIA SOBRE µ CON σ² DESCONOCIDA

DESCONOCIDA. Distribución de la media muestral. EJERCICIOS DE INFERENCIA SOBRE µ CON σ² DESCONOCIDA JRCICIO D INFRNCIA OBR CON σ² DCONOCIDA INFRNCIA OBR CON σ DCONOCIDA Ditribució de la media muetral Mucha vece deeamo realizar iferecia acerca de la de ua població pero o cotamo co la variaza poblacioal

Más detalles

. Antes debemos distinguir si los datos provienen de un diseño pareado (dependiente) o es un diseño independiente.

. Antes debemos distinguir si los datos provienen de un diseño pareado (dependiente) o es un diseño independiente. Capítulo 9: Comparació de media E capítulo ateriore etudiamo prueba de hipótei e itervalo de cofiaza para la proporció o la media de ua població. Eto método puede er etedido para otra ituacioe. Lo bueo

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

t-student y F-Snedecor

t-student y F-Snedecor t-studet y F-Sedecor Itroducció La prueba t-studet e utiliza para cotratar hipótei obre media e poblacioe co ditribució ormal. Tambié proporcioa reultado aproimado para lo cotrate de media e muetra uficietemete

Más detalles

ESTIMACIÓN DE LA VARIANZA POBLACIONAL EN EL MUESTREO EN OCASIONES SUCESIVAS

ESTIMACIÓN DE LA VARIANZA POBLACIONAL EN EL MUESTREO EN OCASIONES SUCESIVAS Metodología de Ecueta I: 575-7803 Vol 6, úm, 00, 9- ETIMACIÓ DE LA VARIAZA POBLACIOAL E EL MUETREO E OCAIOE UCEIVA Amelia V. García Luego Eva M. Arté Rodríguez Imaculada Oña Caado Uiveridad de Almería

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

LECTURA 05: INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. INTERVALOS DE CONFIANZA PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONES.

LECTURA 05: INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. INTERVALOS DE CONFIANZA PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONES. Uiveridad Lo Ágele de Chimbote LECTURA 05: ITERVALOS DE COFIAZA PARA LA PROPORCIÓ POBLACIOAL. ITERVALOS DE COFIAZA PARA LA DIFERECIA ETRE DOS PROPORCIOES POBLACIOES. TEMA : ITERVALOS DE COFIAZA PARA LA

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE)

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE) TUTORÍA DE ETADÍTICA EMPREARIAL (º A.D.E.) e-mail: imozas@elx.ued.es https://www.iova.ued.es/webpages/ilde/web/idex.htm PROBLEMA DE LO TEMA 5, 6 Y 7 PROPUETO EN EXÁMENE DE ETADÍTICA EMPREARIAL (ANTIGUA

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Contraste de hipótesis

Contraste de hipótesis Capítulo 6 Cotrate de hipótei Termiamo eta itruió e la iferecia etadítica co ete tercer método. Co frecuecia, el problema plateado o e implemete la etimació de u parámetro, io el dieño de ua regla de deciió

Más detalles

LECTURA 09: INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA (PARTE II). PRUEBA DE CORRELACIÓN DE SPEARMAN TEMA 20: PRUEBA DE CORRELACIÓN DE SPEARMAN

LECTURA 09: INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA (PARTE II). PRUEBA DE CORRELACIÓN DE SPEARMAN TEMA 20: PRUEBA DE CORRELACIÓN DE SPEARMAN LECTURA 09: INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA (PARTE II). PRUEBA DE CORRELACIÓN DE SPEARMAN TEMA 0: PRUEBA DE CORRELACIÓN DE SPEARMAN. INTRODUCCIÒN: El coefciete de correlació de Spearma e ua

Más detalles

ESTIMACIONES DE MEDIAS

ESTIMACIONES DE MEDIAS COLEGIO SAN BARTOLOMÉ LA MERCED ESTADÍSTICA GRADO ESTIMACIÓN 0-0 Símbolos que se debe teer e cueta: POBLACIÓN MUESTRA MEDIA VARIANZA DESVIACIÓN ESTÁNDAR TAMAÑO N La estimació cosiste e determiar el valor

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

Comparación de dos Muestras

Comparación de dos Muestras STATGRAPHICS Rev. 4/5/007 Comparació de do Muetra Reume El procedimieto de Comparació de do Muetra etá dieñado para comparar do muetra idepediete de dato de variable. La prueba o corrida para determiar

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

DETERMINACIÓN DEL TAMAÑO MUESTRAL PARA LA SELECCIÓN DE POBLACIONES CON DISTRIBUCIÓN WEIBULL

DETERMINACIÓN DEL TAMAÑO MUESTRAL PARA LA SELECCIÓN DE POBLACIONES CON DISTRIBUCIÓN WEIBULL DETERMINACIÓN DEL TAMAÑO MUESTRAL PARA LA SELECCIÓN DE POBLACIONES CON DISTRIBUCIÓN WEIBULL Alejadro Quiroz Zárate & Erique Villa Diharce Comuicació Técica No I-06-3/28-08-2006 (CC/CIMAT) Determiació del

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual ETIMACIÓN TEMA 5: Estimació putual I. Propiedades de los estimadores TEMA 6: Estimació putual II. Métodos de estimació putual TEMA 7: Estimació por itervalos CONTRATE DE HIPÓTEI TEMA 8: Cotrastes paramétricos

Más detalles

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

Juan Carlos Colonia INTERVALOS DE CONFIANZA

Juan Carlos Colonia INTERVALOS DE CONFIANZA Jua Carlos Coloia INTERVALOS DE CONFIANZA INTERVALOS DE CONFIANZA PARA LOS PARÁMETROS DE UNA POBLACIÓN POBLACIONAL ES CONOCIDA Sea X ua muestra aleatoria de tamaño 1, X,..., X extraída de ua població N,

Más detalles

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Dra. Diaa M. Kelmasky 109 13. INTERVALOS DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL Supogamos que X1,...,X es ua muestra aleatoria de ua població ormal co media μ y variaza. Sabemos que la media

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

Ejercicios y Aplicaciones: Resolución Guiada

Ejercicios y Aplicaciones: Resolución Guiada Uidad Temática 5 : Resolució Guiada Bibliografía Los ejercicios y aplicacioes de esta uidad tiee como referecia los siguietes libros de texto: PROBABILIDAD Y ESTADÍSTICA PARA INGENIEROS Sexta Edició Autores:

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

Intervalos de confianza para la media

Intervalos de confianza para la media Itervalos de cofiaza para la media Ejercicio º 1.- Las vetas diarias, e euros, e u determiado comercio sigue ua distribució N(950, 200). Calcula la probabilidad de que las vetas diarias e ese comercio:

Más detalles

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA Métodos estadísticos y uméricos Estimació por Itervalos de cofiaa PROBLEMA REUELTO DE ETIMACIÓN POR INTERVALO DE CONFIANZA U adador obtiee los siguietes tiempos, e miutos, e 0 pruebas croometradas por

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

Población Joven Adulta Total A favor En contra Total

Población Joven Adulta Total A favor En contra Total Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS PROYECTO DE CARRERA: INGENIERÍA INDUTRIAL AIGNATURA: ETADÍTICA II UNIDAD III: TECNICA DE ETIMACIÓN ETIMACIÓN POR INTERVALO INTRODUCCIÓN E temas ateriores se estableciero las bases que ermite a los estadísticos

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS Estadística: Cotraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Cotraste de hipótesis sobre la media poblacioal Se parte de ua població supuestamete ormal de media y desviació típica N(, ); se tipifica

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL DEPTO DE CIENCIAS ECONOMOMICAS Y ADMIMISTRATIVAS AREA DE ESTADÍSTICA ESTADÍSTICA BASICA CONTADURÍA PÚBLICA Tema 8. Sesioes 5 y 6 Guía de clase

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Test de Hipótesis. Material Preparado por Hugo Delfino

Test de Hipótesis. Material Preparado por Hugo Delfino Test de Hipótesis Material Preparado por Hugo Delfio 8-3 Qué es ua Hipótesis? Hipótesis: Es u suposició acerca del valor de u parámetro de ua població co el propósito de discutir su validez. Ejemplo de

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p :

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p : Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué proporció de mujeres espera compartir las tareas de la casa co su pareja?

Más detalles

TEMA 4: CONTRASTE DE HIPOTESIS

TEMA 4: CONTRASTE DE HIPOTESIS ESTADÍSTICA, CURSO 2008 2009 TEMA 4: CONTRASTE DE HIPOTESIS HIPOTESIS ESTADISTICAS ENSAYOS DE HIPOTESIS Cocepto de hipótesis estadística Esayos de hipótesis Hipótesis ula (H 0 ) y alterativa (H ) Diferecias

Más detalles

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferecia proporcioes E alguos diseños ivestigació, el pla muestral requiere seleccioar dos muestras ipedietes, calcular las proporcioes muestrales y usar

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

Herramientas estadísticas (HE)

Herramientas estadísticas (HE) Herramieta etadítica (HE) Realizado por: Guillermo Sáchez. Actualizado: 1-0-19 E ete documeto e decribe la herramieta etáditica (HE web) dipoible para realizar calculo etaditico dede la web de ENUSA o

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Contraste sobre la media de una distribución Normal de varianza conocida

Contraste sobre la media de una distribución Normal de varianza conocida Cotrate de hipótei etadítica E la primera parte de la iferecia etadítica e ha abordado el problema de la etimació de parámetro, e ella e ha vito cómo cotruir etimadore de parámetro poblacioale, e ha iitido

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. Població: El cojuto de todos los elemetos o idividuos que posee ua determiada característica o cualidad de iterés. Existe situacioes e las que o es posible aalizar

Más detalles

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra:

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra: T ema 8 ESTIMACIÓN Coceptos previos Població y muestra: Població se refiere al cojuto total de elemetos que se quiere estudiar ua o más características. Debe estar bie defiida. Llamaremos N al úmero total

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

(d) Observando la solución desarrollada en (a) podemos calcular el capital acumulado al final de cada año:

(d) Observando la solución desarrollada en (a) podemos calcular el capital acumulado al final de cada año: COLEGIO COLOMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS PROGRESIONES/ SECUENCIAS/ SUCESIONES PROFESORES: RAÚL MARTÍNEZ Y JESÚS VARGAS Problema Jua Guillermo ivierte milloe de peo durate año, le pagará a

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA . Metodología e Salud Pública INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA Autor: Clara Lagua 5.1 INTRODUCCIÓN La estadística iferecial aporta las técicas ecesarias para extraer

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Inferencia estadística

Inferencia estadística UNIDAD 0 Iferecia estadística Objetivos Al fializar la uidad, el alumo: determiará si u estimador es sesgado o isesgado resolverá problemas de itervalos de cofiaza para la media, diferecia de medias, variaza

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA TEMA 6. INTRODUCCIÓN A LA INFERENCIA ETADÍTICA 6.. Itroducció 6.. Coceptos básicos 6.3. Muestreo aleatorio simple 6.4. Distribucioes asociadas al muestreo 6.4.. Distribució Chi-Cuadrado 6.4.. Distribució

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Intervalos de Confianza

Intervalos de Confianza Itervalos de Cofiaza 1.- Se quiere estudiar la vida útil de uas uevas pilas que se va a lazar al mercado. Para ello se examia la duració de 40 de ellas, resultado ua media de 63 horas. Supoiedo que el

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció B Reserva, Ejercicio 4,

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles