Intervalos de Confianza para la diferencia de medias

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Intervalos de Confianza para la diferencia de medias"

Transcripción

1 Itervalo de Cofiaza para la diferecia de media

2 INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza ; y,,..., ua muetra aleatoria de obervacioe tomada de la eguda població co valor eperado μ y variaza. Si y o la media muetrale, la etadítica e u etimador putual de μ μ, y tiee ua ditribució ormal i la do poblacioe o ormale, o aproimadamete ormal i cumple co la codicioe del teorema del limite cetral (tamaño de muetra relativamete grade). Por lo tato, z = ( μ μ )

3 Para calcular el itervalo de cofiaza para la diferecia de do media e debe aber i la variaza poblacioale o coocida o decoocida, y e cao de que ea decoocida, e debe probar i o iguale o diferete. Cada uo de eto tre cao e aalizará por eparado Variaza coocida pero diferete, Si la variaza poblacioale o coocida y diferete, lo pao a eguir para ecotrar el itervalo de cofiaza o lo iguiete: a) El etadítico uado como etimador putual de la diferecia de media μ μ, erá T =, que e u etimador uficiete b) La variable aleatoria aociada co el etimador erá la variable ormal etádar dada por: ( μ μ ) z =

4 c) Para calcular el itervalo de cofiaza e debe teer e cueta el ivel de cofiaza que e quiere coiderar. Teorema. Si o la media de do muetra aleatoria idepediete de tamaño y tomada de poblacioe que tiee variaza coocida y, repectivamete, etoce el itervalo de cofiaza para μ μ e: Z μ μ Z

5 Ejemplo. Cotruya u itervalo de cofiaza del 94% para la diferecia real etre la duracioe de do marca de foco, i ua muetra de 40 foco tomada al azar de la primera marca dio ua duració media de 48 hora, y ua muetra de 50 foco de otra marca diero ua duració media de 40 hora. La deviacioe etádare de la do poblacioe o 6 hora y hora, repectivamete. Solució. Teemo que: = 48 = 6, =, = 40, = 50, Z =.88 El itervalo de cofiaza e, etoce:, 40, = Z μ μ Z (48 40 ) μ μ (48 40 ) μ μ 5.7

6 Variaza decoocida e iguale ( = = ) Cuado la variaza o decoocida, e debe realizar previamete ua prueba etadítica para verificar i éta o iguale o diferete. Para hacerlo debemo hacer uo de la ditribució F, bie ea mediate el cálculo de la probabilidad de que la muetra tomada provega de do poblacioe co variaza iguale, o mediate el uo de u itervalo de cofiaza para la relació de do variaza, egú e etudiará má adelate. Como e decooce la variaza de la població, e ua la variaza de la muetra como etimadore. El procedimieto a eguir para el cálculo del itervalo de cofiaza para la diferecia de do media erá el iguiete: a) El etadítico uado como etimador putual de la diferecia de media μ μ erá, que e u etimador uficiete.

7 b) La variable aleatoria aociada co el etimador erá la variable defiida como (e ua t e cao de muetra pequeña): t = ( μ μ ) p dode p e u etimador combiado de la, mejor que por eparado, dode ( ) ( ) p =, c) Para calcular el itervalo de cofiaza e debe teer e cueta el ivel de cofiaza que e quiere coiderar y lo grado de libertad que e calcula g.l.=

8 De uevo, maipulado la epreió aterior e forma imilar al cao previo e llega al iguiete teorema que o defie el itervalo de μ cofiaza para la diferecia etre do media co variaza decoocida pero iguale: Teorema. Si,, μ, o la media y la variaza de do, muetra aleatoria de tamaño, repectivamete, tomada de do poblacioe ormale e idepediete co variaza decoocida pero iguale, etoce u itervalo de cofiaza para la diferecia etre μ media e: μ t p μ μ t p

9 Ejemplo. La iguiete tabla preeta lo reultado de do muetra aleatoria para comparar el coteido de icotia de do marca de cigarrillo. Supoiedo que lo cojuto de dato proviee de muetra tomada al azar de poblacioe ormale co variaza decoocida e iguale, cotruya u itervalo de cofiaza del 95% para la diferecia real de icotia de la do marca. Solució. Como la variaza o iguale, calculamo por: p que etá dado p (9)0.5 (7)0.7 = = p 6 = 0.596

10 El itervalo de cofiaza del 95% etá dado por (t(0.05,g.l.6) =.): t p μ μ t p (0.596) μ μ (0.596) μ μ.0

11 Variaza decoocida y diferete a) El etadítico uado como etimador putual de la diferecia de media μ μ, erá, que e u etimador uficiete b) La variable aleatoria aociada co el etimador erá la variable t defiida como: t = ( μ μ ) c) El itervalo de cofiaza eta dado por el iguiete teorema, baado e la ditribució t co grado de libertad.

12 Teorema.. Si,,, o la media y la variaza de do,, repectivamete, tomada de muetra aleatoria de tamaño do poblacioe ormale e idepediete co variaza decoocida y diferete, etoce u itervalo de cofiaza para la diferecia etre μ media e (uevamete para el cao de muetra pequeña): μ t μ μ t Lo grado de libertad etá dado por: ( / / ) ν = ( ) ( ) ( ) / / / /( ) Nota: el valor obteido e redodea al etero má próimo.

13 Nota. Si llevamo a cabo u cálculo de itervalo de cofiaza para diferecia de media, upoiedo que la variaza o o iguale, e el dado cao que í lo fuera, perderíamo muy poco, y el itervalo obteido ería u poco coervador. El cao de que upogamo que la variaza o iguale, iedo que o lo o, o produce u error mayor que puede er coiderable por lo que ua ugerecia e uar variaza diferete como regla geeral.

14 Problema. Cierto metal e produce, por lo comú, mediate u proceo etádar. Se dearrolla u uevo proceo e el que e añade ua aleació a la producció del metal. Lo fabricate e ecuetra itereado e etimar la verdadera diferecia etre la teioe de ruptura de lo metale producido por lo do proceo. Para cada metal e eleccioa ejemplare y cada uo de éto e omete a ua teió hata que e rompe. La iguiete tabla muetra la teioe de ruptura de lo ejemplare, e kilogramo por cetímetro cuadrado: Si e upoe que el muetreo e llevó a cabo obre do ditribucioe ormale e idepediete, obteer lo itervalo de cofiaza etimado del 95 y 99% para la diferecia etre lo do proceo. Iterprete lo reultado.

15 Solució: Calculamo lo valore que eceitamo. Media S ( / / ) ( ) ( ) ( / / / ) /( ) ν = = 8 Ditributio Plot T, df= % de cofiaza Deity t =.0, t = X t μ μ t

16 Por lo tato: ( ).0 μ μ ( ) μ μ 9.49 Y para 99% de cofiaza Ditributio Plot T, df=8 0.4 t =.88, t = Deity X ( ).88 μ μ ( ) μ μ 5.99

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES.

LECTURA 04: INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. INTERVALOS DE CONFIANZA ENTRE DOS MEDIAS POBLACIONALES. ECTURA 4: INTERVAOS DE CONFIANZA PARA A MEDIA POBACIONA. INTERVAOS DE CONFIANZA ENTRE DOS MEDIAS POBACIONAES. TEMA 8: INTERVAOS DE CONFIANZA: INTRODUCCIÓN Y DEFINICIÓN. INTRODUCCION: Actualmete e debe

Más detalles

Salazar Rosales Leandro

Salazar Rosales Leandro Etadítica para la Admiitració Tarea: Itervalo de Cofiaza INTERVALO DE CONFIANZA Itervalo de Cofiaza: Rago de valore ituado alrededor del parámetro muetral etre lo cuale e ituará el parámetro poblacioal

Más detalles

ESTADISTICA II Guía de Estudio Corte #1 Prof. Mariugenia Rincón ESTIMACIÓN DE PARÁMETROS

ESTADISTICA II Guía de Estudio Corte #1 Prof. Mariugenia Rincón ESTIMACIÓN DE PARÁMETROS ESTADISTICA II Guía de Etudio Corte # Prof. Mariugeia Ricó ESTIMACIÓN DE PARÁMETROS Etadítica.- Ua etadítica e cualquier fució de la variable aleatoria que e obervaro e la muetra de maera que eta fució

Más detalles

DESCONOCIDA. Distribución de la media muestral. EJERCICIOS DE INFERENCIA SOBRE µ CON σ² DESCONOCIDA

DESCONOCIDA. Distribución de la media muestral. EJERCICIOS DE INFERENCIA SOBRE µ CON σ² DESCONOCIDA JRCICIO D INFRNCIA OBR CON σ² DCONOCIDA INFRNCIA OBR CON σ DCONOCIDA Ditribució de la media muetral Mucha vece deeamo realizar iferecia acerca de la de ua població pero o cotamo co la variaza poblacioal

Más detalles

DISTRIBUCIÓN BIDIMENSIONAL

DISTRIBUCIÓN BIDIMENSIONAL DISTRIBUCIÓ BIDIMESIOAL E ete tema e etudia feómeo bidimeioale de carácter aleatorio. El objetivo e doble: 1. Determiar i eite relació etre la variable coiderada(correlació).. Si ea relació eite, idicar

Más detalles

t-student y F-Snedecor

t-student y F-Snedecor t-studet y F-Sedecor Itroducció La prueba t-studet e utiliza para cotratar hipótei obre media e poblacioe co ditribució ormal. Tambié proporcioa reultado aproimado para lo cotrate de media e muetra uficietemete

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

LECTURA 05: INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. INTERVALOS DE CONFIANZA PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONES.

LECTURA 05: INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. INTERVALOS DE CONFIANZA PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONES. Uiveridad Lo Ágele de Chimbote LECTURA 05: ITERVALOS DE COFIAZA PARA LA PROPORCIÓ POBLACIOAL. ITERVALOS DE COFIAZA PARA LA DIFERECIA ETRE DOS PROPORCIOES POBLACIOES. TEMA : ITERVALOS DE COFIAZA PARA LA

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Contraste de hipótesis

Contraste de hipótesis Capítulo 6 Cotrate de hipótei Termiamo eta itruió e la iferecia etadítica co ete tercer método. Co frecuecia, el problema plateado o e implemete la etimació de u parámetro, io el dieño de ua regla de deciió

Más detalles

Comparación de dos Muestras

Comparación de dos Muestras STATGRAPHICS Rev. 4/5/007 Comparació de do Muetra Reume El procedimieto de Comparació de do Muetra etá dieñado para comparar do muetra idepediete de dato de variable. La prueba o corrida para determiar

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

DETERMINACIÓN DEL TAMAÑO MUESTRAL PARA LA SELECCIÓN DE POBLACIONES CON DISTRIBUCIÓN WEIBULL

DETERMINACIÓN DEL TAMAÑO MUESTRAL PARA LA SELECCIÓN DE POBLACIONES CON DISTRIBUCIÓN WEIBULL DETERMINACIÓN DEL TAMAÑO MUESTRAL PARA LA SELECCIÓN DE POBLACIONES CON DISTRIBUCIÓN WEIBULL Alejadro Quiroz Zárate & Erique Villa Diharce Comuicació Técica No I-06-3/28-08-2006 (CC/CIMAT) Determiació del

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Intervalos de confianza para la media

Intervalos de confianza para la media Itervalos de cofiaza para la media Ejercicio º 1.- Las vetas diarias, e euros, e u determiado comercio sigue ua distribució N(950, 200). Calcula la probabilidad de que las vetas diarias e ese comercio:

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Herramientas estadísticas (HE)

Herramientas estadísticas (HE) Herramieta etadítica (HE) Realizado por: Guillermo Sáchez. Actualizado: 1-0-19 E ete documeto e decribe la herramieta etáditica (HE web) dipoible para realizar calculo etaditico dede la web de ENUSA o

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 3, Parte II, Opció A Juio, Ejercicio 3, Parte II, Opció B Reserva

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció B Reserva, Ejercicio 4,

Más detalles

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p :

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p : Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué proporció de mujeres espera compartir las tareas de la casa co su pareja?

Más detalles

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferecia proporcioes E alguos diseños ivestigació, el pla muestral requiere seleccioar dos muestras ipedietes, calcular las proporcioes muestrales y usar

Más detalles

(d) Observando la solución desarrollada en (a) podemos calcular el capital acumulado al final de cada año:

(d) Observando la solución desarrollada en (a) podemos calcular el capital acumulado al final de cada año: COLEGIO COLOMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS PROGRESIONES/ SECUENCIAS/ SUCESIONES PROFESORES: RAÚL MARTÍNEZ Y JESÚS VARGAS Problema Jua Guillermo ivierte milloe de peo durate año, le pagará a

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA TEMA 6. INTRODUCCIÓN A LA INFERENCIA ETADÍTICA 6.. Itroducció 6.. Coceptos básicos 6.3. Muestreo aleatorio simple 6.4. Distribucioes asociadas al muestreo 6.4.. Distribució Chi-Cuadrado 6.4.. Distribució

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

Contraste sobre la media de una distribución Normal de varianza conocida

Contraste sobre la media de una distribución Normal de varianza conocida Cotrate de hipótei etadítica E la primera parte de la iferecia etadítica e ha abordado el problema de la etimació de parámetro, e ella e ha vito cómo cotruir etimadore de parámetro poblacioale, e ha iitido

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema Sitema de cola Ua cola e produce cuado la demada de u ervicio por parte de lo cliete excede la capacidad del ervicio. Se eceita coocer (predecir) el ritmo de etrada de lo cliete y el tiempo de ervicio

Más detalles

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra:

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra: T ema 8 ESTIMACIÓN Coceptos previos Població y muestra: Població se refiere al cojuto total de elemetos que se quiere estudiar ua o más características. Debe estar bie defiida. Llamaremos N al úmero total

Más detalles

INFERENCIA, ESTIMACIÓN Y CONTRASTE DE HIPÓTESIS

INFERENCIA, ESTIMACIÓN Y CONTRASTE DE HIPÓTESIS 4 INFERENCIA, ESTIMACIÓN Y CONTRASTE DE IÓTESIS - INTRODUCCIÓN La Etadítica decriptiva y la teoría de la robabilidad va a er lo pilare de u uevo procedimieto (Etadítica Iferecial) co lo que e va a etudiar

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. Població: El cojuto de todos los elemetos o idividuos que posee ua determiada característica o cualidad de iterés. Existe situacioes e las que o es posible aalizar

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Ete documeto e de ditriució gratuita llega gracia a Ciecia Matemática www.cieciamatematica.com El maor portal de recuro educativo a tu ervicio! Itituto Tecológico de Apizaco Departameto de Ciecia Báica

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 008 (Modelo 6) Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 008 (MODELO 6) OPIÓN A EJERIIO 1_A (3 putos) Ua empresa produce botellas de leche etera

Más detalles

MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO

MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO El muestreo estratificado cosiste e dividir la població e subcojutos o estratos, y de cada uo de ellos seleccioar ua muestra probabilística; de maera idepediete de u estrato a otro. Existe tres razoes

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua (ajuap@uoc.edu), Máimo Sedao (msedaoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

Comparación. Variable Cuantitativa. Ejemplo. Comparación. Variable cuantitativa. Independientes 1. Comparación. Variable Cuantitativa.

Comparación. Variable Cuantitativa. Ejemplo. Comparación. Variable cuantitativa. Independientes 1. Comparación. Variable Cuantitativa. Comparació. Variable Cuatitativa Do Muetra Iepeiete Comparació. Variable Cuatitativa Do Muetra Do ituacioe al comparar grupo: Muetra Iepeiete Muetra Relacioaa i o o: Pareaa o Emparejaa J.F. Caaova Do muetra

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Capítulo III DITRIBUCIOE BIDIMEIOALE 3 Itroducció Etudiaremo do caracterítica de u mimo elemeto de la població (altura peo, do aigatura, logitud latitud) De forma geeral, i e etudia obre ua mima població

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia)

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia) Distribucioes de frecuecia: PRESENTACIONES ESTADISTICAS So tablas e las que se agrupa lo valores posibles de ua variable y se registra el úmero de valores observados que correspode a cada clase. Como ejemplo

Más detalles

11 I N F E R E N C I A E S T A D Í S T I C A I (INTERVALOS DE CONFIANZA)

11 I N F E R E N C I A E S T A D Í S T I C A I (INTERVALOS DE CONFIANZA) I N F R N C I A S T A D Í S T I C A I (INTRVALOS D CONFIANZA) Sea Ω ua població y sobre ella ua variable aleatoria X que sigue ua ley ormal N(µ; ), co media µ descoocida y desviació típica coocida. Co

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL.

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. E estadística, la distribució biomial es ua distribució de probabilidad discreta que mide el úmero de éxitos e ua secuecia de esayos

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

14. Técnicas de simulación mediante el método de Montecarlo

14. Técnicas de simulación mediante el método de Montecarlo 4. Técicas de simulació mediate el método de Motecarlo 4. Técicas de simulació mediate el método de Motecarlo Qué es la simulació? Proceso de simulació Simulació de evetos discretos Números aleatorios

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN POR INTERVALOS DE CONFIANZA Estimació por itervalos de cofiaza. I.E.. A uqueira I pag. Coceptos ETIMACIÓN POR INTERVALO DE CONFIANZA E este tema vamos a estudiar como estimar, es decir proosticar, u parámetro de la població, geeralmete

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2004 (Juio Modelo 5) Solucioes Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x+y 6 3x-2y 13 Sea el sistema de iecuacioes. x+3y -3 x 0 (2 putos) Dibuje el recito cuyos

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

4 Contrastes del Chi 2 de bondad del ajuste

4 Contrastes del Chi 2 de bondad del ajuste 4 Cotrastes del Chi de bodad del ajuste U cotraste de bodad del ajuste es de la forma o H 0 : P = P 0 frete a H 1 : P P 0 H 0 : P {P θ } θ Θ frete a H 1 : P / {P θ } θ Θ 4.1 Cotraste del χ para modelos

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles

Soluciones problemas del Tema 2

Soluciones problemas del Tema 2 1 Solucioes problemas del Tema 1) a) E(W ) = E(X + Y + Z) = E(X) + E(Y ) + E(Z) = 0; V ar(w ) = V ar(x) + V ar(y ) + V ar(z) + (Cov(X, Y ) + Cov(X, Z) + Cov(Y, Z)) = 1 + 1 + 1 + ( 1 + 0 ) 1 4 4 = 3 b)

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

OPCIÓN A EJERCICIO 1_A x 1 0 1

OPCIÓN A EJERCICIO 1_A x 1 0 1 IES Fco Ayala de Graada Sobrates de 006 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x 1 0 1 Sea las matrices A = y B =. 1 x+1 (1 puto) Ecuetre el valor o valores de x de forma

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación.

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación. Teoría de la Estimació Estadística Teoría de la Estimació Estadística Razó para estimar Los admiistradores utiliza las estimacioes porque se debe tomar decisioes racioales, si que tega la iformació pertiete

Más detalles

Estimación puntual y por intervalos

Estimación puntual y por intervalos 0/1/011 Aálisis de datos gestió veteriaria Estimació putual por itervalos Departameto de Producció Aimal Facultad de Veteriaria Uiversidad de Córdoba Córdoba, 30 de Noviembre de 011 Estimació putual por

Más detalles

+ + + = 6 no parece ayudarnos a comprender cómo llegar a conjeturar esta relación. Intentamos acá una aproximación geométrica.

+ + + = 6 no parece ayudarnos a comprender cómo llegar a conjeturar esta relación. Intentamos acá una aproximación geométrica. http://www.ricomatematico.com La fórmula para la suma de los cuadrados de los primeros úmeros aturales obteida visualmete Mario Augusto Buge Uiversidad de Bueos AIres Ciclo Básico Comú Departameto de Matemática

Más detalles

TEMA 13 INTRODUCCIÓN A LA VALORACIÓN DE ACTIVOS FINANCIEROS

TEMA 13 INTRODUCCIÓN A LA VALORACIÓN DE ACTIVOS FINANCIEROS Diapoitiva. Cocepto y caracterítica de lo activo fiaciero 2. Reta variable, tipo y criterio de valoració 3. Reta fija, tipo y criterio de valoració 4. Duratió y covexidad de u activo fiaciero de reta fija

Más detalles

Estadístico. Parámetro

Estadístico. Parámetro La iferecia estadística comprede el establecer ciertos juicios co respecto a algo después de examiar solamete ua parte o muestra de ello. Así, se ofrece ua muestra gratis de u uevo producto alimeticio

Más detalles

UNIDAD 7: ESTADÍSTICA INFERENCIAL

UNIDAD 7: ESTADÍSTICA INFERENCIAL UNIDAD 7: ESTADÍSTICA INFERENCIAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1.- VARIABLES ESTADÍSTICAS. PARÁMETROS... 3.- DISTRIBUCIONES DE PROBABILIDAD... 3 3.1.- Distribució Biomial... 4 3..- Distribució

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO 005-06 Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3,

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles