ACTIVIDAD DE APRENDIZAJE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ACTIVIDAD DE APRENDIZAJE"

Transcripción

1 ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática Currículum Carrera/s Todas N APRENDIZAJE(S) ESPERADO(S) Reconoce los diferentes tipos de funciones elementales, sus gráficas y componentes. Describe el dominio y recorrido de funciones polinomiales, racionales, radicales, logarítmicas y exponenciales. Identifica la pre-imagen y la imagen de funciones elementales. Calcula imágenes de funciones polinomiales, racionales y radicales. Calcula pre-imágenes de funciones lineales. Dibuja gráficos de funciones elementales. Resuelve problemas de fenómenos modelados con funciones polinomiales. NOMBRE DE LA ACTIVIDAD Concepto de función y aplicaciones de la función lineal Modalidad Presencial No Presencial Duración de la actividad (horas): Forma de trabajo: Individual Grupal - Tamaño del grupo: Recursos de información: Impreso Tecnológico Informático Lugar: Sala de clases Material de apoyo para la actividad: Laboratorio (especifique) Taller (especifique) Terreno (especifique) Otros (especifique) DESCRIPCIÓN DE LA ACTIVIDAD Secuencia didáctica - roles de estudiantes y docentes - criterios de evaluación 1

2 I Concepto de Función, Preimagen e Imagen FUNCIÓN Una función f es una regla de correspondencia, que asocia a cada objeto x (preimagen) de un conjunto denominado Dominio, con un solo valor f(x) (imagen) de un segundo conjunto denominado Recorrido. Las funciones se pueden representar en forma algebraica y a través de gráficos. Ejemplo La función cúbica se puede representar: 3 Forma algebraica f ( x) x Forma gráfica 2

3 1. Una compañía de seguros, examinó el registro de un grupo de individuos hospitalizados por una enfermedad en particular. Se encontró que la proporción total de quienes habían sido dados en alta al final de t días de hospitalización, está dada por p t, donde: 300 p ( t) t a) Qué proporción de individuos han sido dados de alta al comienzo de la hospitalización? b) Cuál es el porcentaje de individuos que han sido dados de alta al final del día 100? c) Cuántos individuos han sido dados de alta al final del día 300, si la compañía examinó a un total de 800 personas? 3 2. La altura promedio H, en centímetros de un niño de A años de edad se puede estimar mediante la función H(A) 6,5 A 50. a) Cuál es la altura promedio de los niños a los 8 años? b) Cuál es la altura promedio de los niños a los 6 años? c) Cuál es la altura promedio de los recién nacidos? 3. Suponga que t horas después de la medianoche, la temperatura en Santiago era 1 2 C( t) t 4t 10 grados Celsius. 6 a) Cuál era la temperatura a las 5 p.m.? b) Cuánto aumentó o disminuyó la temperatura entre las 9:00 a.m. y las 09:00 p.m.? 4. Las ventas anuales estimadas, en dólares, para un nuevo año de una empresa de calzado, están dadas por la función v(t) t, donde t representa el tiempo medido en años a partir del año a) Determinar las ventas anuales para el año b) Determinar las ventas anuales para el año

4 II Función Lineal FUNCIÓN LINEAL Una función lineal es de la forma: a 0. f ( x) a x b, donde a y b son números reales y La gráfica de la función lineal f, es una línea recta en donde el número a es la pendiente de la recta y b es el coeficiente de posición. Si a 0 la función recibe el nombre de función constante y su gráfica corresponde a una recta paralela al eje x que corta al eje y en b. 5. Una empresa que fabrica cintas de audio, estima que el costo C (en dólares) al producir x cintas es una función de la forma: C x 20 x 100. a) Calcule el costo al producir 50 cintas de audio. b) Si el costo es US$1.900, cuántas cintas de audio se produjeron? c) Cuál es el dominio de la función costo para que tenga sentido dentro del contexto? 6. El precio en pesos de un computador está dado por la función: P x 48 x , donde x se mide en meses. a) Cuál es el precio inicial del computador? b) En qué momento el precio del computador es la mitad de su precio inicial? c) Cuál es el dominio de la función precio para que tenga sentido dentro del contexto? 7. El crecimiento de un feto de más de 12 semanas de gestación se calcula, donde L es la longitud (en cm) y t es el mediante la función L t 1,53 t 6, 7 tiempo (en semanas). Calcula la edad de un feto cuya longitud es 28,49 centímetros. 4

5 8. Admitamos que el costo en pesos, de producción de un número x de periódicos es: C x x a) Cuál es el costo de producir periódicos? b) Cuántos periódicos se han producido si el costo total fue de $ ? III Aplicaciones de la Función Lineal FUNCIONES LINEALES DE INGRESO Y COSTO El Ingreso de una empresa ( I ), en un determinado período de tiempo, está dado por las ventas de bienes o servicios en ese período. Por ello lo podemos expresar como el producto de la cantidad vendida ( x ) por el precio unitario del bien o servicio ( p ). Esto es: I( x) p x Ejemplo: El precio de venta de una cámara fotográfica es de $ Luego La función de ingreso es: I( x) x ; Donde x son las unidades vendidas. El Costo ( C ): Es la expresión cuantitativa monetaria, representativa del consumo necesario de factores de la producción, que se emplean para producir un bien o prestar un servicio, este se divide en dos categorías: Costos fijos ( C ): Son costos son independientes de las cantidades de un artículo f que se produzca o un servicio que se preste (por ejemplo: alquiler del local, determinados impuestos, etc.). Costos variables ( C ): Son costos que dependen de la cantidad que se produzca de v ese artículo ( x ) o que se preste del servicio, (por ejemplo: costos de materiales, de mano de obra productiva, etc.) Así C( x) C C x ; Donde x son las unidades producidas. f v Ejemplo: El costo variable de fabricar una cámara fotográfica es de $ por unidad y los costos fijos por mes son de $ Luego la función de costo de fabricar x cámaras fotográficas en un mes es de: C( x) x ; Donde x son las unidades producidas. 5

6 9. Una tienda llamada TODO A MIL vende todos sus productos a $ Si x representa el número de artículos vendidos: a) Escriba la función de precio P(x), en donde x es el número de artículos vendidos. b) Escriba la función de ingreso I (x), en donde x es el número de artículos vendidos. c) Cuál es el dominio de estas funciones para que tengan sentido dentro del contexto? 10. Cierta empresa fabrica poleras, por cada polera recibe $ Si x representa la cantidad de poleras producidas. a) Determinar una función o fórmula para el ingreso en dinero por polera producida (denotar la función por I( x )). b) Si el fabricante tiene costos fijos mensuales de $ y costos variables por polera de $500, Hallar una función o fórmula para el costo en función de las poleras producidas (denotar la función por Cx ( )). c) Cuál es el ingreso si se venden 38 poleras? d) Cuál es el costo de producir 25 poleras? 11. Una empresa que fabrica vajilla desechable, tiene costos fijos de US$3.000 mensuales, y el costo de la mano de obra y del material es de US$50 por vajilla. Determinar la función de costos, es decir, el costo total como una función del número de vajilla producida. Cuál es el costo de producir 22 vajillas? 12. Suponga que se espera que un objeto de arte adquirido por $ aumente su valor a una razón constante de $500 por año durante los próximos 40 años. a) Escriba la función que prediga el valor de la obra de arte en los próximos cuarenta años. b) Cuál será su valor, 31 años después de la fecha de adquisición? c) Cuántos años transcurren para que la obra de arte tenga un valor de $55.500? d) Cuál es el intervalo de tiempo en años para el cual tiene sentido la función valor de la obra de arte? e) Cuál es el intervalo en pesos en el cual fluctúa el valor de la obra de arte? 6

7 13. Una planta tiene la capacidad para producir desde 0 a 100 computadores por día. El costo fijo diario de la planta son dólares, y el costo variable (mano de obra y materiales) para producir un computador es 805 dólares. a) Escriba la función de costo total de producir x computadores en un día. b) Escriba la función de costo unitario (costo promedio por computador) en un día. c) Cuál es el número de computadores diarios para los cuales la función costo unitario, tiene sentido dentro del contexto? d) Cuál es el intervalo en dólares en el cual fluctúa el costo unitario de los computadores? IV Gráfica de la Función Lineal La gráfica de la función lineal corresponde a una línea recta A partir del gráfico podemos encontrar la función lineal algebraicamente, basta conocer dos puntos de ella, sean A ( x, y ) 1 1 y B ( x, y ) los puntos. 2 2 Luego a través de la Ecuación de la recta, dado un punto y la pendiente, se encontrara la función, y y a x 1 x 1 Pendiente de una recta, representa una medida de inclinación de la recta con respecto al eje x. Se puede determinar con la expresión y y a 2 1 x x 2 1 7

8 14. Los alumnos de recursos naturales deciden intervenir en una pesquera del sur de Chile para evitar la escases. La siguiente gráfica indica la producción después de la intervención. a) Cuál es la producción al inicio de la intervención? b) Cuál fue la producción de la empresa a 20 meses de la intervención? c) Si se quiere que la producción sea de peces mensuales. Cuántos años debieron pasar desde la intervención? 15. El valor de un automóvil varía dependiendo de los años de antigüedad que tenga. La siguiente gráfica indica el valor del automóvil en el tiempo. a) Cuál es el valor inicial del automóvil? b) Cuál es el valor de un automóvil de 4 años y medio de antigüedad? c) Si una persona quiere vender el automóvil en $ Cuántos años debe conservar el vehículo? d) En cuánto tiempo el automóvil se desvaloriza por completo? 8

9 16. En un taller mecánico se analizan los ingresos mensuales por cambio de bujías que requieren los vehículos. Estos ingresos están modelados por la siguiente gráfica: a) Cuál es el ingreso al cambiar las bujías a 50 automóviles? b) Si el ingreso del mes fue de $ A cuántos autos les cambiaron las bujías? 17. La temperatura medida en grados Fahrenheit es una función lineal de la temperatura medida en grados Celsius. El siguiente gráfico modela esta situación: a) Cuántos grados Fahrenheit son 15 C? b) Cuántos grados Celsius son 68 F? 9

10 18. El costo promedio de arriendo en miles de pesos, de un local en un centro comercial pequeño esta dado por C ( x) 15x 200, donde x es el número de años de arriendo. Determine la gráfica correspondiente a la función, fundamente su respuesta. 19. Una empresa de limpieza de automóviles ofrece una tarifa especial a sus clientes frecuentes que laven su vehículo como mínimo 8 veces en el mes y como máximo 16 veces en el mes. La tarifa Cliente frecuente está dada por T ( x) 2x 4 en miles de pesos, donde x corresponde al número de lavados realizados. Determine la gráfica correspondiente a la función, fundamente su respuesta. 10

11 20. En un circuito eléctrico la corriente, medida en amperes, varía desde los 4 hasta x los 20 amperes. Si se encuentra que el voltaje, medido en volts, es V ( x), 2 donde x es la corriente. Determine la gráfica correspondiente a la función, fundamente su respuesta. SOLUCIONES 1. a) Al comienzo de la hospitalización ha sido dado de alta 0 pacientes; p ( 0) 0. b) Al final del día 100 ha sido dado de alta el 57,8% de los individuos; 37 p ( 100) 57,8% c) Al final del día 300 han sido dados de alta 700 individuos; p (300) a) La altura promedio de los niños a los 8 años es 102 cm. b) La altura promedio de los niños a los 6 años es 89 cm. c) La altura promedio de los niños recién nacidos es de 50 cm. 3. a) La temperatura a las 5 p.m. es 29,8 Grados Celsius; C 17 29, 8. b) Disminuyó en 12 Grados Celsius; C 9 32, 5 y 21 20,5 32,5 20,5 12 C. 11

12 4. a) Las ventas anuales para el año 2010 serán de dólares; v b) Las ventas anuales para el año 2015 serán de dólares; v a) El costo al producir 50 cintas de audio es dólares. b) Se producen 90 cintas de audio c) El dominio son enteros mayores o iguales que 0; Dom C x / x 0 6. a) El precio inicial del computador es $ ; P b) En 30 meses el precio del computador será la mitad del valor inicial c) El Dominio son los enteros desde 0 hasta 36; Dom P x / 0 x La edad del feto es 23 semanas 8. a) El costo es de $ b) Se han producido 800 periódicos 9. a) La función precio es P x b) La función ingreso es I x x c) El Dominio de las funciones son los enteros mayores o iguales que 0; Dom P,I x / x a) La función ingreso es I x x b) La función costo es C x x c) El ingreso al vender 38 poleras es $ ; I d) El costo al producir 25 poleras es $ ; C La función costo es C x x El costo al producir 22 vajillas es dólares; C

13 12. a) La función que predice el valor de la obra de arte es V x x con 0 x 40 b) Su valor será de $65.500; V c) Deben transcurrir 11 años; x x 11 50, d) El Dominio son los reales desde 0 hasta 40; Dom V x / 0 x 40 e) El Recorrido son los reales desde hasta ; Rec V y / y a) La función costo total es; C x x b) La función costo unitario o costo promedio es; c) El Dominio son los enteros desde 1 hasta 100; Dom CM x / 1 x 100 d) El Recorrido son los reales desde 855 hasta 5.805; Rec CM y / 855 y C x CM(x) 805 x x 14. a) La producción al inicio de la intervención es de peces. b) La producción a 20 meses de la intervención fue peces; y 50x 150 c) Deben transcurrir 3 años y 1 mes. 15. a) El valor inicial del automóvil es de $ b) El valor del automóvil de 4 años y medio de antigüedad es de $ ; y 500x 7000 c) Debe conservar el vehículo por 2 años y 3 meses. d) A los 14 años de antigüedad el automóvil se desvaloriza por completo. 16. a) El ingreso es de $ ; y x. b) Se cambiaron las bujías a 25 automóviles. 13

14 17. a) 15 Celsius son 59 Fahrenheit; y 1,8 x 32. b) 68 Fahrenheit son 20 Celsius. 18. La gráfica 1 es la correcta. 19. La gráfica 3 es la correcta. 20. La gráfica 2 es la correcta. 14

Algebra Sigla MAT2001

Algebra Sigla MAT2001 TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Nombre Asignatura: Concepto de Función Algebra Sigla MAT2001 Semana Nº: 1 Actividad Nº 1 Lugar APRENDIZAJES ESPERADOS: Aprendizaje 1 Sala de clases Otro

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT33 Nombre Curso Cálculo I Créditos 1 Hrs. Semestrales Totales 5 Requisitos MAT o MAT1 Fecha Actualización Escuela o Programa Transversal Programa de Matemática Currículum

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 0 Hrs. Semestrales Totales 5 Requisitos MAT00 o MAT00 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

MATEMÁTICAS 9. TALLER DE FUNCIONES No 1

MATEMÁTICAS 9. TALLER DE FUNCIONES No 1 MATEMÁTICAS 9 TALLER DE FUNCIONES No 1 1. elabora una tabla de valores para cada función y traza su respectiva gráfica. Dar los valores a x desde -3 hasta 3. a. f(x) = x 5 b. f(x) = 9x + 4 2. determina

Más detalles

GUÍA N 1 DE CÁLCULO I Funciones y sus Gráficas

GUÍA N 1 DE CÁLCULO I Funciones y sus Gráficas GUÍA N 1 DE CÁLCULO I Funciones y sus Gráficas I Funciones En esta guía trabajaremos con funciones polinómicas tanto en su forma algebraica como gráfica. Tendrás que graficar funciones lineales y cuadráticas

Más detalles

Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT2001

Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT2001 TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Nombre Asignatura: Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT001 Semana Nº: 3-4 Actividad Nº 5 Lugar Sala de clases Otro Lugar

Más detalles

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución

Más detalles

UNIDAD 2: Variación Directamente Proporcional y Funciones Lineales.

UNIDAD 2: Variación Directamente Proporcional y Funciones Lineales. UNIDAD 2: Variación Directamente Proporcional y Funciones Lineales. GRADO DE DIFICULTAD BAJO 1. Dos variables son directamente proporcionales si: A) Al aumentar un valor de una de ellas el valor correspondiente

Más detalles

Ecuaciones: Aplicaciones

Ecuaciones: Aplicaciones Carlos A. Rivera-Morales Métodos Cuantitativos I Tabla de Contenido Contenido ales en una variable real dráticas en una variable real : Contenido Discutiremos: modelado matemático mediante ecuaciones lineales

Más detalles

GUIA N 4: FUNCIÓN CUADRATICA. Una función cuadrática es aquella cuya característica principal es que su grado es dos, es decir, es de la forma

GUIA N 4: FUNCIÓN CUADRATICA. Una función cuadrática es aquella cuya característica principal es que su grado es dos, es decir, es de la forma GUIA N 4: FUNCIÓN CUADRATICA Definición: Una función cuadrática es aquella cuya característica principal es que su grado es dos, es decir, es de la forma con y números reales y Solución de una ecuación

Más detalles

PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA PRIMER NIVEL MEDIO

PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA PRIMER NIVEL MEDIO PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA PRIMER NIVEL MEDIO VALIDACIÓN DE ESTUDIOS DECRETO Nº257 LEA LA INFORMACIÓN Y RESPONDA LAS PREGUNTAS 1 Y 2. 1. Francisco desea pintar una pieza que tiene dos paredes

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT0 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT00 o MAT001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

Aplicaciones de la línea recta

Aplicaciones de la línea recta 1 FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 4 SEMESTRE II RESEÑA HISTÓRICA Aplicaciones de la línea recta RESEÑA HISTÓRICA EUCLÍDES Nació: 365 AC en Alejandría,

Más detalles

Las únicas funciones cuyas gráficas son rectas son las siguientes:

Las únicas funciones cuyas gráficas son rectas son las siguientes: Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

EC = (f(x) p 1 )dx EP = (p 1 g(x))dx. El valor promedio de una función y = f(x) en su dominio [a, b], viene dado por. V P = 1 b.

EC = (f(x) p 1 )dx EP = (p 1 g(x))dx. El valor promedio de una función y = f(x) en su dominio [a, b], viene dado por. V P = 1 b. Universidad de Talca. Matemáticas II Algunas aplicaciones de la Integral indefinida 1) Excedente (Superávit) de Consumidor y Productor El precio de equilibrio es aquel en que la demanda de un producto

Más detalles

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez

Ejercicios de Matemática para. Bachillerato. Miguel Ángel Arias Vílchez Ejercicios de Matemática para Bachillerato Miguel Ángel Arias Vílchez 009 Profesor Miguel Ángel Arias Vílchez 009 Se pretende mediante este material contribuir a que los estudiantes que se preparan de

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3 PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen

Más detalles

EL PROBLEMA DE LA TANGENTE

EL PROBLEMA DE LA TANGENTE EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar

Más detalles

PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS

PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS Ejemplo: Un minorista recibe un cargamento de 10.000 Kg. De arroz que se consumirán en un período de 5 meses a una razón constante de 2.000 kg. Por mes.

Más detalles

Funciones. Rectas y parábolas

Funciones. Rectas y parábolas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas

Más detalles

( x) Coordinación de Nivel Curso: 2º Medio Profesora: María Victoria Torres M. Guía de Repaso Evaluación Global Primer Semestre. Nombre: Fecha: 2011

( x) Coordinación de Nivel Curso: 2º Medio Profesora: María Victoria Torres M. Guía de Repaso Evaluación Global Primer Semestre. Nombre: Fecha: 2011 Coordinación de Nivel Curso: º Medio Profesora: María Victoria Torres M. Guía de Repaso Evaluación Global Primer Semestre Nombre: Fecha: 0 ECUACIONES CON DENOMINADORES ALGEBRAICOS 3x x 9 EJEMPLO : x 3

Más detalles

Ejercicios ( ) EJERCICIOS PRIMERA EVALUACIÓN PARA ALUMNOS CON MATEMATICAS DE 3º DE ESO PENDIENTE

Ejercicios ( ) EJERCICIOS PRIMERA EVALUACIÓN PARA ALUMNOS CON MATEMATICAS DE 3º DE ESO PENDIENTE Pendientes º ESO Primera evaluación Pág. / 9 Temario TEMA.- NÚMEROS RACIONALES. Repaso breve de números racionales y operaciones en forma de fracción. Repaso de las formas decimales y de la fracción generatriz.

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

13 FUNCIONES LINEALES Y CUADRÁTICAS

13 FUNCIONES LINEALES Y CUADRÁTICAS 3 FUNCINES LINEALES CUADRÁTICAS EJERCICIS PARA ENTRENARSE Definición y caracterización de una función lineal 3.8 Una función viene dada por la siguiente tabla. x 0 3 y 0 3 6 9 Expresa la función mediante

Más detalles

Desigualdades lineales

Desigualdades lineales SECCIÓN.7 Desigualdades 77 Ponga atención especial a las reglas 3 y 4. La regla 3 establece que podemos multiplicar (o dividir) cada miembro de una desigualdad por un número positivo, pero la regla 4 señala

Más detalles

APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA

APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Introducción APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Se denomina solución de una ecuación al valor o conjunto de valores de la(s) incógnita(s) que verifican la igualdad. Así por ejemplo decimos que x

Más detalles

Dos pares ordenados seran iguales si cada una de sus componentes son respectivamente iguales, es decir: (a, b) = (c, d) a = c y b = d

Dos pares ordenados seran iguales si cada una de sus componentes son respectivamente iguales, es decir: (a, b) = (c, d) a = c y b = d El Plano Cartesiano EDUCACIÓN MATEMATICA 1/10 El plano cartesiano o sistema de ejes coordenados debe su nombre al matemático francés Rene Descartes, es utilizado principalmente en la Geometría Analítica

Más detalles

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES Colegio SSCC Concepción Depto. de Matemáticas Unidad de Aprendizaje: FUNCIONES Capacidades/Destreza/Habilidad: Racionamiento Matemático/Calcular/ Resolver Valores/ Actitudes: Curso: E.M. 10 Respeto, Solidaridad,

Más detalles

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).

Más detalles

Guía Aplicación de Funciones Jorge Gaona

Guía Aplicación de Funciones Jorge Gaona Guía Aplicación de Funciones Jorge Gaona 1. Sea K : [400; 2500]! R p! p 200 + 25 una función que entrega la cantidad de kilos de palta K (kg) que vende una comerciante, cuando se conoce el precio de venta

Más detalles

Ecuaciones de rectas

Ecuaciones de rectas SECCIÓN.0 Rectas Figura 5 P(, ) Q(8, 5) Ejemplo Determinación de la pendiente de una recta que pasa por dos puntos Calcule la pendiente de la recta que pasa por los puntos P, Q8, 5. Puesto que dos puntos

Más detalles

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta.

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA

Más detalles

Hoja 6: Estadística descriptiva

Hoja 6: Estadística descriptiva Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

CINEMATICA. es la letra griega delta y se utiliza para expresar la variación.

CINEMATICA. es la letra griega delta y se utiliza para expresar la variación. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: FISICA NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION PERIODO

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

4. El largo de un terreno rectangular mide 3 metros más que su ancho, determine la expresión algebraica que representa el perímetro del terreno.

4. El largo de un terreno rectangular mide 3 metros más que su ancho, determine la expresión algebraica que representa el perímetro del terreno. GUÍA DE EJERCICIOS Nº 4 Contenidos: Lenguaje algebraico: Utiliza letras para representar números desconocidos Evaluación de expresiones algebraicas: Hallar el valor numérico de una expresión 1. En cada

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

La concentración de ozono contaminante, en microgramos por metro cúbico, en una ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados

Más detalles

Matemáticas. Selectividad ESTADISTICA COU

Matemáticas. Selectividad ESTADISTICA COU Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 8 Nombre: Concepto de función, función lineal y su gráfica. Objetivo de la asignatura: En esta sesión el estudiante aplicará los métodos para la obtención de la

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás

Más detalles

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS www.matesronda.net José A. Jiménez Nieto FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 1. FUNCIONES EXPONENCIALES. Una función se llama eponencial si es de la forma y = a, donde la base a es un número real cualquiera

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador Apartado postal 17-01-218 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: MATEMATICA I CÓDIGO: CARRERA: NIVEL: BIOQUIMICA CLÍNICA, MICROBIOLOGÍA, HISTOCITOLOGÍA I No. CRÉDITOS: CRÉDITOS TEORÍA: CRÉDITOS PRÁCTICA:

Más detalles

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

GUIA DE EJERCICIOS. d) 12x - 9y + 2 = 0 e) 2x+ y - 6 = 0

GUIA DE EJERCICIOS. d) 12x - 9y + 2 = 0 e) 2x+ y - 6 = 0 ECUACIÓN DE LA RECTA Y PENDIENTE GUIA DE EJERCICIOS ) Encontrar la pendiente de la recta determinada por cada uno de los guientes pares de números: a) (, ) y (5, ) b) (, -3) y (-, ) c) (, 6) y (8, 56)

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 11 de septiembre de 2003 1. Introducción Un LP donde se requiere que todas las variables sean enteras se denomina un problema

Más detalles

LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN

LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN N ÍTEMS CALIFICACIÓN 1 Presenta la carátula 1 1.1 No presenta la carátula 0 2 Presenta la Introducción 1 2.1 No presenta la Introducción 0 3 Explica con precisión

Más detalles

Guía de Ejercicios. Matemática 11

Guía de Ejercicios. Matemática 11 Guía de Ejercicios Matemática 11 Matemática 11 Resolver: 1) 5 + 3x 31 3x 5) 3(2x 1) > 4+5(x 1) 6) x + 4 3 > 2x 3 +1 4 1 7) 4 (2x 1) x

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página 5 REFLEIONA RESUELVE Asocia a cada una de las siguientes gráficas una ecuación de las de abajo: A B C D 80 (, π) 50 0 5 E F G H 0 (5, ) 50 0 50 0 (, ) 5 I J K L LINEALES

Más detalles

Funciones y gráficas (1)

Funciones y gráficas (1) Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

Trabajo de Matemáticas AMPLIACIÓN 3º ESO

Trabajo de Matemáticas AMPLIACIÓN 3º ESO Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

Semana Nº: 1 Actividad Nº 2 Lugar Otro Lugar (Donde se desarrollen las horas No presenciales PEV) APRENDIZAJES ESPERADOS:

Semana Nº: 1 Actividad Nº 2 Lugar Otro Lugar (Donde se desarrollen las horas No presenciales PEV) APRENDIZAJES ESPERADOS: TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Función Lineal y su Gráfica Nombre Asignatura: Algebra Sigla MAT2001 Sala de clases Semana Nº: 1 Actividad Nº 2 Lugar Otro Lugar (Donde se desarrollen las

Más detalles

Tema 3: Planeamiento de la Utilidad

Tema 3: Planeamiento de la Utilidad Universidad de Los Andes Núcleo Universitario Rafael Rangel Departamento de Ciencias Económicas, Administrativas y Contables Área: Finanzas Asignatura: Financiamiento I Prof.: Angel Higuerey G. Tema 3:

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

Ecuaciones, ecuación de la recta y sistemas

Ecuaciones, ecuación de la recta y sistemas Ecuaciones, ecuación de la recta y sistemas Ecuaciones Una ecuación es una igualdad condicionada en la que aplicando operaciones adecuadas se logra despejar (aislar) la incógnita. Cuando una ecuación contiene

Más detalles

Moisés Villena Muñoz Cap. 3 Aplicaciones de la Integral

Moisés Villena Muñoz Cap. 3 Aplicaciones de la Integral Moisés Villena Muñoz Cap. Aplicaciones de la Integral.1 ÁREAS DE REGIONES PLANAS. APLICACIONES ECONÓMICAS..1. CAMBIO NETO... EXCESO DE UTILIDAD NETA... GANANCIAS NETAS... EXCEDENTES DE CONSUMIDORES Y EXCEDENTE

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

Finanzas. Sesión 6 Tema 15: Punto de Equilibrio. Escuela Profesional de Ingeniería de Sistemas e Informática

Finanzas. Sesión 6 Tema 15: Punto de Equilibrio. Escuela Profesional de Ingeniería de Sistemas e Informática Finanzas Sesión 6 Tema 15: Punto de Equilibrio Escuela Profesional de Ingeniería de Sistemas e Informática Punto de equilibrio El Punto de Equilibrio de un bien o servicio, está dado por el volumen de

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

Dirección de Desarrollo Curricular Secretaría Académica

Dirección de Desarrollo Curricular Secretaría Académica PLAN DE ESTUDIOS DE EDUCACIÓN MEDIA SUPERIOR CAMPO DISCIPLINAR Matemáticas PROGRAMA DE ASIGNATURA (UNIDADES DE APRENDIZAJE CURRICULAR) Cálculo Diferencial PERIODO IV CLAVE BCMA.04.04-08 HORAS/SEMANA 4

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

CAPÍTULO 4 Funciones Económicas

CAPÍTULO 4 Funciones Económicas CAPÍTULO 4 Funciones Económicas Introducción La actividad económica surge de la necesidad de utilizar recursos para producir los bienes materiales que satisfacen los deseos del hombre, ya sean básicos

Más detalles

Aplicaciones en ciencias naturales, económico-administrativas y sociales

Aplicaciones en ciencias naturales, económico-administrativas y sociales Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,

Más detalles

Razón de cambio promedio 11.1 MATE 3013

Razón de cambio promedio 11.1 MATE 3013 11.1 MATE 3013 El cálculo diferencial Cambios en variables. DEFINICION: La razón de cambio promedio con respecto a x, a medida que x cambia de x 1 a x 2, es la razón entre el cambio en los valores de salida

Más detalles

Duración: 2 horas pedagógicas

Duración: 2 horas pedagógicas PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE Grado: Cuarto I. TÍTULO DE LA SESIÓN Duración: 2 horas pedagógicas El índice de erosividad de la lluvia UNIDAD 4 NÚMERO DE SESIÓN 6/14 II. APRENDIZAJES ESPERADOS

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

Cuaderno de Actividades 4º ESO

Cuaderno de Actividades 4º ESO Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

1. Simplificar las siguientes expresiones. 2. Simplificar y escribir como un producto de potencias: 3. Escribir en forma exponencial

1. Simplificar las siguientes expresiones. 2. Simplificar y escribir como un producto de potencias: 3. Escribir en forma exponencial . Simplificar las siguientes epresiones. 7 ( ) ( 8) b. + + 79 ( ) ( ) c. ( )( )( ) d. ( ) ( ) e. + f. 8 + 8 + 7 6 g. y ( + y ) ( + y ) ( y ) 0 y 8 h.. Simplificar y escribir como un producto de potencias:

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

DP. - AS Matemáticas ISSN: X

DP. - AS Matemáticas ISSN: X DP. - AS - 5119 007 Matemáticas ISSN: 1988-379X 003 APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. Un vendedor de enciclopedias recibe, como sueldo mensual, una cantidad fija

Más detalles

1.- Un jardín rectangular tiene por ancho Xm y largo X+10, encontrar la función que describe el área del jardín y graficar.

1.- Un jardín rectangular tiene por ancho Xm y largo X+10, encontrar la función que describe el área del jardín y graficar. 1.- Un jardín rectangular tiene por ancho Xm y largo X+1, encontrar la función que describe el área del jardín y graficar. Largo=X+3 Ancho=X Área=(Largo)(ancho) Area=(X+3)X A x = X 2 + 3X La grafica de

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

Materia: Matemática de Tercer Año Tema: Pendiente

Materia: Matemática de Tercer Año Tema: Pendiente Materia: Matemática de Tercer Año Tema: Pendiente Suponga que tiene un avión de juguete sobre el despegue, que se eleva 5 pies por cada 6 metros que recorre a lo largo de la horizontal. Cuál sería la pendiente

Más detalles

Examen (segunda parte) Habilidades NÚMEROS CON SIGNO. 1. Una longitud positiva denota los grados al este de los datos del tiempo en la

Examen (segunda parte) Habilidades NÚMEROS CON SIGNO. 1. Una longitud positiva denota los grados al este de los datos del tiempo en la Examen (segunda parte) Habilidades NÚMEROS CON SIGNO. 1. Una longitud positiva denota los grados al este de los datos del tiempo en la línea internacional; la longitud negativa denota los grados al oeste

Más detalles

Funciones: Aspectos básicos

Funciones: Aspectos básicos Funciones: Aspectos básicos Nombre: Curso:.. Producto cartesiano En teoría de conjuntos, el producto cartesiano de dos conjuntos es una operación que resulta en otro conjunto cuyos elementos son todos

Más detalles

Funciones polinomiales de grados cero, uno y dos

Funciones polinomiales de grados cero, uno y dos Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

1. Dada la siguiente grafica. 3. Determine la grafica de Donde A) B) Determine la grafica de A) B) 4 C) D) C) D) 4. Dada la grafica de

1. Dada la siguiente grafica. 3. Determine la grafica de Donde A) B) Determine la grafica de A) B) 4 C) D) C) D) 4. Dada la grafica de 1. Dada la siguiente grafica 3. Determine la grafica de Donde Determine la grafica de 4 4. Dada la grafica de 2. Dada la grafica de la función Indique el valor de A) 16 B) -16 C) 32 D) -32-30 I) II) III)

Más detalles

SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA.

SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA. DP. - AS - 9 Matemáticas ISSN: 988-79X SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA. PROPIEDADES INMEDIATAS 00 log a a 00 log a 00 log a a 00 a a log Calcula algebraicamente el valor de las epresiones o el

Más detalles

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos: MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de

Más detalles