Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico"

Transcripción

1 Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco

2 Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco... A- ApA. Estadístcos... A- ApA. Aplcacón en superfce y alttud... A-4

3 Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Ap.A Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco ApA. Estadístcos Hasta la actualdad no se ha desarrollado nngún protocolo de evaluacón para estos modelos, sendo una tarea pendente y necesara. La mayoría de estudos centífcos se decantan por una evaluacón de los resultados cualtatva, y en aquellos dónde se cuantfca el análss optan por el uso de estadístcos smples como el error cuadrátco medo, el error absoluto medo o el sesgo. Algunos trabajos donde se plantean y utlzan dstntos estadístcos para la evaluacón de WP son Wllmott (98), Pelke (984), Wllmott et al. (985), Stauffer y Seaman (990), Cox et al. (998), Stenger (000). Para la valdacón presentada se ha optado por utlzar el error cuadrátco medo (RMSE), el error absoluto medo (MAE), el error absoluto medo normalzado (MAE) y el sesgo (BIAS) defndos por Pelke (984) y Stauffer y Seaman (990). Éstos estadístcos permten medr la precsón de la smulacón. Por precsón se entende el promedo del grado de correspondenca entre pares ndvduales de valores pronostcados y valores observados. Por valores observados se entende aquellos obtendos en estacones de medda meteorológcas. Para el cálculo de la precsón se utlza el error medo cuadrátco, defndo como (Pelke, 984): RMSE ( φ φ ) (7.) donde φ φ es el valor pronostcado para la celda es el valor observado para la celda es el número de valores analzados El error medo cuadrátco nos da la medda de las dferencas en promedo entre los valores pronostcados y los observados. Otro estadístco que nos descrbe una nformacón smlar es el error absoluto medo defndo como (Stauffer y Seaman, 990): MAE φ φ (7.) Para tener en cuenta el peso del error respecto al valor de la varable medda se normalza el error absoluto, tenendo el error absoluto medo normalzado (Stauffer y Seaman, 990): MAE φ φ φ (7.3) A-

4 Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Por últmo, el sesgo (BIAS) nos proporcona nformacón sobre la tendenca del modelo a sobreestmar o subestmar una varable, nos cuantfca el error sstemátco del modelo. Pelke (984) defne el BIAS según: BIAS ( φ φ ) (7.4) Así, para la comparacón de varables escalares de meddas de estacones se han calculado el RMSE, MAE, MAE, BIAS para cada hora, tenendo así una evolucón temporal del error y poder analzar con detalle el comportamento del modelo durante toda la smulacón. Para el caso del vento se puede utlzar tambén una varacón del RMSE tenendo en cuenta las dos componentes del msmo. Así se defne el error cuadrátco medo del vector horzontal del vento como (Pelke, 984): RMSVE ( u u ) + ( v v) n (7.5) donde u u v v es el valor pronostcado para la celda de la componente u del vento es el valor observado para la celda de la componente u del vento es el valor pronostcado para la celda de la componente v del vento es el valor observado para la celda de la componente v del vento es el número de valores analzados Por últmo comentar el caso partcular de la dreccón del vento. Al tratarse de una varable cíclca se deben calcular los estadístcos con precaucón. Una manera es utlzar el RMSVE para tener una magntud de la correccón del vector. Para analzar por separado la dreccón se ha calculado en algunos casos el RMSE. Entonces se utlza la dferenca entre dreccón smulada y dreccón observada mínma, ya que se pueden tener dos valores, uno postvo y otro negatvo. Al trabajar con el valor mínmo, los resultados al promedar los estadístcos no nclurán una desvacón por método de cálculo que no represente la dferenca real entre las meddas. Así el RMSE de la dreccón se calculará como: RMSE dr D ; D ( d d, d d ) mn (7.6) donde d d es la dreccón del vento horzontal pronostcada para la celda es la dreccón del vento horzontal observada para la celda es el número de valores analzados Cuando se ha calculado el BIAS de la dreccón del vento se ha aplcado la sguente formulacón: BIAS dr D ; D d d s (d d ) < (d d ) (7.7) D d d s (d d ) > (d d ) A-

5 Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco donde d d es la dreccón del vento horzontal pronostcada para la celda es la dreccón del vento horzontal observada para la celda es el número de valores analzados Un BIAS postvo mplca que la tendenca del modelo es a smular vectores del vento a la zquerda de las observacones, y vceversa cuando es negatvo. Por últmo, comentar que para los estadístcos de la dreccón del vento, éstos sólo se calculan para velocdades superores a 0.5 m/s. Complementando la nformacón que aportan estos estadístcos se ha calculado tambén un índce que aporta nformacón sobre el comportamento del modelo al comparar los resultados con observacones. El índce de ajuste (IOA, ndex of agreement) se calcula como: IOA ( P O ) (7.8) ( P Omean + O Omean ) donde es el número de observacones P son los valores pronostcados O son los valores observados O mean es la meda de las observacones. Para la aplcacón de estos estadístcos en mallas de trabajo se utlzan dos métodos: verfcacón celda-celda y verfcacón celda-punto (Pelke, 984). La verfcacón celda a celda consste en comparar el resultado del pronóstco con el análss para la msma hora. La ventaja que conlleva éste método es la sencllez en la computacón, ya que, todos los puntos de los valores observados y pronostcados concden espacalmente. Sn embargo, algunos autores, Stenger (000) y Whte et al. (999), han constatado la tendenca de esta metodología en producr un sesgo a favor de los resultados de los domnos con resolucones menores. Stenger (000) constata éste hecho al analzar el RMSE celda-celda para una malla de 36 km de resolucón frente al domno andado en ella de km; aplcando esta metodología para la malla de 36 km se tenen RMSE nferores que para la de km, cuando al realzar comparacones con meddas puntuales queda claro el mejor comportamento de los resultados de km. La otra metodología utlzada, y altamente extendda, es la verfcacón celda-punto. En esta se comparan observacones puntuales con los valores de las celdas donde se stúan las observacones. En éste caso no se analzan todos los puntos del domno, sólo se centra en los puntos donde hay observacón. Esta metodología supone que los dos valores son comparables, aunque la observacón es un valor temporal y espacalmente puntual, a dferenca del resultado pronostcado, que es un valor temporal y espacalmente promedado. La problemátca que se plantea al analzar la caldad de las smulacones con un análss estadístco es que aunque los estadístcos presenten un mal comportamento los A-3

6 Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco resultados de la smulacón sean buenos pero con un decalaje temporal en la predccón de los fenómenos dentro el domno. Para ntentar detectar estos casos se comparan puntualmente la evolucón de las varables en algunas estacones sgnfcatvas. Para la verfcacón del modelo se ha utlzado la metodología celda-punto. Se comparan los resultados del modelo con las observacones. Para comparar con las observacones se escogen los datos del modelo correspondentes a la celda más próxma a la localzacón de la observacón. o se ha realzado nnguna nterpolacón con los datos del modelo para ajustarse al punto específco de la observacón. ApA. Aplcacón en superfce y alttud Para la valdacón de los resultados en superfce se han calculado en algunos casos el RMSE y el BIAS de la temperatura y la velocdad del vento a y 0 m respectvamente, mentras que para la dreccón del vento se ha calculado el BIAS a 0 m. En otros casos se ha optado por evaluar el RMSVE del vector vento a 0 m. Tambén se han realzado comparacones con radosondeos, que han permtdo evaluar el comportamento del modelo en alttud. Para esto se ha optado por subdvdr la troposfera en tres capas, consderando que es más nteresante poder cuantfcar el comportamento del modelo en las dstntas capas con un comportamento partcular de la troposfera. Así, se ha defndo una prmera capa concdendo con la capa fronterza en algunos casos que abarca desde la superfce a 00 m s.n.t. La sguente capa comprende entre 00 a 5000 m s.n.m, comprendendo la atmósfera lbre hasta la meda troposfera, y la tercera entre 5000 a 0000 m s.n.m comprendendo el resto hasta la troposfera alta. Para cada capa se ha evaluado el RMSE, MAE, MAE y BIAS de la temperatura del are, la velocdad del vento y la dreccón del vento. A-4

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

1.- Objetivo Alcance Metodología...3

1.- Objetivo Alcance Metodología...3 PROCEDIMIENTO DO PARA EL CÁLCULO DEL FACTOR DE DESEMPEÑO DEL CONTROL DE FRECUENCIA (FECF) EN EL SIC DIRECCIÓN DE OPERACIÓN ÍNDICE 1.- Objetvo...3 2.- Alcance...3 3.- Metodología...3 3.1.- Cálculo de la

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

TEMA 10: ESTADÍSTICA

TEMA 10: ESTADÍSTICA TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES

Más detalles

T. 9 El modelo de regresión lineal

T. 9 El modelo de regresión lineal 1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón

Más detalles

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.

Más detalles

Estadística Descriptiva Análisis de Datos

Estadística Descriptiva Análisis de Datos El concepto de Estadístca Estadístca Descrptva Análss de Datos 8.1 INTRODUCCION El orgen de la Estadístca se remonta a dos tpos de actvdades humanas: los juegos de azar y las necesdades de los Estados:

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA)

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA) SECREARÍA ENERAL ÉCNICA MINISERIO DE ARICULURA, ALIMENACIÓN Y MEDIO AMBIENE SUBDIRECCIÓN ENERAL DE ESADÍSICA PRECIOS MEDIOS ANUALES DE LAS IERRAS DE USO ARARIO (MEODOLOÍA) OBJEIVO: Desde 1983 el Mnstero

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

Materiales Industriales, Ingeniería Técnica Industrial Mecánica Profesor: Dr. María Jesús Ariza, Departamento de Física Aplicada, CITE II-A, 2.

Materiales Industriales, Ingeniería Técnica Industrial Mecánica Profesor: Dr. María Jesús Ariza, Departamento de Física Aplicada, CITE II-A, 2. Materales Industrales, Ingenería Técnca Industral Mecánca Profesor: Dr. María Jesús Arza, Departamento de Físca Aplcada, CITE II-A,. Teoría de meddas. Meddas magntudes: La teoría de meddas Las varables

Más detalles

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA FORMULACIÓN DE UN PROGRAMA BÁSICO DE NORMALIZACIÓN PARA APLICACIONES DE ENERGÍAS ALTERNATIVAS Y DIFUSIÓN Documento ANC-0603-10-01 ANTEPROYECTO DE NORMA AEROGENERADORES

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

7ª SESIÓN: Medidas de concentración

7ª SESIÓN: Medidas de concentración Curso 2006-2007 7ª Sesón: Meddas de concentracón 7ª SESIÓN: Meddas de concentracón. Abrr el rograma Excel. 2. Abrr el lbro utlzado en las ráctcas anterores. 3. Insertar la Hoja7 al fnal del lbro. 4. Escrbr

Más detalles

Condiciones Generales TestQual 2013

Condiciones Generales TestQual 2013 Condcones Generales TestQual 2013 Ejerccos TestQual 2013: En el presente documento se descrben las Condcones Generales de aplcacón en los Programas de Intercomparacón de TestQual. Con la solctud de uno

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Estimación de la Demanda: Pronósticos

Estimación de la Demanda: Pronósticos UNIVERSIDAD SIMON BOLIVAR Estmacón de la Demanda: Pronóstcos PS-4161 Gestón de la Produccón I 1 Bblografía Recomendada Título: Dreccón de la Produccón: Decsones Estratégcas. Capítulo 4: Prevsón Autores:

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

GUÍA 5. Roberto Fabián Retrepo A., M. Sc. en Física Profesor Asociado Escuela de Física Universidad Nacional de Colombia

GUÍA 5. Roberto Fabián Retrepo A., M. Sc. en Física Profesor Asociado Escuela de Física Universidad Nacional de Colombia GUÍA 5 Dego Lus Arstzábal R., M. Sc. en Físca Profesor Asocado Escuela de Físca Unversdad aconal de Colomba Roberto Fabán Retrepo A., M. Sc. en Físca Profesor Asocado Escuela de Físca Unversdad aconal

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad Vda Utl, característcas de la Fabldad e Invabldad y dstrbucones teórcas en el terreno de la fabldad Realzado por: Mgter. Leandro D. Torres Vda Utl Este índce se refere a una vda útl meda nomnal y se puede

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

ACUERDO DE ACREDITACIÓN IST 184. Programa de Magister en Ciencias mención Oceanografía Universidad de Concepción

ACUERDO DE ACREDITACIÓN IST 184. Programa de Magister en Ciencias mención Oceanografía Universidad de Concepción A t f l E D T A C l f l N UMITAS ACUERDO DE ACREDITACIÓN IST 184 Programa de Magster en Cencas mencón Oceanografía Unversdad de Concepcón Con fecha 10 de octubre de 2012, se realza una sesón del Consejo

Más detalles

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES )

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES ) TUTORÍA DE ITRODUCCIÓ A LA ESTADÍSTICA. (º A.D.E.) e-mal: mozas@el.uned.es PREGUTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS E EXÁMEES DE LOS CAPÍTULOS, Y 4 (DISTRIBUCIOES DE FRECUECIAS UIDIMESIOALES

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas... TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

16/07/2012 P= F A. Pascals. Bar

16/07/2012 P= F A. Pascals. Bar El Estado Gaseoso El Estado Gaseoso Undad I Característcas de los Gases Las moléculas ndvduales se encuentran relatvamente separadas. Se expanden para llenar sus recpentes. Son altamente compresbles. enen

Más detalles

Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA

Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA Oferta de Trabajo Parte 2 Economía Laboral Julo J. Elías LIE - UCEMA Curva de oferta de trabajo ndvdual Consumo Salaro por hora ($) G w=$20 F w=$25 25 Curva de Oferta de Trabajo Indvdual w=$14 20 14 w

Más detalles

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos:

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos: MEDIDAS DE POSICIÓN Y DISPERSIÓN Estadístca En la clase anteror vmos como resumr la nformacón contenda en un conjunto de datos medante tablas y gráfcos. En esta clase vamos a ver como resumrlos medante

Más detalles

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS Procedmento de Calbracón Metrología PROCEDIMIENTO DI-00 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS La presente edcón de este procedmento se emte exclusvamente en formato dgtal y puede descargarse gratutamente

Más detalles

Evaluación de la estabilidad de taludes cohesivos de pie 1

Evaluación de la estabilidad de taludes cohesivos de pie 1 Evaluacón de la establdad de taludes cohesvos de pe 1 Julo Cesar Quroz Vaca 2 Profesor Unverstaro e Ingenero Cvl Santa Cruz, 3 de juno del 2015 Resumen Los métodos para determnar el factor de segurdad

Más detalles

CONTRIBUCIÓN A LA MEJORA DE RESOLUCIÓN DE LOS SISTEMAS DE OBTENCIÓN DE IMÁGENES POR ULTRASONIDOS

CONTRIBUCIÓN A LA MEJORA DE RESOLUCIÓN DE LOS SISTEMAS DE OBTENCIÓN DE IMÁGENES POR ULTRASONIDOS UNIVERSITAT POLITÈCNICA DE CATALUNYA Departament d Engnyera Electrònca CONTRIBUCIÓN A LA MEJORA DE RESOLUCIÓN DE LOS SISTEMAS DE OBTENCIÓN DE IMÁGENES POR ULTRASONIDOS Autor: Jord Salazar Soler Drector:

Más detalles

Índice de Precios de las Materias Primas

Índice de Precios de las Materias Primas May-15 Resumen Ejecutvo El objetvo del (IPMP) es sntetzar la dnámca de los precos de las exportacones de Argentna, consderando la relatva establdad en el corto plazo de los precos de las ventas externas

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

TEORÍA DE MEDIDAS INTRODUCCIÓN

TEORÍA DE MEDIDAS INTRODUCCIÓN Teoría de Meddas TEORÍA DE MEDIDAS ITRODUCCIÓ Las cencas epermentales operan con valores numércos que se obtenen como resultado de efectuar meddas de varables, por ejemplo una temperatura, una longtud

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

Capítulo 12 CONTRASTES NO PARAMÉTRICOS

Capítulo 12 CONTRASTES NO PARAMÉTRICOS Capítulo 1 CONTRASTES NO PARAMÉTRICOS 1.1 Introduccón 1. Contrastes de ajuste a una dstrbucón teórca 1..1 Contrastes basados en la dstrbucón de frecuencas muestral 1..1.1 El contraste ch-cuadrado, χ. 1..1.

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departamento Admnstratvo Naconal de Estadístca Dreccón de Censos Demografía METODOLOGIA ESTIMACIONES Y PROYECCIONES DE POBLACIÓN, POR ÁREA, SEXO Y EDAD PARA LOS DOMINIOS DE LA GRAN ENCUESTA INTEGRADA DE

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

ICIDCA. Sobre los Derivados de la Caña de Azúcar ISSN: 0138-6204 revista@icidca.edu.cu

ICIDCA. Sobre los Derivados de la Caña de Azúcar ISSN: 0138-6204 revista@icidca.edu.cu ICIDCA. Sobre los Dervados de la Caña de Azúcar ISSN: 0138-6204 revsta@cdca.edu.cu Insttuto Cubano de Investgacones de los Dervados de la Caña de Azúcar Cuba Rbas, Maurco; Lorenzo, Magdalena; Porto, Olga

Más detalles

2.1. Sustancias puras. Medida de los cambios de entalpía.

2.1. Sustancias puras. Medida de los cambios de entalpía. 2 Metalurga y termoquímca. 7 2. Metalurga y termoquímca. 2.1. Sustancas puras. Medda de los cambos de entalpía. De acuerdo a las ecuacones (5 y (9, para un proceso reversble que ocurra a presón constante

Más detalles

Métodos Nodales Híbridos en la Solución de las Ecuaciones de Difusión en Geometría XY

Métodos Nodales Híbridos en la Solución de las Ecuaciones de Difusión en Geometría XY Energía Nuclear y Segurdad Radológca: Nuevos Retos y Perspectvas XIV Congreso Anual de la SNM/XXI Reunón Anual de la SMSR Guadalajara, Jalsco, Méxco, - de Septembre, (, Memoras en CDROM Métodos Nodales

Más detalles

Tratamiento de datos experimentales. Teoría de errores

Tratamiento de datos experimentales. Teoría de errores Tratamento de datos expermentales. Teoría de errores. Apéndce II Tratamento de datos expermentales. Teoría de errores (Fuente: Práctcas de Laboratoro: Físca, Hernández et al., 005) El objetvo de la expermentacón

Más detalles

La adopción y uso de las TICs en las Microempresas Chilenas

La adopción y uso de las TICs en las Microempresas Chilenas Subdreccón Técnca Depto. Investgacón y Desarrollo Estadístco Subdreccón de Operacones Depto. Comerco y Servcos INFORME METODOLÓGICO DISEÑO MUESTRAL La adopcón y uso de las TICs en las Mcroempresas Clenas

Más detalles

Factores de Temperatura y Presión Gerencia de Distribución ENARGAS (Informe interno) martes, 27 de enero de 2009

Factores de Temperatura y Presión Gerencia de Distribución ENARGAS (Informe interno) martes, 27 de enero de 2009 Factores de emperatura y Presón Gerenca de Dstrbucón ENARGAS (Informe nterno) martes, 7 de enero de 009 Introduccón: Exsten muchas stuacones en la ndustra del gas natural donde es necesaro cuantfcar en

Más detalles

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA *

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA * CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN * INTRODUCCIÓN Helmuth Yesd Aras Gómez ** Álvaro Hernando Chaves Castro *** El efecto de la educacón sobre el desarrollo económco tradconalmente

Más detalles

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios Teoría de Modelos y Smulacón Enrque Eduardo Tarfa Facultad de Ingenería - Unversdad Naconal de Jujuy Generacón de Números Aleatoros Introduccón Este capítulo trata sobre la generacón de números aleatoros.

Más detalles

Análisis de ruido en detectores ópticos.

Análisis de ruido en detectores ópticos. Análss de rudo en detectores óptcos. La corrente real generada en un fotododo es de carácter aleatoro, cuyo valor fluctúa entre el valor promedo defndo por la foto-corrente: p = RP Dchas fluctuacones se

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

LOCALIZACIÓN DE EPICENTROS

LOCALIZACIÓN DE EPICENTROS UNIVERSIDAD NACIONAL DE TUCUMAN FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGÍA DEPARTAMENTO DE GEODESIA Y TOPOGRAFÍA CÁTEDRA DE GEOFÍSICA LOCALIZACIÓN DE EPICENTROS PARA ALUMNOS DE INGENIERÍA GEODESICA Y GEOFÍSICA

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

CÁNONES ANUALES DE DE ARRENDAMIENTOS RÚSTICOS (Metodología)

CÁNONES ANUALES DE DE ARRENDAMIENTOS RÚSTICOS (Metodología) SEREARÍA EERAL ÉA MSERO DE ARULURA, ALMEAÓ Y MEDO AMBEE SUBDREÓ EERAL DE ESADÍSA ÁOES AUALES DE DE ARREDAMEOS RÚSOS (Metodología) OBJEVO El canon de arrendamento rústco se defne como el pago que realza

Más detalles